首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Plant intracellular Ras-group-related leucine-rich repeat proteins (PIRLs) are a plant-specific class of leucine-rich repeat (LRR) proteins related to animal and fungal LRRs that take part in developmental signaling and gene regulation. As part of a systematic functional study of the Arabidopsis thaliana PIRL gene family, T-DNA knockout mutants defective in the closely related PIRL1 and PIRL9 genes were identified and characterized. Pirl1 and pirl9 single mutants displayed normal transmission and did not exhibit an obvious developmental phenotype. To investigate the possibility of functional redundancy, crosses to generate double mutants were carried out; however, pirl1;pirl9 plants were not recovered. Reciprocal crosses between wild type and pirl1/PIRL1;pirl9 plants, which produce 50% pirl1;pirl9 gametophytes, indicated male-specific transmission failure of the double-mutant allele combination. Scanning electron microscopy and viability staining showed that approximately half of the pollen produced by pirl1/PIRL1;pirl9 plants was inviable and severely malformed. Tetrad analyses with qrt1 indicated that pollen defects segregated with the double-mutant allele combination, thus demonstrating that PIRL1 and PIRL9 function after meiosis. Pollen development was characterized with bright field, fluorescence, and transmission electron microscopy. Pirl1;pirl9 mutants stopped growing as microspores, failed to initiate vacuolar fission, aborted, and underwent cytoplasmic degeneration. Development consistently arrested at the late microspore stage, just prior to pollen mitosis I. Thus, PIRL1 and PIRL9 have redundant roles essential at a key transition point early in pollen development. Together, these results define a functional context for these two members of this distinct class of plant LRR genes.  相似文献   

2.
3.
4.
Embryo rescue technique was used successfully to produce interspecific hybrids by crossing peach (P. persica) as a female parent with apricot (P. armeniaca) and plum (P. salicica). In those crosses that had ‘Yuhualu’ or ‘Zhonghuashoutao’ as female parents, hybrid embryos aborted from the 7th or 8th week after pollination mainly due to post-pollination incompatibility. An embryo rescue protocol was established to rescue such embryos and recover hybrid plants. Modified half-strength MS medium containing 4 mg l−1 6-BA and 0.5 mg l−1 IBA produced up to 90% germination in the embryos. Modified MS medium with 1.0 mg l−1 6-BA and 1.0 mg l−1 IBA gave the highest bud induction and multiplication whereas modified MS medium containing 0.5 mg l−1 IAA and 0.2 mg l−1 NAA gave the best rooting percentage. All the hybrids obtained using this embryo rescue technique were verified using simple sequence repeat (SSR) markers. A series of pollen treatments were carried out to partially overcome pre-pollination incompatibility, and it was found accidentally that pollen treatment with electrostatic field not only improved pollen germination but also increased the multiplication coefficient of embryo-induced shoots.  相似文献   

5.
6.
The arbuscular mycorrhizal (AM) morphology of three host plant species inoculated with single and mixed fungal culture and the distribution of AM fungal species in roots of the hosts treated with a mixed culture of AM fungi were determined. The aim was to investigate the effect of host plants and AM fungi on AM morphology of coexisting plant species. Noncolonized rooted cuttings of Hedera rhombea (Miq) Bean, Rubus parvifolius L., and Rosa multiflora Thunb. were inoculated with five fungal species as single and mixed culture inocula. The fungal species used were Gigaspora rosea and Scutellospora erythropa, previously isolated from H. rhombea; Acaulospora longula and Glomus etunicatum from R. parvifolius; and Glomus claroideum from both plant species. A few hyphal and arbusculate coils were seen in the mixed culture-inoculated roots of R. parvifolius; all fungal treatments produced this Paris-type AM in H. rhombea and Arum-type AM in R. parvifolius, and R. multiflora indicates that AM morphology is strongly controlled by the identity of the host plants used in this study. AM fungal rDNA was extracted separately from roots of each replicate plant species inoculated with the mixed fungal culture, amplified, cloned, sequenced, and analyzed to determine the AM fungal species and their respective proportions in roots of each plant species. Glomus etunicatum and G. claroideum of the family Glomaceae generally occurred more frequently in R. parvifolius and R. multiflora, which form Arum-types, whereas S. erythropa, of the family Gigasporaceae, was the most frequently detected species in H. rhombea, which produced Paris-type AM. Although the genotype of the plant species used appears to determine the AM morphologies formed, there was preferential association between the hosts and AM fungal inoculants.  相似文献   

7.
Previously it was shown that the Arabidopsis apyrase genes AtAPY1 and AtAPY2 are crucial for male fertility because mutant pollen (apy1-1; apy2-1) with T-DNA insertions in both genes could not germinate (Steinebrunner et al. (2003) Plant Physiol. 131: 1638–1647). In this study, pollen germination was restored and apyrase T-DNA double knockouts (DKO) apy1-1/apy1-1; apy2-1/apy2-1 were generated by complementation with AtAPY2 under the control of a pollen-specific promoter. The DKO phenotype displayed developmental defects including the lack of functional root and shoot meristems. In cotyledons, morphogenetic and patterning abnormalities were apparent, e.g., unlobed pavement cells and stomatal clusters. Another set of lines was created which carried either AtAPY1 or AtAPY2 under a dexamethasone-(DEX)-inducible promoter as an additional transgene to the pollen-specific gene construct. Application of DEX did not reverse the DKO phenotype to wild-type, but some inducible lines exhibited less severe defects even in the absence of the inducer, probably due to some background expression. However, even these DKO mutants were seedling-lethal and shared other defects regarding cell division, cell expansion and stomatal patterning. Taken together, the defects in the DKO mutants demonstrate that AtAPY1 and AtAPY2 are essential for normal plant development.  相似文献   

8.
Twelve dwarf plants were found in the second hybrid generation of beet. The average height of mutant plants was 21.8 cm, their leaf blades and flowers were significantly smaller than normal, and the plants exhibited male and female sterility. This dwarfism was shown to be caused by a mutation differing from that previously described in beet, which is named dwarf2 (dw2). The experimental evidence suggests that this mutation appeared in one of the first-generation plants. Based on plant phenotype in the first hybrid generation and the number of mutant plants in the second one, this mutation is suggested to be under recessive monogenic control of the dw2 gene. The genotypic class segregation in the second hybrid generation indicates that the dw2 gene is inherited independently of genes m, a1, and ap that control choricarpousness, gene male sterility, and pollen grain aggregation into tetrads.__________Translated from Genetika, Vol. 41, No. 5, 2005, pp. 657–660.Original Russian Text Copyright © 2005 by Mglinets, Osipova.  相似文献   

9.
Two protocols were developed for the efficient regeneration of Sinningia speciosa from leaf explants via two developmental pathways. The first method involved formation of callus and buds, followed by subsequent root growth, in Murashige and Skoog medium (MS) containing 2.0 mg l−1 6-benzylaminopurine (BA) and 0.2 mg l−1 α-naphthalene acetic acid (NAA), with a regeneration efficiency of 99.0%. The second method involved producing callus and roots, followed by subsequent formation of buds, in MS medium supplemented with 1.0–5.0 mg l−1 NAA, and resulted in a regeneration efficiency of 90.4%. Our experiments indicate that the root-first pathway resulted in a lower plant regeneration efficiency. Through five continual generations using the buds-first method, a total of 215 regenerated plants were obtained in the last generation, and eight exhibited a phenotype we named tricussate whorled phyllotaxis (twp). Six of the regenerated twp variant plants maintained their tricussate whorled phyllotaxis phenotype, showing no other abnormalities, while one reverted to a wild type before flowering and another formed two rounds of sepals. Physiological analysis revealed that the twp plants responded differently than wild type to exogenous NAA and 2,3,5-triiodobenzoic acid (TIBA), while high-performance liquid chromatography (HPLC) analysis showed that the levels of endogenous indole-3-acetic acid (IAA) and gibberellin (GA) were lower in twp than wild-type plants. These results suggest that the formation of the twp mutant may be related to phytohormones and that the twp variant could be an important material for investigating the molecular mechanism of plant phyllotaxis patterning.  相似文献   

10.
The protein encoded by the activated disease resistance 1-like1 (ADR1-L1) gene (locus name, At4g33300) belongs to the activated disease resistance 1 (ADR1) family of coiled-coil nucleotide-binding site leucine-rich repeat-type disease resistance proteins. This family contains four proteins and they have specific features in their amino acid sequences. It has been reported that ADR1 protein belongs to the ADR1 family, which is related to not only defense response but also drought tolerance. We found that transgenic plants overexpressing the ADR1-L1 gene showed a dwarf phenotype and morphological change in leaves. The expression levels of defense-related genes and the resistance to Pseudomonas syringae pv. tomato DC3000 were increased in transgenic plants. However, enhancement of drought tolerance and activation of abiotic response genes were not observed. When the growth temperature was changed from 22°C to 28°C, the expression of defense-related genes and the enhancement of resistance to a bacterial pathogen were suppressed and the dwarf phenotype and morphological change of leaves recovered.  相似文献   

11.
An Arabidopsis deletion mutant was fortuitously identified from the alpha population of T-DNA insertional mutants generated at the University of Wisconsin Arabidopsis Knockout Facility. Segregation and reciprocal crosses indicated that the mutant was a gametophytic pollen sterile mutant. Pollen carrying the mutation has the unusual phenotype that it is viable, but cannot germinate. Thus, the mutant was named pollen germination defective mutant 1 (pgd1), based on the pollen phenotype. Flanking sequences of the T-DNA insertion in the pgd1 mutant were identified by thermal asymmetric interlaced (TAIL) PCR. Sequencing of bands from TAIL PCR revealed that the T-DNA was linked to the gene XLG1, At2g23460, at its downstream end, while directly upstream of the T-DNA was a region between At2g22830 and At2g22840, which was 65 genes upstream of XLG1. Southern blotting and genomic PCR confirmed that the 65 genes plus part of XLG1 were deleted in the pgd1 mutant. A 9,177 bp genomic sequence containing the XLG1 gene and upstream and downstream intergenic regions could not rescue the pgd1 pollen phenotype. One or more genes from the deleted region were presumably responsible for the pollen germination defect observed in the pgd1 mutant. Because relatively few mutations have been identified that affect pollen germination independent of any effect on pollen viability, this mutant line provides a new tool for identification of genes specifically involved in this phase of the reproductive cycle.  相似文献   

12.
Cai Y  Xiang F  Zhi D  Liu H  Xia G 《Plant cell reports》2007,26(10):1809-1819
In order to genotype hybrid genomes of distant asymmetric somatic hybrids, we synthesized hybrid calli and plants via PEG-mediated protoplast fusion between recipient tall fescue (Festuca. arundinacea Schreb.) and donor wheat (Triticum aestivum L.). Seventeen and 25 putative hybrid clones were produced from the fusion combinations I and II, each with the donor wheat protoplast treated by UV light for 30 s and 1 min, respectively. Isozyme and RAPD profiles confirmed that ten hybrid clones were obtained from combination I and 19 from combination II. Out of the 29 hybrids, 12 regenerated hybrid plants with tall fescue phenotype. Composition and methylation-variation of the nuclear and cytoplasmic genomes of some hybrids, either with or without regenerative ability, were compared by genomic in situ hybridization, restriction fragment length polymorphism, and DNA methylation-sensitive amplification polymorphism. Our results indicated that these selected hybrids all contained introgressed nuclear and cytoplasmic DNA as well as obvious methylation variations compared to both parents. However, there were no differences either in nuclear/cytoplasmic DNA or methylation degree between the regenerable and non-regenerable hybrid clones. We conclude that both regeneration complementation and genetic material balance are crucial for hybrid plant regeneration.  相似文献   

13.
Two albino mutants (ab1 and ab2) have been derived from long-term shoot proliferation of Bambusa edulis. Based on transmission electronic microscopy data, the chloroplasts of these mutants were abnormal. To study the mutation of gene regulation in the aberrant chloroplasts, we designed 19 pairs of chloroplast-encoded gene primers for genomic and RT-PCR. Only putative NAD(P)H-quinone oxidoreductase chain 4L (ndhE; DQ908943) and ribosomal protein S7 (rps7; DQ908931) were conserved in both the mutant and wild-type plants. The deletions in the chloroplast genome of these two mutants were different: nine genes were deleted in the chloroplast genomic aberration in ab1 and 11 genes in ab2. The chloroplast genes, NAD(P)H-quinone oxidoreductase chain 4 (ndhD; DQ908944), chloroplast 50S ribosomal protein L14 (rpl14; DQ908934), and ATP synthase beta chain (atpB; DQ908948) were abnormal in both mutants. The gene expressions of 18 of these 20 genes were correlated with their DNA copy number. The two exceptions were: ATP synthase CF0 A chain (atpI; DQ908946), whose expression in both mutants was not reduced even though the copy number was reduced; ribosomal protein S19 (rps19; DQ908949), whose expression was reduced or it was not expressed at all even though there was no difference in genomic copy number between the wild-type and mutant plants. The genomic PCR results showed that chloroplast genome aberrations do occur in multiple shoot proliferation, and this phenomenon may be involved in the generation of albino mutants.  相似文献   

14.
Six pea (Pisum sativum L.) cultivars (Adept, Komet, Lantra, Olivin, Oskar, Tyrkys) were transformed via Agrobacterium tumefaciens strain EHA105 with pBIN19 plasmid carrying reporter uidA (β-glucuronidase, GUS, containing potato ST-LS1 intron) gene under the CaMV 35S promoter, and selectable marker gene nptII (neomycin phosphotransferase II) under the nos promoter. Two regeneration systems were used: continual shoot proliferation from axillary buds of cotyledonary node in vitro, and in vivo plant regeneration from imbibed germinating seed with removed testa and one cotyledon. The penetration of Agrobacterium into explants during co-cultivation was supported by sonication or vacuum infiltration treatment. The selection of putative transformants in both regeneration systems carried out on media with 100 mg dm−3 kanamycin. The presence of introduced genes was verified histochemically (GUS assay) and by means of PCR and Southern blot analysis in T0 putative transformants and their seed progenies (T1 to T3 generations). Both methods, but largely in vivo approach showed to be genotype independent, resulting in efficient and reliable transformation system for pea. The in vivo approach has in addition also benefit of time and money saving, since transgenic plants are obtained in much shorter time. All tested T0 – T3 plants were morphologically normal and fertile.This research was supported by the National Agency for Agricultural Research (grants No. QE 0046 and QF 3072) and Ministry of Education of the Czech Republic (grant No. ME 433).  相似文献   

15.
Rice yield is severely affected by high-salt concentration in the vicinity of the plant. In an effort to engineer rice for improved salt tolerance Agrobacterium-mediated transformation of rice cv. Binnatoa was accomplished with the Pennisetum glaucum vacuolar Na+/H+ antiporter gene (PgNHX1) under the constitutive CaMV35S promoter. For the molecular analysis of putative transgenic plants, PCR and RT-PCR were performed. Transgenic rice plants expressing PgNHX1 showed better physiological status and completed their life cycle by setting flowers and seeds in salt stress, while wild-type plants exhibited rapid chlorosis and growth inhibition. Moreover, transgenic rice plants produced higher grain yields than wild-type plants under salt stress. Assessment of the salinity tolerance of the transgenic plants at seedling and reproductive stages demonstrated the potential of PgNHX1 for imparting enhanced salt tolerance capabilities and improved yield.  相似文献   

16.
17.
A gene encoding the B subunit of the enterotoxigenic Escherichia coli heat-labile enterotoxin (LTB) was adapted to the optimized plant coding sequence, and fused to the endoplasmic reticulum retention signal SEKDEL in order to enhance its expression level and protein assembly in plants. The synthetic LTB (sLTB) gene was placed into a plant expression vector under the control of the CaMV 35S promoter, and subsequently introduced into the watercress (Nasturtium officinale L.) plant by the Agrobacterium-mediated transformation method. The integration of the sLTB gene into the genomic DNA of transgenic plants was confirmed by genomic DNA PCR amplification. The assembly of plant-produced LTB protein was detected by western blot analysis. The highest amount of LTB protein produced in transgenic watercress leaf tissue was approximately 1.3% of the total soluble plant protein. GM1-ganglioside enzyme-linked immunosorbent assay indicated that plant-synthesized LTB protein bound specifically to GM1-ganglioside, which is the receptor for biologically active LTB on the cell surface, suggesting that the plant-synthesized LTB subunits formed biologically active pentamers.  相似文献   

18.
Arabidopsis thaliana contains a family of nine genes known as plant intracellular Ras-group related leucine-rich repeat (LRR) proteins (PIRLs). These are structurally similar to animals and fungal LRR proteins and play important roles in developmental pathways. However, to date, no detailed tissue-specific expression analysis of these PIRLs has been performed. Therefore, in this study, we generated promoter:GUS transgenic plants for the nine A. thaliana PIRL genes and identified their expression patterns in seedlings and floral organs at different developmental stages. Most PIRL members showed expression in the root apical region and in the vascular tissue of primary and lateral roots. Shoot apex-specific expression was recorded for PIRL1 and PIRL8. Furthermore, PIRL1, PIRL3, PIRL5, PIRL6, and PIRL7 showed distinct expression patterns in flowers, especially in pollen and anthers. In addition, co-expression network analysis identified cases where PIRLs were co-expressed with other genes known to have specific functions related to growth and development. Taken together, the tissue-specific expression patterns of PIRL genes improve our understanding of the functions of this gene family in plant growth and development.  相似文献   

19.
A temperature-sensitive mutant of Capsicum chinense, sy-2, shows a normal developmental phenotype when grown above 24°C. However, when grown at 20°C, sy-2 exhibits developmental defects, such as chlorophyll deficiency and shrunken leaves. To understand the underlying mechanism of this temperature-dependent response, phenotypic characterization and genetic analysis were performed. The results revealed abnormal chloroplast structures and cell collapse in leaves of the sy-2 plants grown at 20°C. Moreover, an excessive accumulation of reactive oxygen species (ROS) resulting in cell death was detected in the chlorophyll-deficient sectors of the leaves. However, the expression profile of the ROS scavenging genes did not alter in sy-2 plants grown at 20°C. A further analysis of fatty acid content in the leaves showed the impaired pathway of linoleic acid (18:2) to linolenic acid (18:3). Additionally, the Cafad7 gene was downregulated in sy-2 plants. This change may lead to dramatic physiological disorder and alteration of leaf morphology in sy-2 plants by losing low-temperature tolerance. Genetic analysis of an F2 population from a cross between C. chinensesy-2’ and wild-type C. chinense ‘No. 3341’ showed that the sy-2 phenotype is controlled by a single recessive gene. Molecular mapping revealed that the sy-2 gene is located at a genomic region of the pepper linkage group 1, corresponding to the 300 kb region of the Ch1_scaffold 00106 in tomato chromosome 1. Candidate genes in this region will reveal the identity of sy-2 and the underlying mechanism of the temperature-dependent plant response.  相似文献   

20.
The conventional way to drive modifications in old forest tree seed orchards is to establish progeny trials involving each parent tree and then evaluate its contribution to the performance of the progeny by estimating its general and specific combining ability (GCA and SCA). In this work, we successfully applied an alternative parent selection tactic based on paternity testing of superior offspring derived from a hybrid seed orchard established with a single Eucalyptus grandis seed parents and six E. urophylla pollen parents. A battery of 14 microsatellite markers was used to carry out parentage tests of 256 progeny individuals including two independent samples of selected trees and one control unselected sample, all derived from 6-year-old forest stands in eastern Brazil. Paternity determination was carried out for all progeny individuals by a sequential paternity exclusion procedure. Exclusion was declared only when the obligatory paternal allele in the progeny tree was not present in the alleged parent tree for at least four independent markers to avoid false exclusions due to mutation or null alleles. After maternity checks to identify seed mixtures and selfed individuals, the paternity tests revealed that approximately 29% of the offspring was sired by pollen parents outside the orchard. No selfed progeny were found in the selected samples. Three pollen parents were found to have sired essentially all of the offspring in the samples of selected and non-selected progeny individuals. One of these three parents sired significantly more selected progeny than unselected ones (P0.0002 in a Fisher exact test). Based on these results, low-reproductive-successful parents were culled from the orchard, and management procedures were adopted to minimize external pollen contamination. A significant difference (P<0.01) in mean annual increment was observed between forest stands produced with seed from the orchard before and after selection of parents and revitalization of the orchard. An average realized gain of 24.3% in volume growth was obtained from the selection of parents as measured in forest stands at age 2–4 years. The marker-assisted tree-breeding tactic presented herein efficiently identified top parents in a seed orchard and resulted in an improved seed variety. It should be applicable for rapidly improving the output quality of seed orchards, especially when an emergency demand for improved seed is faced by the breeder.Communicated by D.B. Neale  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号