首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
In mammalian peripheral sympathetic ganglia GABA acts presynaptically to facilitate cholinergic transmission and postsynaptically to depolarize membrane potential. The GABA effect on parasympathetic pancreatic ganglia is unknown. We aimed to determine the effect of locally applied GABA on cat pancreatic ganglion neurons. Ganglia with attached nerve trunks were isolated from cat pancreata. Conventional intracellular recording techniques were used to record electrical responses from ganglion neurons. GABA pressure microejection depolarized membrane potential with an amplitude of 17.4 +/- 0.7 mV. Electrically evoked fast excitatory postsynaptic potentials were significantly inhibited (5.4 +/- 0.3 to 2.9 +/- 0.2 mV) after GABA application. GABA-evoked depolarizations were mimicked by the GABA(A) receptor agonist muscimol and abolished by the GABA(A) receptor antagonist bicuculline and the Cl(-) channel blocker picrotoxin. GABA was taken up and stored in ganglia during preincubation with 1 mM GABA; beta-aminobutyric acid application after GABA loading significantly (P < 0.05) increased depolarizing response to GABA (15.6 +/- 1.0 vs. 7.8 +/- 0.8 mV without GABA preincubation). Immunolabeling with antibodies to GABA, glial cell fibrillary acidic protein, protein gene product 9.5, and glutamic acid decarboxylase (GAD) immunoreactivity showed that GABA was present in glial cells, but not in neurons, and that glial cells did not contain GAD, whereas islet cells did. The data suggest that endogenous GABA released from ganglionic glial cells acts on pancreatic ganglion neurons through GABA(A) receptors.  相似文献   

3.
R A Shephard 《Life sciences》1987,40(25):2429-2436
A considerable body of biochemical and neurophysiological evidence implicates GABA in anxiety and in benzodiazepine action. The present article surveys the behavioral effects of GABA agonists and their interactions with drugs acting at the benzodiazepine receptor in animal anxiety paradigms. Certain GABA agonists, notably valproate, simulate many behavioral actions of benzodiazepines. Moreover, several behavioral studies of the interaction of GABA agonists with benzodiazepines support the hypothesis of a benzodiazepine receptor complex with one or more GABA, benzodiazepine and probably other binding sites. However, there are also a number of anomalous findings of GABA agonist action alone and in combination with benzodiazepines. It is argued that these paradoxical results can better be accounted for in terms of the receptor complex and the distribution of the drugs, rather than by suggesting that the anxiolytic actions of benzodiazepines are not mediated by GABA systems. The potential clinical usefulness of GABA agonists in anxiety is commented upon.  相似文献   

4.
5.
Brain stem respiratory neuron activity in the cat was studied in relation to efferent outflow (phrenic discharge) under the influence of several forcing inputs: 1) CO2 tension: hypocapnia produces disappearance of firing in some neurons, and conversion of respiratory-modulated to continuous (tonic) firing in others. 2) Lung inflation: during the Bruer-Hering reflex, some neurons have "classical" responses and others have "paradoxical" responses (i.e., opposite in direction to peripheral discharge). 3) Electrical stimulation: stimulus trains to the pneumotaxic center region (rostral lateral pons) produce phase-switching, whose threshold is: a) sharp (indicating action of positive-feedback mechanisms), and b) dependent on timing of stimulus delivery (indicating continuous excitability changes during each respiratory phase). Auto- and crosscorrelation analysis revealed the existence of short-term interactions between: a) medullary inspiratory (I) neurons and phrenic motoneurons; b) pairs of medullary I neurons; c) medullary I neurons and expiratory (E) neurons. A model of the respiratory oscillator is presented, in which the processes of conversion of tonic to phasic activity and switching of the respiratory phases are explained by recurrent excitatory and inhibitory loops.  相似文献   

6.
7.
Crystallographic parameters of glycine, GABA, and 165 other substances of various chemical and structural classes were compared. Series of these substances based on the degree of similarity of their crystal lattice spacings to those of glycine and GABA were obtained and analyzed for their effects on glycine and GABA receptors.Results of the comparison indicate the existence of a correlation between the crystal lattice spacings and the neurophysiological effects of both agonists and antagonists examined in the study.Neirofiziologiya/Neurophysiology, Vol. 25, No. 5, pp. 371–375, September–October, 1993.  相似文献   

8.
Cells presenting GABA immunoreactivity in the hypothalamus of the cat   总被引:1,自引:0,他引:1  
The distribution of GABA-immunoreactive (IR) cells was studied by immunohistochemistry in conjunction with highly specific antiserum GABA in the cat hypothalamus. Colchicine pretreatment made it possible to visualize a large number of labeled cells in the medial preoptic and dorsal hypothalamic areas. In contrast, the ventromedial and anterior hypothalamic nuclei contained only a few labeled cells, and the paraventricular and supraoptic nuclei were devoid of them. A very dense network of GABA-IR presumptive terminals was seen in the ventrolateral posterior hypothalamus where labeled cells could be recognized. The possibility of an involvement of the GABAergic neuronal system in the regulation of sleep-waking cycle is discussed.  相似文献   

9.
GABA antagonism reverses hypoxic respiratory depression in the cat   总被引:1,自引:0,他引:1  
We assessed the role of gamma-aminobutyric acid (GABA) as a potential causative agent of hypoxic respiratory depression by monitoring the response of the phrenic neurogram to systemic infusion of the GABA antagonist bicuculline (0.01 mg.kg-1.min-1) under control conditions and during isocapnic brain hypoxia produced by CO inhalation in separate groups of anesthetized, glomectomized, vagotomized, paralyzed, and ventilated cats with blood pressure held constant. The maximum effect of bicuculline in subseizure doses in control cats was to increase minute phrenic activity to 151 +/- 14% of preinfusion values. Infusion was continued until seizure activity was seen in the electroencephalogram. A 53% decrease of arterial O2 content resulted in a marked reduction of both peak phrenic amplitude and phrenic firing frequency to 16 and 64% of control values, respectively. Infusion of bicuculline while the level of hypoxia was maintained constant restored both peak phrenic amplitude and phrenic firing frequency to prehypoxic levels. The maximum effect of bicuculline was to increase minute phrenic activity to 123 +/- 13% of the prehypoxic value. These results suggest that although GABA has only a modest role in determining the output of the control phrenic neurogram, a significant portion of the phrenic depression that occurs during hypoxia can be attributed to inhibition of respiratory neurons by GABA.  相似文献   

10.
The effect of intraventricular (IVT) administration of GABAA receptor agonist muscimol and GABAB receptor agonist, baclofen was examined on the activity of acetylcholinesterase (AChE), monoamine oxidase (MAO) and Na+, K+-ATPase in discrete areas of brain from estrogen-progesterone primed ovariectomized rats. AChE enzyme activity was increased in two subcellular fractions (soluble and total particulate) studied, with statistically significant changes in cerebral hemispheres (CH), cerebellum (CB), thalamus (TH) and hypothalamus (HT), Na+, K+-ATPase enzyme activity was decreased in both these fractions. MAO activity increased significantly in CH, TH and HT. The presented results suggest a functional relationship between GABAergic (inhibitory), cholinergic and monoaminergic (excitatory) systems by affecting the rate of degradation of the excitatory neurotransmitters and Na+, K+-ATPase. (Mol Cell Biochem 167: 107-111, 1997)  相似文献   

11.
12.
Suh HW  Song DK  Huh SO  Lee KC  Kim YH 《Life sciences》2000,66(4):PL61-PL69
The effect of muscimol or baclofen injected intrathecally (i.t.) on the inhibition of the tail-flick response induced by morphine and beta-endorphin administered i.t. was studied in ICR mice. The i.t. injection of muscimol (100 ng) or baclofen (10 ng) alone did not affect the basal inhibition of the tail-flick response. Morphine (0.2 microg) and beta-endorphin (0.1 microg) caused only slight inhibition of the tail-flick response. Baclofen, but not muscimol, injected i.t. enhanced the inhibition of the tail-flick response induced by i.t. administered morphine. Both muscimol and baclofen injected i.t. significantly enhanced i.t. injected beta-endorphin-induced inhibition of the tail-flick response. Our results suggest that the GABA(B), but not GABA(A), receptors located in the spinal cord appear to be involved in enhancing the inhibition of the tail-flick response induced by morphine administered spinally. In addition, both GABA(A) and GABA(B) receptors are involved in enhancing the inhibition of the tail-flick response induced by beta-endorphin administered i.t.  相似文献   

13.
The influence of GABA receptor agonists on the terminal differentiation in vitro of dopaminergic (DA) neurons derived from IPS cells was investigated. GABA-A agonist muscimol induced transient elevation of intracellular Ca2+ level ([Ca2+]i) in the investigated cells at days 5 to 21 of differentiation. Differentiation of cells in the presence of muscimol reduced tyrosine hydroxylase expression. Thus, the presence of active GABA-A receptors, associated with phenotype determination via Ca2+-signalling was demonstrated in differentiating human DA neurons.  相似文献   

14.
Contractile sensitivity and reactivity to alpha- and beta-adrenoceptor stimulation was studied in incubated rabbit pulmonary artery cylindrical segments of differing diameters. Distinct differences were noted between the responses of extra- and intra-pulmonary pulmonary arteries to norepinephrine and isoproterenol. The sensitivity to norepinephrine was largest in the intrapulmonary pulmonary arteries. Arterial reactivity to norepinephrine was greatest in the larger of the intrapulmonary vessel segments, diminishing considerably as the vessels became smaller. Cocaine did not cause substantial alterations in the response of any of the arterial segments to the alpha-agonist. Phentolamine, however, exerted its influence primarily in the smaller arterial segments. Vascular sensitivity to isoproterenol was least in the intrapulmonary pulmonary arteries. These smaller vessel segments, however, were more reactive to isoproterenol than were the extrapulmonary pulmonary arterial segments. Propranolol, at a concentration of 10(-8) M, was an effective antagonist of the beta-agonist; at a concentration of 10(-7) M, however, this antagonist was related to isoproterenol-induced arterial contraction, apparently by stimulation of alpha-receptor sites. The results of this study demonstrated a regional heterogeneity in the contractile response of the pulmonary artery to alpha- and beta-stimulation. The extrapulmonary arterial segments were found to be more sensitive to beta-stimulation than were the smaller, intrapulmonary, segments. The intrapulmonary arterial segments, on the other hand, were found to be more sensitive to alpha-stimulation than were the extrapulmonary segments.  相似文献   

15.
Role of Glutamate and GABA in Mechanisms Underlying Respiratory Control   总被引:1,自引:0,他引:1  
This review deals with modern concepts on the mechanisms of involvement of main central excitatory and inhibitory neurotransmitters, glutamate and GABA, in the control of the respiratory function.  相似文献   

16.
Progabide (50 mg/kg, i.p.), a GABA receptor agonist, significantly decreases the median minimal neurotoxic dose (TD50) of clobazam, chlordiazepoxide, and diazepam; the receptor binding of these substances is highly enhanced by muscimol. Progabide has no significant effect on the TD50 of clonazepam and triazolam; the receptor bindings of these substances is either only slightly enhanced or not altered by muscimol. Progabide also significantly decreases the median antimaximal electroshock dose (MES ED50) of all the benzodiazepines tested. However, progabide has no effect on the median antipentylenetetrazol dose (PTZ ED50) of the benzodiazepines. Likewise, THIP (2.5 mg/kg, i.p.) significantly decreases the TD50 of chlordiazepoxide but not that of triazolam. THIP significantly decreases the MES ED50 of chlordiazepoxide and triazolam but has no effect on the PTZ ED50 of these two substances. The above data suggest that benzodiazepine receptors linked to GABA receptors contribute to the minimal neurotoxicity and anti-MES activity but not to the anti-PTZ activity of benzodiazepines.  相似文献   

17.
The development of the sensitivity of spontaneous motor activity to the GABA agonists baclofen (10 mg/kg egg weight, systemic administration) and muscimol (0.8 mg/kg e.w., systemic administration) was tested in 11-day to 19-day-old chick embryos. 1) Baclofen already significantly depressed the frequency of spontaneous movements in 11-day embryos; its effect attained the maximum (85% depression of spontaneous motility) in 13-day embryos. After the 15th day of incubation, it reduced spontaneous motor activity by 50-60%. In spinal embryos, baclofen had the same, but a quantitatively more pronounced effect, demonstrated from its direct action on the spinal cord uninfluenced by supraspinal modulation, which began to be manifested after the 15th day of incubation. 2) Muscimol did not begin to inhibit spontaneous motility significantly until the 13th day of incubation. Subsequently, the latent period of its effect shortened, its duration lengthened and, lastly, its quantitative result also increased. 3) A comparison of the effect of GABA (Sedlácek 1978), muscimol and baclofen in 17-day chick embryos showed that the depressive effect increased in the sequence baclofen less than GABA less than muscimol, but that GABA took effect faster than the others. The results testify that the maturation of the individual elements of the GABA-ergic central inhibition system is a complex process.  相似文献   

18.
为探讨青年猫和老年猫丘系层谷氨酸(Glu)与γ-氨基丁酸(GABA)表达的年龄相关性变化,利用Nissl染色显示丘系层神经元,免疫组织化学ABC法标记Glu和GABA免疫阳性神经元。光镜下观察、拍照,对Glu和GABA能免疫阳性神经元分别计数并换算成密度。利用IPE软件测量Glu和GABA免疫阳性反应灰度值(免疫阳性强度与灰度值成反比)。结果显示,Glu和GABA阳性反应神经元、阳性纤维及其终末在青年猫及老年猫丘系层均有分布。与青年猫相比,老年猫丘系层Glu能免疫阳性神经元密度显著增大(p〈0.01),免疫阳性反应灰度值显著降低(p〈0.01),免疫阳性反应显著增强;GABA能免疫阳性神经元密度显著下降(p〈0.01),免疫阳性反应灰度值显著升高(p〈0.01),免疫阳性反应显著减弱。结果提示,衰老过程中猫丘系层Glu的表达增强和GABA的表达减弱导致兴奋性神经递质和抑制性神经递质之间的平衡失调,可能是视觉、听觉、躯体感觉等单感觉功能衰退及多感觉整合功能增强的主要原因之一。  相似文献   

19.
Chronic treatment with γ-acetylenic GABA(GAG), a GABA transaminase inhibitor, causes an increase in striatal dopamine receptor binding and function in rat brain suggesting that extrapyramidal side effects may accompany the use of these agents. In the present investigation it was found that chronic administration of THIP, a direct acting GABA receptor agonist, induced a similar increase in dopamine receptor binding. In addition, co-administration of atropine, a cholinergic muscarinic antagonist, was found to completely prevent the GABA-induced dopamine receptor increase. Furthermore, high affinity choline uptake, a measure of cholinergic activity, in striatal synaptosomes is enhanced after the acute administration of either GAG or THIP. Taken together these results support the notion of an interaction between dopaminergic, cholinergic and GABA-ergic neurons in the extrapyramidal system and indicate that co-administration of an anticholinergic agent may be of benefit in preventing the extrapyramidal side effects which may accompany the use of GABAergic agonists.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号