首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Explaining spatial patterns of biological organisation remains a central challenge for biogeographic studies. In marine systems, large-scale ocean currents can modify broad-scale biological patterns by simultaneously connecting environmental (e.g. temperature, salinity and nutrients) and biological (e.g. amounts and types of dispersed propagules) properties of adjacent and distant regions. For example, steep environmental gradients and highly variable, disrupted flow should lead to heterogeneity in regional communities and high species turnover. In this study, we investigated the possible imprint of the Leeuwin (LC) and East Australia (EAC) Currents on seaweed communities across ~7,000 km of coastline in temperate Australia. These currents flow poleward along the west and east coasts of Australia, respectively, but have markedly different characteristics. We tested the hypothesis that, regional seaweed communities show serial change in the direction of current flow and that, because the LC is characterised by a weaker temperature gradient and more un-interrupted along-shore flow compared to the EAC, then coasts influenced by the LC have less variable seaweed communities and lower species turnover across regions than the EAC. This hypothesis was supported. We suggest that this pattern is likely caused by a combination of seaweed temperature tolerances and current-driven dispersal. In conclusion, our findings support the idea that the characteristics of continental-scale currents can influence regional community organisation, and that the coupling of ocean currents and marine biological structure is a general feature that transcends taxa and spatial scales.  相似文献   

2.
Protein translocation in Escherichia coli requires protein-conducting channels in cytoplasmic membranes to allow precursor peptides to pass through with adenosine triphosphate (ATP) hydrolysis. Here, we report a novel, sensitive method that detects the opening of the SecA-dependent protein-conducting channels at the nanogram level. E. coli inverted membrane vesicles were injected into Xenopus oocytes, and ionic currents were recorded using the two-electrode voltage clamp. Currents were observed only in the presence of E. coli SecA in conjunction with E. coli membranes. Observed currents showed outward rectification in the presence of KCl as permeable ions and were significantly enhanced by coinjection with the precursor protein proOmpA or active LamB signal peptide. Channel activity was blockable with sodium azide or adenylyl 5'-(beta,gamma-methylene)-diphosphonate, a nonhydrolyzable ATP analogue, both of which are known to inhibit SecA protein activity. Endogenous oocyte precursor proteins also stimulated ion current activity and can be inhibited by puromycin. In the presence of puromycin, exogenous proOmpA or LamB signal peptides continued to enhance ionic currents. Thus, the requirement of signal peptides and ATP hydrolysis for the SecA-dependent currents resembles biochemical protein translocation assay with E. coli membrane vesicles, indicating that the Xenopus oocyte system provides a sensitive assay to study the role of Sec and precursor proteins in the formation of protein-conducting channels using electrophysiological methods.  相似文献   

3.
In many nonclonal, benthic marine species, geographic distribution is mediated by the dispersal of their larvae. The dispersal and recruitment of marine larvae may be limited by temperature gradients that can affect mortality or by ocean currents that can directly affect the movements of pelagic larvae. We focus on Point Conception, a well-known biogeographic boundary between the Californian and Oregonian biogeographic provinces, to investigate whether ocean currents affect patterns of gene flow in intertidal marine invertebrates. The predominance of pelagically dispersing species with northern range limits at Point Conception suggests that ocean currents can affect species distributions by erecting barriers to the dispersal of planktonic larvae. In this paper, we investigate whether the predominantly southward currents have left a recognizable genetic signature in species with pelagically dispersing larvae whose ranges span Point Conception. We use patterns of genetic diversity and a new method for inferring cladistic migration events to test the hypothesis that southward currents increase southward gene flow for species with pelagically dispersing larvae. We collected mitochondrial DNA (mtDNA) sequence data for the barnacles Balanus glandula and Chthamalus fissus and also reanalyzed a previously published mtDNA dataset (Strongylocentrotus purpuratus, Edmands et al. 1996). For all three species, our cladistic approach identified an excess of southward migration events across Point Conception. In data from a fourth species with nondispersing larvae (Nucella emarginata, Marko 1998), our method suggests that ocean currents have not played a role in generating genetic structure.  相似文献   

4.
The spatial and vertical structure of the water currents and its relationship with the tidal cycles were studied using current meters in the Gulf of Nicoya. In the upper gulf, the vertical marine current differences increase as the depth increases. The water column at the station near Chira Island (upper gulf) shows the smaller changes in currents and in temperature. The flow at the station between San Lucas Island and Puntarenas (middle gulf) is the most stratified in this region. Currents with magnitudes over 100 cm/seg were measured during spring tides. Changes in the lags of the surface and bottom tidal flows were measured on the order of 100 minutes. In general, in this upper region the flows are toward the head of the gulf when the tide is flooding and toward the mouth when the tide is ebbing. In the lower gulf the circulation is more complex. Along an axis between Tárcoles and Negritos Islands, changes of velocity vectors are identified between surface and bottom. The current rotates in a different way in the water column in this region and their patterns cannot be explained only by the tidal cycles predicted for Puntarenas. These results demonstrate that the spatial and vertical variation of the marine currents of the Gulf of Nicoya is not only related to the thermohaline structure, but also to the tidal cycles and tide ranges that take place in this estuary.  相似文献   

5.
Larval shells of benthic marine bivalves occur frequently in plankton samples from temperate to tropical eastern North Atlantic waters. At many sites their abundance is higher than fifty specimens per cubic meter of surface water, thus outnumbering the other planktonic components with calcareous shells. Generally they are more frequent in nearshore water masses than far from land, but it could be shown that not only faunas on continental shelves, but also on oceanic inlands and on submarine elevations, produce larvae, which can be found far out in the ocean.Although it cannot be excluded that long-transported bivalve larvae have also been found in these samples, two arguments seem to assure that the bulk of these shells has been produced in the neighbouring shallow-water areas: decreasing abundance as well as increasing size of shells with increasing distance from the shallow-water area (this applies both to island and continental shelves).The bulk of bivalve shells is concentrated in surface waters. However, shells have also been found with decreasing abundance in water depths down to 600 m. The size distribution in the water column is qualitatively similar for water masses close to the coast and far from land; large shells occur in the upper 50 m, but average diameter decreases below this depth. However, far from land in water depths of 500–600 m they can reach sizes up to about 0.5 mm in diameter (according to one specimen). Generally, shell sizes are larger in corresponding water depth levels far from than in those close to land.The occurrence of larval shells of bivalves throughout the eastern North Atlantic also has wide paleogeographic implications. Since no specific determinations of these bivalves have been tried, it is unknown in which water depths their parental generations occur. However, it can be assumed that eastern North Atlantic island shelves and peaks of submarine guyots and other subsurface elevations which reach to within a few hundred. meters of the surface, can be populated by faunas from eastern Atlantic continental margins being transported by off-shore currents far into the ocean. Since the islands and presumably guyots, etc. as well, produce pelagic larval assemblages from their own benthic molluscan faunas, it can easily be assumed that larval shells can be transported across the ocean by surface and subsurface currents.  相似文献   

6.
Protein translocation in Escherichia coli requires protein-conducting channels in cytoplasmic membranes to allow precursor peptides to pass through with adenosine triphosphate (ATP) hydrolysis. Here, we report a novel, sensitive method that detects the opening of the SecA-dependent protein-conducting channels at the nanogram level. E. coli inverted membrane vesicles were injected into Xenopus oocytes, and ionic currents were recorded using the two-electrode voltage clamp. Currents were observed only in the presence of E. coli SecA in conjunction with E. coli membranes. Observed currents showed outward rectification in the presence of KCl as permeable ions and were significantly enhanced by coinjection with the precursor protein proOmpA or active LamB signal peptide. Channel activity was blockable with sodium azide or adenylyl 5′-(β,γ-methylene)-diphosphonate, a nonhydrolyzable ATP analogue, both of which are known to inhibit SecA protein activity. Endogenous oocyte precursor proteins also stimulated ion current activity and can be inhibited by puromycin. In the presence of puromycin, exogenous proOmpA or LamB signal peptides continued to enhance ionic currents. Thus, the requirement of signal peptides and ATP hydrolysis for the SecA-dependent currents resembles biochemical protein translocation assay with E. coli membrane vesicles, indicating that the Xenopus oocyte system provides a sensitive assay to study the role of Sec and precursor proteins in the formation of protein-conducting channels using electrophysiological methods.  相似文献   

7.
KCNQ2 and KCNQ3, both of which are mutated in a type of human neonatal epilepsy, form heteromeric potassium channels that are expressed in broad regions of the brain. The associated current may be identical to the M-current, an important regulator of neuronal excitability. We now show that the RNA encoding the novel KCNQ5 channel is also expressed in brain and in sympathetic ganglia where it overlaps largely with KCNQ2 and KCNQ3. In addition, it is expressed in skeletal muscle. KCNQ5 yields currents that activate slowly with depolarization and can form heteromeric channels with KCNQ3. Currents expressed from KCNQ5 have voltage dependences and inhibitor sensitivities in common with M-currents. They are also inhibited by M1 muscarinic receptor activation. A KCNQ5 splice variant found in skeletal muscle displays altered gating kinetics. This indicates a molecular diversity of channels yielding M-type currents and suggests a role for KCNQ5 in the regulation of neuronal excitability.  相似文献   

8.
Activities of Na channels and Na pumps were studied in the rat cortical collecting tubule (CCT) during manipulation of the animals' mineralocorticoid status in vivo using a low-Na diet, diuretics, or administration of exogenous aldosterone. Tubules were isolated and split open to expose the luminal membrane surface. Using the whole-cell patch-clamp technique, activities of the apical Na channels and the basolateral Na pumps were measured in principal cells as the currents inhibited by amiloride (10 microM) and ouabain (1 mM), respectively. Na channel current (INa) was not measurable in CCTs from control animals on a normal diet. INa was approximately 200 pA/cell in CCTs from animals on a low-Na diet or infused with aldosterone using osmotic minipumps. Currents attributable to the Na pump (Ipump) were similar in control animals and animals on a low-Na diet. Maximal currents were approximately 35 pA/cell in both groups, and decreased with hyperpolarization of the cell membrane. In contrast, administration of exogenous aldosterone increased Ipump fourfold. Coinfusion of aldosterone and amiloride in vivo through the minipumps did not affect the induction of INa but reduced the induction of Ipump by 80%. We conclude that the induction of channel activity in this tissue is a direct action of aldosterone, whereas the induction of pump activity may be a consequence of the increased Na traffic through the epithelial cells.  相似文献   

9.
Numerous macro-organisms of the Doushantuo macrobiota, which were found in the black carbonaceous mudstone of the upper Neoproterozoic Ediacraan Doushan-tuo Formation in Jiangkou County, Guizhou Province, China, are considered to live on sea floor by their holdfasts. The appearance and preserved forms of the macroalgal holdfasts may provide some data to the study of the living and buried environments ofmacrobiota. They lived in the lower energy and clear environment, and fixed on a soupground with rich water (about 79% water). Currents, possibly ocean currents, could pull out the macroalgal holdfasts from the soupground and break off the macroalgal foliations. After such events, the corpses of macro-organisms would be covered in a reduced environment by the deposits. Afterwards, a new community, including regenerating and undying macro-organisms, lived continuously on a new deposit.  相似文献   

10.
Anthropogenic disturbances such as fishing, mining, oil drilling, bioprospecting, warming, and acidification in the deep sea are increasing, yet generalities about deep-sea biogeography remain elusive. Owing to the lack of perceived environmental variability and geographical barriers, ranges of deep-sea species were traditionally assumed to be exceedingly large. In contrast, seamount and chemosynthetic habitats with reported high endemicity challenge the broad applicability of a single biogeographic paradigm for the deep sea. New research benefiting from higher resolution sampling, molecular methods and public databases can now more rigorously examine dispersal distances and species ranges on the vast ocean floor. Here, we explore the major outstanding questions in deep-sea biogeography. Based on current evidence, many taxa appear broadly distributed across the deep sea, a pattern replicated in both the abyssal plains and specialized environments such as hydrothermal vents. Cold waters may slow larval metabolism and development augmenting the great intrinsic ability for dispersal among many deep-sea species. Currents, environmental shifts, and topography can prove to be dispersal barriers but are often semipermeable. Evidence of historical events such as points of faunal origin and climatic fluctuations are also evident in contemporary biogeographic ranges. Continued synthetic analysis, database construction, theoretical advancement and field sampling will be required to further refine hypotheses regarding deep-sea biogeography.  相似文献   

11.
Mangrove forests are systems that provide ecosystem services and rely on floating propagules of which the dispersal trajectories are determined by ocean currents and winds. Quantitating connectivity of mangrove patches is an important conservation concern. Current estimates of connectivity, however, fail to integrate the link between ocean currents at different spatial scales and dispersal trajectories. Here, we use high‐resolution estimates of ocean currents and surface winds from meteorological and oceanographic analyses, in conjunction with experimental data on propagule traits (e.g., density, size, and shape) and dispersal vector properties (e.g., strength and direction of water and wind currents). We incorporate these data in a dispersal model to illustrate the potential effect of wind on dispersal trajectories of hydrochorous propagules from different mangrove species. We focus on the Western Indian Ocean, including the Mozambique Channel, which has received much attention because of its reported oceanic complexity, to illustrate the effect of oceanic features such as eddy currents and tides. In spite of the complex pattern of ocean surface currents and winds, some propagules are able to cross the Mozambique Channel. Eddy currents and tides may delay arrival at a suitable site. Experimentally demonstrated differences in wind sensitivity among propagule types were shown to affect the probability of departure and the shape of dispersal trajectories. The model could be used to reconstruct current fluxes of mangrove propagules that may help explain past and current distributions of mangrove forests and assess the potential for natural expansion of these forests.  相似文献   

12.
Currents through single cardiac sodium channels have been measured in inside-out patches from guinea pig ventricular cells. To abolish the fast inactivation, Na channels were modified by DPI 201–106. In symmetrical Na solutions, a diminution of outward sodium currents can be observed that depends on the intracellular magnesium concentration and the membrane potential. Inward currents were not altered by the concentrations of magnesium used (between 0 and 22.5 mmol/1). In Mg free solutions a linear current-voltage relation can also be measured in the range of outward Na currents. At +60 mV (symmetrical Na solutions, single channel conductance 24 pS) a half maximal block of cardiac Na channels by intracellular magnesium was found at 2.1 mmol/l. From the analysis of single channel current-voltage relationships the concentration and voltage-dependent block by intracellular magnesium of cardiac sodium channels could be described as binding of Mg at one site with a K d value of 5.1 mmol/1 at 0 mV. The site is located at an electrical distance of 0.18 from the inside. Offprint requests to: B. Nilius  相似文献   

13.
Most Ca2+-permeable ion channels are inhibited by increases in the intracellular Ca2+ concentration ([Ca2+]i), thus preventing potentially deleterious rises in [Ca2+]i. In this study, we demonstrate that currents through the osmo-, heat- and phorbol ester-sensitive, Ca2+-permeable nonselective cation channel TRPV4 are potentiated by intracellular Ca2+. Spontaneous TRPV4 currents and currents stimulated by hypotonic solutions or phorbol esters were reduced strongly at all potentials in the absence of extracellular Ca2+. The other permeant divalent cations Ba2+ and Sr2+ were less effective than Ca2+ in supporting channel activity. An intracellular site of Ca2+ action was supported by the parallel decrease in spontaneous currents and [Ca2+]i on removal of extracellular Ca2+ and the ability of Ca2+ release from intracellular stores to restore TRPV4 activity in the absence of extracellular Ca2+. During TRPV4 activation by hypotonic solutions or phorbol esters, Ca2+ entry through the channel increased the rate and extent of channel activation. Currents were also potentiated by ionomycin in the presence of extracellular Ca2+. Ca2+-dependent potentiation of TRPV4 was often followed by inhibition. By mutagenesis, we localized the structural determinant of Ca2+-dependent potentiation to an intracellular, C-terminal calmodulin binding domain. This domain binds calmodulin in a Ca2+-dependent manner. TRPV4 mutants that did not bind calmodulin lacked Ca2+-dependent potentiation. We conclude that TRPV4 activity is tightly controlled by intracellular Ca2+. Ca2+ entry increases both the rate and extent of channel activation by a calmodulin-dependent mechanism. Excessive increases in [Ca2+]i via TRPV4 are prevented by a Ca2+-dependent negative feedback mechanism.  相似文献   

14.
南海某些表层沉积硅藻的分布及其古环境意义   总被引:9,自引:1,他引:9  
本文通过对南海表层沉积物样品的硅藻分析,试图揭示南海某些表层沉积硅藻的分布规律,以便为南海古海洋学研究提供科学依据。研究发现,Thalassionema nitzshioides为南海地区表层沉积硅藻的优势种,且其百分含量无明显的区域差异,体现了南海与周围海洋水体交换相对较弱的特征。除此之外,南海表层沉积硅藻的分布主要受到海洋环流的影响,表现在黑潮暖流、印度洋暖水的入侵以及沿岸流对南海表层沉积硅藻分布的影响。其中,Nitzshia marina, Azpeitia neocrenulata , Azpeitia africana , Rhizosolenia bergonii等暖水硅藻可作为黑潮暖流及印度洋暖水入侵南海强度的指标种。而Cyclotella stylorum , Cyclotella striata , Diploneis bombus , Traychneis aspera , Tabularia tabulata等则可看作判断沿岸流对南海水体影响强度的标志种。  相似文献   

15.
The fate of adult-generated neurons in dentate gyrus is mainly determined early, before they receive synapses. In developing brain, classical neurotransmitters such as GABA and glutamate exert trophic effects before synaptogenesis. In order for this to occur in adult brain as well, immature non-contacted cells must express functional receptors to GABA and glutamate. In this investigation, patch-clamp recordings were used in adult rat dentate gyrus slices to assess the presence and analyze the characteristics of GABA- and glutamate-evoked currents in highly immature, synaptically-silent granule cells. Whole-cell patch-clamp recordings showed that all the analyzed cells responded to puff application of GABA and most of them responded to glutamate. Currents evoked by GABA were mediated exclusively by GABAA receptors and those elicited by glutamate were mediated by NMDA and AMPA/Kainate receptors. GABAA receptor-mediated currents were reduced by furosemide, which suggests that synaptically-silent immature neurons express high-affinity, alpha4-subunit-containing GABAA receptors. Gramicidin-perforated-patch recordings showed that GABAA receptor-mediated currents exerted a depolarizing effect due to high intracellular chloride concentration. Synaptically-silent immature cells shared morphological and electrophysiological properties with GFP-expressing, 7-day-old adult-generated granule layer cells, indicating that they could be in the first week of life, the period of maximal newborn cell death. Moreover, the presence of functional GABA and glutamate receptors was confirmed in these GFP-expressing cells. Present findings are mostly consistent with previous data obtained in female mice undergoing spontaneous activity and in transgenic mice, except for some inconsistencies about the presence of functional glutamatergic receptors. We speculate that adult-generated, non-contacted granule cells may be able to sense activity-related variations of GABA and glutamate extracellular levels. This condition is necessary, even if not sufficient, for these neurotransmitters to have a direct role in addressing cell survival.  相似文献   

16.
Currents through delayed rectifier-type K+ channels in Schwann cells cultured from rabbit sciatic nerve were studied with patch-clamp techniques. When the internal and external solutions contained physiological concentrations of sodium, the amplitude of these outward currents declined as the cell was depolarized to potentials above about +40 mV, despite the increased driving force. This reduction in the amplitude of outward K+ currents was observed in many cells before the subtraction of leakage currents; it was also observed for ensemble currents recorded in outside-out patches. It was therefore not the result of a leak-subtraction artefact nor of inadequate voltage-clamp control. Several lines of evidence also suggested that it was not the result of the extracellular accumulation of K+. By contrast, when the Na+ ion concentration of the internal solution was nominally zero, the reduction in the amplitude of outward K+ currents at positive membrane potentials was not observed. The apparent amplitude of single-channel currents through two types of K+ channel was reduced by 30 mM internal Na+, apparently as the result of a rapid 'flickery' block. The results suggest that channel block by internal Na+ is largely responsible for the negative slope conductance seen in current-voltage plots of whole-cell K+ currents at positive membrane potentials. In addition, our analysis of single-channel currents suggests that the current-voltage curve for a delayed rectifier channel in rabbit Schwann cells (in the absence of internal Na+) is roughly linear with internal and external K+ concentrations of 140 mM and 5.6 mM, respectively.  相似文献   

17.
TRPM4 is a Ca2+-activated but Ca2+-impermeable cation channel. An increase of [Ca2+]i induces activation and subsequent reduction of currents through TRPM4 channels. This inactivation is strikingly decreased in cell-free patches. In whole cell and cell-free configuration, currents through TRPM4 deactivate rapidly at negative potentials. At positive potentials, currents are much larger and activate slowly. This voltage-dependent behavior induces a striking outward rectification of the steady state currents. The instantaneous current-voltage relationship, derived from the amplitude of tail currents following a prepulse to positive potentials, is linear. Currents show a Boltzmann type of activation; the fraction of open channels increases at positive potentials and is low at negative potentials. Voltage dependence is not due to block by divalent cations or to voltage-dependent binding of intracellular Ca2+ to an activator site, indicating that TRPM4 is a transient receptor potential channel with an intrinsic voltage-sensing mechanism. Voltage dependence of TRPM4 may be functionally important, especially in excitable tissues generating plateau-like or bursting action potentials.  相似文献   

18.
I Llano  N Leresche  A Marty 《Neuron》1991,6(4):565-574
The sensitivity to GABA of Purkinje cells in thin cerebellar slices was examined by recording either spontaneous inhibitory synaptic currents or ionic currents elicited by local GABA applications. The effects of Ca2+ entry induced by depolarizing voltage pulses were opposite for the two types of currents. Currents due to exogenous GABA applications were increased by a train of voltage pulses. This potentiation was transient with an average half recovery period of 3.7 min. Spontaneous synaptic currents were reduced by depolarizing voltage pulses, with a half recovery time of about 20 s. The inhibition was largely explained by a decrease of the frequency of synaptic events, suggesting that the primary location of the effect was presynaptic. Thus, a Ca2+ rise increases the sensitivity of Purkinje cells to GABA and induces a retrograde inhibition of presynaptic terminals. The latter effect may be due to a diffusible Ca2(+)-dependent messenger.  相似文献   

19.
The effect of L-glutamate, kainate and N-methyl-D-aspartate (NMDA) on membrane currents of astrocytes, oligodendrocytes and their respective precursors was studied in acute spinal cord slices of rats between the ages of postnatal days 5 and 13 using the whole-cell patch-clamp technique. L-glutamate (10(-3) M), kainate (10(-3) M), and NMDA (2x10(-3) M) evoked inward currents in all glial cells. Kainate evoked larger currents in precursors than in astrocytes and oligodendrocytes, while NMDA induced larger currents in astrocytes and oligodendrocytes than in precursors. Kainate-evoked currents were blocked by the AMPA/kainate receptor antagonist CNQX (10(-4) M) and were, with the exception of the precursors, larger in dorsal than in ventral horns, as were NMDA-evoked currents. Currents evoked by NMDA were unaffected by CNQX and, in contrast to those seen in neurones, were not sensitive to Mg2+. In addition, they significantly decreased during development and were present when synaptic transmission was blocked in a Ca2+-free solution. NMDA-evoked currents were not abolished during the block of K+ inward currents in glial cells by Ba2+; thus they are unlikely to be mediated by an increase in extracellular K+ during neuronal activity. We provide evidence that spinal cord glial cells are sensitive to the application of L-glutamate, kainate and transiently, during postnatal development, to NMDA.  相似文献   

20.
Effective predictive and management approaches for species occurring in a metapopulation structure require good understanding of interpopulation connectivity. In this study, we ask whether population genetic structure of marine species with fragmented distributions can be predicted by stepping‐stone oceanographic transport and habitat continuity, using as model an ecosystem‐structuring brown alga, Cystoseira amentacea var. stricta. To answer this question, we analysed the genetic structure and estimated the connectivity of populations along discontinuous rocky habitat patches in southern Italy, using microsatellite markers at multiple scales. In addition, we modelled the effect of rocky habitat continuity and ocean circulation on gene flow by simulating Lagrangian particle dispersal based on ocean surface currents allowing multigenerational stepping‐stone dynamics. Populations were highly differentiated, at scales from few metres up to thousands of kilometres. The best possible model fit to explain the genetic results combined current direction, rocky habitat extension and distance along the coast among rocky sites. We conclude that a combination of variable suitable habitat and oceanographic transport is a useful predictor of genetic structure. This relationship provides insight into the mechanisms of dispersal and the role of life‐history traits. Our results highlight the importance of spatially explicit modelling of stepping‐stone dynamics and oceanographic directional transport coupled with habitat suitability, to better describe and predict marine population structure and differentiation. This study also suggests the appropriate spatial scales for the conservation, restoration and management of species that are increasingly affected by habitat modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号