首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cape cormorant Phalacrocorax capensis is unusual among cormorants in using aerial searching to locate patchily distributed pelagic schooling fish. It feeds up to 80 km offshore, often roosts at sea during the day and retains more air in its plumage and is more buoyant than most other cormorants. Despite these adaptations to its pelagic lifestyle, little is known of its foraging ecology. We measured the activity budget and diving ecology of breeding Cape cormorants. All foraging took place during the day, with 3.6 ± 1.3 foraging trips per day, each lasting 85 ± 60 min and comprising 61 ± 53 dives. Dives lasted 21.2 ± 13.9 s (maximum 70 s), attaining an average depth of 10.2 ± 6.7 m (maximum 34 m), but variability in dive depth both within and between foraging trips was considerable. The within-bout variation in dive depth was greater when making shallow dives, suggesting that pelagic prey were targeted mainly when diving to <10 m. Diving ecology and total foraging time were similar to other cormorants, but the time spent flying (122 ± 51 min day−1, 14% of daylight) was greater and more variable than other species. Searching flights lasted up to 1 h, and birds made numerous short flights during foraging bouts, presumably following fast-moving schools of pelagic prey. Compared with the other main seabird predators of pelagic fish in the Benguela region, Cape gannets Morus capensis and African penguins Spheniscus demersus , Cape cormorants made shorter, more frequent foraging trips. Their foraging range while feeding small chicks was 7 ± 6 km (maximum 40 km), similar to penguins (10–20 km), but less than gannets (50–200 km). Successful breeding by large colonies depends on the reliable occurrence of pelagic fish schools within this foraging range.  相似文献   

2.
Northern gannets (Sula bassana) are considered to obtain prey usually by rapid, vertical, shallow plunge dives. In order to test this contention and investigate underwater foraging behaviour, we attached two types of data-logging systems to 11 parental northern gannets at Funk Island in the North-Wiest Atlantic. We documented, for the first time to the authors' knowledge, gannets performing long, flat-bottomed, U-shaped dives that involved underwater wing propulsion as well as rapid, shallow, V-shaped dives. The median and maximum dive depths and durations were 4.6 and 22.0 m and 8 and 38 s, respectively. Short, shallow dives were usually V-shaped and dives deeper than 8 m and longer than 10 s were usually U-shaped, including a period at constant depth (varying between 4 and 28s with median 8s). Diving occurred throughout the daylight period and deepest dives were performed during late morning. On the basis of motion sensors in the loggers and food collections from telemetered birds, we concluded that extended, deep dives were directed at deep schools of capelin, a small pelagic fish, and we hypothesized that V-shaped dives were aimed at larger, pelagic fishes and squids. Furthermore, these V-shaped dives allowed the birds to surprise their pelagic prey and this may be critical because the maximum swimming speeds of the prey species may exceed the maximum dive speeds of the birds.  相似文献   

3.
Cape gannet Morus capensis chicks depend entirely on fish prey and metabolic water for water requirements during development. Water loss through evaporative cooling due to heat stress is substantial. We measured water flux and field metabolic rates (FMR) of Cape gannet chicks and adults to determine if gannets developed water saving strategies. The water economy index (WEI, g kJ?1) decreased with chick age according to the model WEI = 0.676 – 0.272 × log10(t), indicating that water efficiency increased with age. At fledging, the WEI of chicks was at the level expected of adult desert birds. Desert birds maintain a low WEI by also having a low FMR, whereas Cape gannet chicks have FMR comparable to other seabird species’ nestling requirements. We propose that maintaining low WEI is adaptive for Cape gannets because (1) chicks need to balance water loss through evaporative cooling, (2) fledglings need to overcome a period of up to a week when they cannot ingest any water and (3) adults spend extended periods in the breeding colony during which water can become a limiting factor. Understanding the physiological mechanism of maintaining low WEI will become increasingly important with future rising temperatures.  相似文献   

4.
Animals are primarily limited by their capacity to acquire food, yet digestive performance also conditions energy acquisition, and ultimately fitness. Optimal foraging theory predicts that organisms feeding on patchy resources should maximize their food loads within each patch, and should digest these loads quickly to minimize travelling costs between food patches. We tested the prediction of high digestive performance in wandering albatrosses, which can ingest prey of up to 3 kg, and feed on highly dispersed food resources across the southern ocean. GPS-tracking of 40 wandering albatrosses from the Crozet archipelago during the incubation phase confirmed foraging movements of between 475-4705 km, which give birds access to a variety of prey, including fishery wastes. Moreover, using miniaturized, autonomous data recorders placed in the stomach of three birds, we performed the first-ever measurements of gastric pH and temperature in procellariformes. These revealed surprisingly low pH levels (average 1.50±0.13), markedly lower than in other seabirds, and comparable to those of vultures feeding on carrion. Such low stomach pH gives wandering albatrosses a strategic advantage since it allows them a rapid chemical breakdown of ingested food and therefore a rapid digestion. This is useful for feeding on patchy, natural prey, but also on fishery wastes, which might be an important additional food resource for wandering albatrosses.  相似文献   

5.
No-take zones may protect populations of targeted marine species and restore the integrity of marine ecosystems, but it is unclear whether they benefit top predators that rely on mobile pelagic fishes. In South Africa, foraging effort of breeding African penguins decreased by 30 per cent within three months of closing a 20 km zone to the competing purse-seine fisheries around their largest colony. After the fishing ban, most of the penguins from this island had shifted their feeding effort inside the closed area. Birds breeding at another colony situated 50 km away, whose fishing grounds remained open to fishing, increased their foraging effort during the same period. This demonstrates the immediate benefit of a relatively small no-take zone for a marine top predator relying on pelagic prey. Selecting such small protected areas may be an important first conservation step, minimizing stakeholder conflicts and easing compliance, while ensuring benefit for the ecosystems within these habitats.  相似文献   

6.
The foraging behaviour of painted stork Mycteria leucocephala was studied during 2004–2006 at 14 different sites in the Delhi region, India. Observations were recorded on 131 individuals, including 29 juvenile birds using a video camera. Recordings were also made at the nesting colony in Delhi zoo to study the prey sizes regurgitated to nestlings. The results confirm that the painted stork is a tactile forager and exclusively piscivorous. Foraging group size ranged from 1 to 18 individuals. Per 5 min foot stirring rates in the vegetated habitats were significantly higher than in non-vegetated habitats. The attempt rate and feeding rate in the breeding season were significantly higher than that in the non-breeding season. Prey sizes taken in the breeding season were significantly smaller than those taken in the non-breeding season. About 80% fish fed to the chicks were smaller than 10 cm. Young chicks were offered smaller prey compared with older chicks. The variations in foraging parameters are discussed in relation to habitats and their conservation in the Delhi region.  相似文献   

7.
Australasian gannets (Morus serrator), like many other seabird species, locate pelagic prey from the air and perform rapid plunge dives for their capture. Prey are captured underwater either in the momentum (M) phase of the dive while descending through the water column, or the wing flapping (WF) phase while moving, using the wings for propulsion. Detection of prey from the air is clearly visually guided, but it remains unknown whether plunge diving birds also use vision in the underwater phase of the dive. Here we address the question of whether gannets are capable of visually accommodating in the transition from aerial to aquatic vision, and analyse underwater video footage for evidence that gannets use vision in the aquatic phases of hunting. Photokeratometry and infrared video photorefraction revealed that, immediately upon submergence of the head, gannet eyes accommodate and overcome the loss of greater than 45 D (dioptres) of corneal refractive power which occurs in the transition between air and water. Analyses of underwater video showed the highest prey capture rates during WF phase when gannets actively pursue individual fish, a behaviour that very likely involves visual guidance, following the transition after the plunge dive's M phase. This is to our knowledge the first demonstration of the capacity for visual accommodation underwater in a plunge diving bird while capturing submerged prey detected from the air.  相似文献   

8.
Klages, N. T. W. 1994. Dispersal and site fidelity of Cape Gannets Morus capensis. Ostrich 65:218-224.

Site fidelity and dispersal of juvenile and sexually mature adults was investigated at the largest southern African gannetry on Bird Island, Algoa Bay, where a minimum of 65000 airs occupy approximatel 2 ha at a mean density of 2,85 nests per m2. Based on 512 ring recoveries and live retraps of known-aged birds of this colony, immature and non-breeding adult gannets dispersed widely along the coasts o Africa, reaching Maputo Bay (southern Mozambique) on the eastern side of the continent and the Namibian Skeleton Coast on the western side. Very few birds flew farther. There were conspicuously few ring recoveries at 400–500 km straight-line distance east from Bird Island, corresponding with the Pondoland coast in Transkei. A similar drop was observed in the west for the Tsitsikamma coast and the stretch of coast from Cape St. Blaize to Cape Infanta. In these regions reporting by members of the public is presumed to be low. either because the rocky coast is inaccessible or because of socioeconomic reasons. The geographical spread of the ring recoveries suggested a possible range contraction of the species between the 1950's and the period 1978–1993 but the nature of the data prevented a test of this hypothesis. No evidence was found that gannets from Bird Island breed or roost at other southern African colonies as a matter of habit. On the contrary, all survivors of post-fledgling dispersal eventually returned to their native colony, where they exhibited pronounced fidelity to the site where they hatched from the egg. Based on multiple retraps of 862 known-age individuals, 71.7 % of young adults took over vacant sites in the immediate vicinity of their original nest, 8,1% moved once but were faithful to their new site and in 20,2% of all cases faithfulness to the original site could not be shown. Moreover, in subsequent years edge birds did not vacate their sites to move towards the center, refuting the hypothesis that fringes are physically inferior breeding sites.  相似文献   

9.
The meso-scale trophic dynamics of cod Gadus morhua were examined based upon tri-monthly stomach sample collections from a nearshore, localized ( c. 800 km2) region off Cape Cod, Massachusetts, U.S.A. The major objective for this work was to relate any changes in cod diet and amount of food eaten to seasonal variations in prey availability, water temperature and spawning at a spatial scale between broad-scale and laboratory studies. Results suggested that the type and amount of food eaten by cod was generally consistent throughout a year and repeatable across years. Cod feeding was marked by two periods of increased feeding, corresponding to the arrival of small pelagic fishes in the area. This pelagic migration and subsequent increased feeding by cod occurred during important periods in the life history of cod ( e.g . spawning and overwintering). Similar annual patterns in food consumption and diet composition were remarkably consistent over the 2·5 years of the project, suggesting important feeding periods for cod that correspond to environmental and biological events. The diet of cod was composed primarily of several species of forage fishes [ e.g. herrings (predominantly Atlantic herring Clupea harengus ), sand lance Ammodytes sp. and Atlantic mackerel Scomber scombrus ], ophiuroids, Cancer sp. crabs and other small crustaceans. It was inferred that cod exhibited a maintenance diet on local forage fishes and benthic macroinvertebrates, augmenting their diet by seasonally gorge feeding upon migrating pelagic species.  相似文献   

10.
Capsule Unlike Atlantic populations, which feed on krill, Mediterranean populations feed mainly on pelagic fish Gymnammodites cicerellus.

Aims To determine the diet and dive depth of the Mediterranean subspecies of European Storm Petrels Hydrobates pelagicus melitensis.

Methods Analysis of regurgitates of adults arriving at the colony for chick feeding and by determination of dives depth using the capillary tube method.

Results The main prey is Gymnammodites cicerellus, a pelagic fish. Storm Petrels dive for their prey and can reach up to 5 m in depth. They also make short foraging trips just outside the colony where they capture Opossum Shrimps Misydacea.

Conclusions European Storm Petrels in the Mediterranean exploit pelagic fish which are taken by diving. This contrasts with the Atlantic populations which feed mainly on krill. Mediterranean birds also feed on Opossum Shrimps Mysidacea during short foraging trips made at night just outside the colony. Differences in diet between long and short foraging trips may be because adults have to forage for both themselves and their chicks.  相似文献   

11.
Information on the ecology and feeding behaviour of the large oceanic predatory fishes is crucial for the ecosystem approaches to fisheries management models. Co-existing large pelagic predators in the open oceans may avoid competition for the limited forage by resource partitioning on spatial, temporal or trophic levels. To test this, we studied the prey species composition, diet overlap, trophic level, and trophic organisation of 12 large predatory fishes co-existing in the eastern Arabian Sea. Stomach contents of 1,518 specimens caught by exploratory longline operations in the Indian Exclusive Economic Zone during the years 2006–2009 were analysed. Finfishes were dominant prey of all species except blue marlin (Makaira nigricans) and yellowfin tuna (Thunnus albacares), which fed mainly on cephalopods, and long-snouted lancetfish (Alepisaurus ferox) and pelagic stingray (Pteroplatytrygon violacea), which fed mainly on crustaceans. Common dolphinfish (Coryphaena hippurus) and yellowfin tuna fed on a wider variety of prey than the other species, while the diets of lancetfish and black marlin (Istiompax indica) were narrowest. Pelagic stingray and great barracuda (Sphyraena barracuda) fed on species occupying epipelagic waters, whereas the contribution of mesopelagic prey was higher in the diets of swordfish (Xiphias gladius) and pelagic thresher (Alopias pelagicus). Trophic levels of these fishes ranged from 4.13 to 4.37. Diet overlap index revealed that some of the large pelagic predatory fishes share common prey species. Cluster analysis of the diets revealed four distinct trophic guilds namely ‘flyingfish feeders’ (common dolphinfish and great barracuda); ‘mesopelagic predators’ (pelagic thresher and swordfish); ‘crab feeders’ (lancetfish, pelagic stingray and silky shark) and ‘squid feeders’ (yellowfin tuna, Indo-Pacific sailfish (Istiophorus platypterus), skipjack tuna (Katsuwonus pelamis), black marlin and blue marlin). Large predatory fishes of the eastern Arabian Sea target different prey types, and limit their vertical extent and time of feeding to avoid competing for prey.  相似文献   

12.
Central-place foragers organize their feeding trips both to feed themselves and to provide their offspring with food. In seabirds, several long-range foragers have been shown to alternate long and short trips to balance these dual needs. However, the strategies of short-range foragers remain poorly understood. We used a precise, miniaturized motion sensor to examine the time budget of 20 breeding Cape gannets, Morus capensis, foraging off the coast of South Africa. Birds stayed at sea for 5.5-25.3 h, occasionally spending the night at sea. The large number of isolated dives and extended flight time observed during these overnight trips suggested that birds either experienced poor foraging conditions or exploited more distant, yet more profitable prey patches. Conversely, birds that stayed at sea for less than 1 day had relatively consistent activity patterns. Most of these birds (88%) foraged actively at the beginning and at the end of the foraging trip. These feeding bouts were separated by protracted periods of sitting on the sea surface. Such resting periods probably allow birds to digest the food ingested during the first part of the foraging trip, so they initially feed themselves, and then obtain food for their chick on the way back to the breeding site.  相似文献   

13.
Plunge‐diving is a highly successful strategy for dealing with the challenges confronting birds feeding on pelagic prey. We tested for evidence of fatal injuries due to collision between conspecifics in plunge‐diving Australasian Gannets Morus serrator and Cape Gannets Morus capensis, respectively, by performing post‐mortem examinations of carcasses recovered from New Zealand waters and analysing video footage of Cape Gannet foraging events from South Africa. We found evidence of accidental collisions between Gannets and also observed a case of attempted kleptoparasitism, in which a diving Cape Gannet targeted a previously captured fish in the beak of a conspecific.  相似文献   

14.
Large Marine Ecosystems such as the Canary Current system off West Africa sustains high abundance of small pelagic prey, which attracts marine predators. Seabirds are top predators often used as biodiversity surrogates and sentinel species of the marine ecosystem health, thus frequently informing marine conservation planning. This study presents the first data on the spatial (GPS-loggers) and trophic (stable isotope analysis) ecology of a tropical seabird—the endangered Cape Verde shearwater Calonectris edwardsii–during both the incubation and the chick-rearing periods of two consecutive years. This information was related with marine environmental predictors (species distribution models), existent areas of conservation concern for seabirds (i.e. marine Important Bird Areas; marine IBAs) and threats to the marine environment in the West African areas heavily used by the shearwaters. There was an apparent inter-annual consistency on the spatial, foraging and trophic ecology of Cape Verde shearwater, but a strong alteration on the foraging strategies of adult breeders among breeding phases (i.e. from incubation to chick-rearing). During incubation, birds mostly targeted a discrete region off West Africa, known by its enhanced productivity profile and thus also highly exploited by international industrial fishery fleets. When chick-rearing, adults exploited the comparatively less productive tropical environment within the islands of Cape Verde, at relatively close distance from their breeding colony. The species enlarged its trophic niche and increased the trophic level of their prey from incubation to chick-rearing, likely to provision their chicks with a more diversified and better quality diet. There was a high overlap between the Cape Verde shearwaters foraging areas with those of European shearwater species that overwinter in this area and known areas of megafauna bycatch off West Africa, but very little overlap with existing Marine Important Bird Areas. Further investigation on the potential nefarious effects of fisheries on seabird communities exploiting the Canary Current system off West Africa is needed. Such negative effects could be alleviated or even dissipated if the ‘fisheries-conservation hotspots’ identified for the region, would be legislated as Marine Protected Areas.  相似文献   

15.
This paper describes the strategies of resource utilization in the course of the breeding season by five radio-tagged Grey Herons Ardea cinerea. The seasonal changes in exploitation of the environment by two breeding adults, one non-breeding adult and two non-breeding first-year birds were studied from March to August 1982, near Zonhoven in Belgium. Two adult breeding birds could be followed continuously from the end of March until the middle of June. During the first month they explored an extended area all around the colony, but each concentrated its search in a specific direction. From the end of April until the beginning of June, most probably from egg-hatching until the end of breeding activities, each bird spent a very large proportion of its time at a particular feeding site, from which other herons were actively excluded. In the first part of June they again visited different sites, each maintaining its preferred direction. From the middle of June onwards they seemed to have left the fish-pond area. The pattern of movements of the first-year birds differed markedly from that of the breeding adults. In April, although both non-breeding and breeding birds explored large areas, only the areas used by non-breeders were centred on the colony. From the end of April onwards, probably after general egg-hatching in the colony, the non-breeders very rarely revisited the colony, and from May till August their ranges became more and more restricted to very small areas at an increasing distance from the colony. They were never observed defending particular sites. The results are discussed with regard to recent speculations about the evolution of colonies as an adaptation for the exploitation of food resources. Breeding herons seem to explore a large part of the environment during incubation and defend a particular site while feeding their young. Choice of feeding site by non-breeding birds may be influenced by the site defence of the breeding birds. Non-breeding birds exploit a large area when breeding birds occupy feeding territories. Perhaps they are forced to forage in less suitable places at this time. Colonies might have evolved as a strategy to minimize effort in resource esploitation as, especially at the beginning of the breeding season, the colony could act as an assembly point in the exploration of the environment. However, its importance as an assembly point diminishes in the course of the season, as non-breeding birds no longer visit the colony and adults defend territories.  相似文献   

16.
The Cape Gannet Morus capensis is one of several seabird species endemic to the Benguela upwelling ecosystem (BUS) but whose population has recently decreased, leading to an unfavourable IUCN Red List assessment. Application of ‘JARA’ (‘Just Another Red-List Assessment,’ a Bayesian state-space tool used for IUCN Red List assessments) to updated information on the areas occupied by Cape Gannets and the nest densities of breeding birds at their six colonies, suggested that the species should be classified as Vulnerable. However, the rate of decrease of Cape Gannets in their most-recent generation exceeded that of the previous generation, primarily as a result of large decreases at Bird Island, Lambert’s Bay, and Malgas Island, off South Africa’s west coast (the western part of their range). Since the 1960s, there has been an ongoing redistribution of the species from northwest to southeast around southern Africa, and ~70% of the population now occurs on the south coast of South Africa, at Bird Island in Algoa Bay, on the eastern border of the BUS. Recruitment rather than adult survival may be limiting the present population; however, information on the seabird’s demographic parameters and mortality in fisheries is lacking for colonies in the northern part of the BUS. Presently, major threats to Cape Gannet include: substantially decreased availability of their preferred prey in the west; heavy mortalities of eggs, chicks and fledglings at and around colonies, inflicted by Cape Fur Seals Arctocephalus pusillus and other seabirds; substantial disturbance at colonies caused by Cape Fur Seals attacking adult gannets ashore; oiling; and disease.  相似文献   

17.
Austin Roberts 《Ostrich》2013,84(2):49-55
Walter, C. B., Cooper, J. &; Suter, W. 1987. Diet of Swift Tern chicks in the Saldanha Bay region, South Africa. Ostrich 58:49-53.

The diet of the Swift Tern Sterna bergii was investigated over a ten-year period off the west coast of South Africa by collecting regurgitations from chicks during ringing operations. A total of 1311 prey items of 25 identifiable species (20 of which were fish) was collected. Fish formed 86% of all the prey items. Other prey species included cephalopods, crustaceans and insects. 60% by number of prey taken consisted of pelagic shoaling fish, of which Cape Anchovy Engraulis japonicus occurred most frequently and was the most abundant prey species in seven of the nine years in which samples were collected. Weekly collections in 1984 confirmed that pelagic shoaling fish, in particular Cape Anchovy, were the most abundant prey taken during the chick-rearing period. Prey size varied from 7 to 138 mm in length and from 0,l to 30,0 g in mass.  相似文献   

18.
Even though most bird species with a raptorial feeding habit express varying extents of reversed sexual dimorphism (RSD: females bigger than males), the evolutionary basis for its maintenance, as well as its possible secondary consequences for the ecological adaptations of the different sexes, is debated. We studied pairs of tawny owls, Strix aluco (females 20% heavier than males), throughout the year by telemetry to test whether any inter-sexual differences in movement patterns, resource partitioning and breeding effort correlated with RSD. Females were larger than males in all body size measures and were 16% heavier than would be expected from the difference in wing length alone. In accordance with predictions from flight economics, males moved longer distances per time unit than females, in particular during the post-fledging season, when they also fed chicks more often than the females. Males had larger home ranges than females during the post-fledging period, whereas the sexes had home ranges of equal size during the non-breeding season. Until 10 days after fledging, females foraged much closer to the offspring than males, apparently balancing their distance to offspring between the needs of offspring guarding and foraging. In males, the parent–offspring distance only increased with decreasing brood condition. The sexes did not differ in habitat use or feeding habits, rendering no indications of food niche partitioning. The study provides further evidence that selection for males to be light and energetically efficient foragers is the main evolutionary force behind RSD in raptorial birds, even when the prey base is confined by territoriality.  相似文献   

19.
Aspects of Common Loon (Gavia immer) feeding biology on its breeding ground   总被引:1,自引:1,他引:0  
J. F. Barr 《Hydrobiologia》1996,321(2):119-144
Field studies and experiments with hand-reared loons found loons to be facultative predators, foraging on a variety of fishes, crustateans and other aquatic animals. Loons selected certain species and size of prey when present, favoured fusiform shapes and atypical, erratic swimming behavior, but took the most readily available and susceptible to capture, often yellow perch. Chick feeding behaviour developed during the first 8 wks after which physical maturity permitted independent feeding. Juveniles resembled adults in size and shape by wk-11, and were capable of catching all of their own food. Evidence suggests that loons are not harmful to sport fisheries and may ba beneficial by supressing species competing with game fish.Territories averaged 72 ha, and food may be a determinant for maximum size. Based on the average amount of food required by a chick for its first 15 wks (53 kg), plus the daily consumption of older birds (960) g, a pair of loons rearing 2 chicks could remove about 423 kg of food during 5.5 months on territory.  相似文献   

20.
The Gulf of California system presents major challenges to the still developing frameworks for ecosystem-based management (EBM). It is very much an open system and is intermittently subject to important influxes of migratory visitors, including large pelagic predatory fishes and small pelagic forage fishes. These migrants include the more tropical species from the coastal ecosystems to the south and perhaps subtropical sardines and anchovies from the California Current upwelling system. In addition to the multi-annual ENSO-scale and what may seem to be rather erratic episodes of major population incursions, the Gulf presents nonstationary, transient aspects on a variety of longer time scales. Moreover, the removal of top predators by commercial and sport fisheries has introduced trends that must be affecting the entire ecosystem, and certainly the forage fishes that are their major prey base. In addition to size limits, fishing seasons, area closures and license limitations, the fishery is managed by an ad hoc adaptive management system, in which the fishing season can be shortened or additional areas closed to fishing if pre-season exploratory fishing surveys indicate a shortage of small pelagic fishes on the fishing grounds. Whether this system is likely to be sustainable in the long term is difficult to determine, given the potential for rapid changes in the system because of environmental changes and/or feedbacks within the food web. Thus it appears that innovative management frameworks, among other things utilizing the comparative method, may be required in order to determine defensible tradeoffs between precaution and resource utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号