首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Cyclic nucleotides are known to be effluxed from cultured cells or isolated tissues. Two recently described members of the multidrug resistance protein family, MRP4 and MRP5, might be involved in this process, because they transport the 3',5'-cyclic nucleotides, cAMP and cGMP, into inside-out membrane vesicles. We have investigated cGMP and cAMP efflux from intact HEK293 cells overexpressing MRP4 or MRP5. The intracellular production of cGMP and cAMP was stimulated with the nitric oxide releasing compound sodium nitroprusside and the adenylate cyclase stimulator forskolin, respectively. MRP4- and MRP5-overexpressing cells effluxed more cGMP and cAMP than parental cells in an ATP-dependent manner. In contrast to a previous report we found no glutathione requirement for cyclic nucleotide transport. Transport increased proportionally with intracellular cyclic nucleotide concentrations over a calculated range of 20-600 microm, indicating low affinity transport. In addition to several classic inhibitors of organic anion transport, prostaglandins A(1) and E(1), the steroid progesterone and the anti-cancer drug estramustine all inhibited cyclic nucleotide efflux. The efflux mediated by MRP4 and MRP5 did not lead to a proportional decrease in the intracellular cGMP or cAMP levels but reduced cGMP by maximally 2-fold over the first hour. This was also the case when phosphodiesterase-mediated cyclic nucleotide hydrolysis was inhibited by 3-isobutyl-1-methylxanthine, conditions in which efflux was maximal. These data indicate that MRP4 and MRP5 are low affinity cyclic nucleotide transporters that may at best function as overflow pumps, decreasing steep increases in cGMP levels under conditions where cGMP synthesis is strongly induced and phosphodiesterase activity is limiting.  相似文献   

2.
No studies have specifically addressed whether cAMP can influence nitric oxide (NO)/cGMP-induced cerebral vasodilation. In this study, we examined whether cAMP can enhance or reduce NO-induced cerebral vasodilation in vivo via interfering with cGMP efflux or through potentiating phosphodiesterase 5 (PDE5)-mediated cGMP breakdown, respectively, in cerebral vascular smooth muscle cells (CVSMCs). To that end, we evaluated, in male rats, the effects of knockdown [via antisense oligodeoxynucleotide (ODN) applications] of the cGMP efflux protein multidrug resistance protein 5 (MRP5) and PDE5 inhibition on pial arteriolar NO donor [S-nitroso-N-acetyl penicillamine (SNAP)]-induced dilations in the absence and presence of cAMP elevations via forskolin. Pial arteriolar diameter changes were measured using well-established protocols in anesthetized rats. In control (missense ODN treated) rats, forskolin elicited a leftward shift in the SNAP dose-response curves (approximately 50% reduction in SNAP EC50). However, in MRP5 knockdown rats, cAMP increases were associated with a substantial reduction in SNAP-induced vasodilations (reflected as a significant 35-50% lower maximal response). In the presence of the PDE5 inhibitor MY-5445, the repression of the NO donor response accompanying forskolin was prevented. These findings suggest that cAMP has opposing effects on NO-stimulated cGMP increases. On the one hand, cAMP limits CVSMC cGMP loss by restricting cGMP efflux. On the other, cAMP appears to enhance PDE5-mediated cGMP breakdown. However, because increased endogenous cAMP seems to potentiate NO/cGMP-induced arteriolar relaxation when MRP5 expression is normal, the effect of cAMP to reduce cGMP efflux appears to predominate over cAMP stimulation of cGMP hydrolysis.  相似文献   

3.
Human multidrug resistance protein 4 (MRP4) has recently been determined to confer resistance to the antiviral purine analog 9-(2-phosphonylmethoxyethyl)adenine and methotrexate. However, neither its substrate selectivity nor physiological functions have been determined. Here we report the results of investigations of the in vitro transport properties of MRP4 using membrane vesicles prepared from insect cells infected with MRP4 baculovirus. It is shown that expression of MRP4 is specifically associated with the MgATP-dependent transport of cGMP, cAMP, and estradiol 17-beta-D-glucuronide (E(2)17 beta G). cGMP, cAMP, and E(2)17 beta G are transported with K(m) and V(max) values of 9.7 +/- 2.3 microm and 2.0 +/- 0.3 pmol/mg/min, 44.5 +/- 5.8 microm and 4.1 +/- 0.4 pmol/mg/min, and 30.3 +/- 6.2 microm and 102 +/- 16 pmol/mg/min, respectively. Consistent with its ability to transport cyclic nucleotides, it is demonstrated that the MRP4 drug resistance profile extends to 6-mercaptopurine and 6-thioguanine, two anticancer purine analogs that are converted in the cell to nucleotide analogs. On the basis of its capacity to transport cyclic nucleotides and E(2)17 beta G, it is concluded that MRP4 may influence diverse cellular processes regulated by cAMP and cGMP and that its substrate range is distinct from that of any other characterized MRP family member.  相似文献   

4.
A cyclic nucleotide phosphodiesterase, PdeE, that harbors two cyclic nucleotide binding motifs and a binuclear Zn(2+)-binding domain was characterized in Dictyostelium. In other eukaryotes, the Dictyostelium domain shows greatest homology to the 73-kDa subunit of the pre-mRNA cleavage and polyadenylation specificity factor. The Dictyostelium PdeE gene is expressed at its highest levels during aggregation, and its disruption causes the loss of a cAMP-phosphodiesterase activity. The pdeE null mutants show a normal cAMP-induced cGMP response and a 1.5-fold increase of cAMP-induced cAMP relay. Overexpression of a PdeE-yellow fluorescent protein (YFP) fusion construct causes inhibition of aggregation and loss of the cAMP relay response, but the cells can aggregate in synergy with wild-type cells. The PdeE-YFP fusion protein was partially purified by immunoprecipitation and biochemically characterized. PdeE and its Dictyostelium ortholog, PdeD, are both maximally active at pH 7.0. Both enzymes require bivalent cations for activity. The common cofactors Zn(2+) and Mg(2+) activated PdeE and PdeD maximally at 10 mm, whereas Mn(2+) activated the enzymes to 4-fold higher levels, with half-maximal activation between 10 and 100 microm. PdeE is an allosteric enzyme, which is approximately 4-fold activated by cAMP, with half-maximal activation occurring at about 10 microm and an apparent K(m) of approximately 1 mm. cGMP is degraded at a 6-fold lower rate than cAMP. Neither cGMP nor 8-Br-cAMP are efficient activators of PdeE activity.  相似文献   

5.
The effects of cyclic nucleotides on elastin synthesis were studied in ligamentum nuchae fibroblasts by adding exogenous cyclic nucleotide derivatives or beta-adrenergic agents to cell culture medium. Elastin synthesis was enhanced (approximately 80%) by dibutyryl cGMP (Bt2cGMP) in concentrations ranging from 0.01 to 100 nM. Two other cGMP derivatives, 8-bromoguanosine 3':5'-cyclic monophosphate (8-Br-cGMP) and 2'-deoxy-cGMP, were also potent stimulators of elastin synthesis. In the absence of calcium, basal elastin production was substantially decreased (40% of control) and cGMP analogs no longer stimulated elastin synthesis, suggesting a role for calcium in the cGMP response. Bt2cAMP had no demonstrable effect on elastin production except at high concentrations which produced a nonspecific decrease equivalent to the decrease in total protein synthesis. Similarly, elevation of endogenous cellular cAMP levels by beta-adrenergic stimulation produced no change in elastin production. When 8-Br-cGMP was added to cells together with Bt2cAMP, cGMP-dependent stimulation of elastin production was abolished by cAMP in a dose-dependent fashion. These results suggest a coordinated means by which elastin production is controlled in ligament cells, i.e. increased cGMP levels lead to a stimulation of elastin production that is reversed by cAMP.  相似文献   

6.
Gravity alteration (micro- and hypergravity) is known to influence cell functions. As guanosine 3',5'-cyclic monophosphate (cGMP) plays an important role in human melanocyte functions and different guanylyl cyclase isoforms are responsible for cGMP synthesis in human non-metastatic and metastatic melanoma cells, we investigated the effects of hypergravity on the regulation of cGMP levels in cultured human melanocytes and in melanoma cell lines with different metastatic potentials. Hypergravity was produced by horizontal centrifugal acceleration. Here we report that long-term application of hypergravity (up to 5 g for 24 h) stimulated cGMP efflux in cultured melanocytes and in non-metastatic melanoma cells in the presence of 0.1 mM 3-isobutyl-1-methylxanthine (IBMX), a non-selective phosphodiesterase (PDE) inhibitor. Under these conditions, cAMP synthesis and melanin production were up-regulated in pigmented melanocytes and non-metastatic melanoma cells. Hypergravity also stimulated cGMP transport in the presence of 1 microM trequinsin, an inhibitor of cGMP-binding PDE (PDE5) and of transport by multidrug resistance proteins MRP4/5, whereas 50 microM trequinsin partially inhibited cGMP transport. Transport was further inhibited by probenecid, an inhibitor of endogenous non-selective transporters as well as of MRP4/5 and by cycloheximide as an inhibitor of de novo protein synthesis. In contrast, hypergravity did not affect cGMP efflux in metastatic melanoma cells, which might be related to an up-regulated cGMP efflux at 1 g. The results of the present study indicate that hypergravity may stimulate cGMP efflux in melanocytes and in non-metastatic melanoma cells most probably by an enhanced expression of endogenous transporters and/or MRP4/5. Thus, an altered acceleration vector may induce signaling events in melanocytic cells.  相似文献   

7.
Multidrug resistance protein 5 (MRP5) has been linked to cGMP cellular export in peripheral vascular smooth muscle cells (VSMCs) and is widely expressed in brain vascular tissue. In the present study, we examined whether knockdown of MRP5 in pial arterioles [via antisense oligodeoxynucleotide (ODN) applications] affected nitric oxide (NO)/cGMP-induced dilations. The antisense or (as a control) missense ODN was applied to the cortical surface approximately 24 h before study via closed cranial windows. The efficacy of the antisense vs. missense ODN in eliciting selective reductions in MRP5 expression was confirmed by analysis of MRP5 mRNA in pial tissue. Unexpectedly, in initial studies, a significantly lower maximal pial arteriolar diameter increase in the presence of the NO donor S-nitrosoacetylpenicillamine (SNAP) was seen in the antisense vs. missense ODN-treated rats (35 vs. 48% diameter increase, respectively). It was suspected that this related to a reduced vascular smooth muscle cell sensitivity to cGMP due to prolonged exposure to increased intracellular cGMP levels elevated by overnight restriction of cGMP efflux. That postulate was supported by a finding of a diminished vasodilating response to the cGMP-dependent protein kinase-activating cGMP analog 8-p-chlorophenylthio-cGMP in antisense vs. missense ODN-treated rats. To prevent desensitization, additional rats were studied in the presence of chronic NOS inhibition via Nomega-nitro-L-arginine. In the NO synthase (NOS)-inhibited rats, the maximal SNAP response was much higher in the antisense (62% increase) vs. the missense ODN (40% increase) group. A similar result was obtained when monitoring responses to the soluble guanylyl cyclase-activating drugs YC-1 and BAY 41-2272. Moreover, in the presence of NOS inhibition, the normal SNAP-induced rise in periarachnoid cerebrospinal fluid cGMP levels, which reflects cGMP efflux, was absent in the antisense ODN-treated rats, a finding consistent with loss of MRP5 function. In conclusion, if one minimizes the confounding effects of basal cGMP production, a clearer picture emerges, one that indicates an important role for MRP5-mediated cGMP efflux in the regulation of NO-induced cerebral arteriolar relaxation.  相似文献   

8.
9.
In rat pancreatic islets the effects of cholecystokinin-8 (CCK8) on glucose-mediated insulin release, 45Ca2+ net uptake, 45Ca2+ efflux, 86Rb+ efflux, cAMP- and cGMP levels were studied. In the presence of a substimulatory glucose concentration (3 mM) CCK8 concentrations of up to 1 microM had no effect on insulin release, but CCK8 at 10 nM potentiated the stimulatory effect of glucose (11.1 mM). 10 nM CCK8 enhanced glucose-stimulated 45Ca2+ net uptake but was ineffective at substimulatory glucose levels. CCK8 had no effect on cAMP and cGMP levels in the presence of 11.1 mM glucose, CCK8 increased 86Rb+ (a measure of K+) in the presence of both 3 and 11.1 mM glucose. This effect was abolished when Ca2+ was omitted from the perifusion medium. CCK8 did not alter glucose (11.1 mM)-stimulated 45Ca2+ efflux rate. These data indicate that (1) CCK8 potentiates glucose-stimulated insulin secretion possibly via an effect on Ca2+ uptake, 2) by affecting Ca2+ uptake, CCK8 enhances K+ efflux, and 3) CCK8 does not mediate its effect via cAMP or cGMP. With respect to 86Rb+ efflux the mechanism of CCK8 action appears to be different from that of glucose. When the mechanism of CCK action on islets is compared with that on exocrine pancreas (data from others) there are similarities (importance of Ca2+ uptake and non-importance of cAMP and cGMP).  相似文献   

10.
We studied the molecular basis of the up to 46-fold increased accumulation of folates and methotrexate (MTX) in human leukemia CEM-7A cells established by gradual deprivation of leucovorin (LCV). CEM-7A cells consequently exhibited 10- and 68-fold decreased LCV and folic acid growth requirements and 23-25-fold hypersensitivity to MTX and edatrexate. Although CEM-7A cells displayed a 74-86-fold increase in the reduced folate carrier (RFC)-mediated influx of LCV and MTX, RFC overexpression per se cannot induce a prominently increased folate/MTX accumulation because RFC functions as a nonconcentrative anion exchanger. We therefore explored the possibility that folate efflux activity mediated by members of the multidrug resistance protein (MRP) family was impaired in CEM-7A cells. Parental CEM cells expressed substantial levels of MRP1, MRP4, poor MRP5 levels, whereas MRP2, MRP3 and breast cancer resistance protein were undetectable. In contrast, CEM-7A cells lost 95% of MRP1 levels while retaining parental expression of MRP4 and MRP5. Consequently, CEM-7A cells displayed a 5-fold decrease in the [(3)H]folic acid efflux rate constant, which was identical to that obtained with parental CEM cells, when their folic acid efflux was blocked (78%) with probenecid. Furthermore, when compared with parental CEM, CEM-7A cells accumulated 2-fold more calcein fluorescence. Treatment of parental cells with the MRP1 efflux inhibitors MK571 and probenecid resulted in a 60-100% increase in calcein fluorescence. In contrast, these inhibitors failed to alter the calcein fluorescence in CEM-7A cells, which markedly lost MRP1 expression. Replenishment of LCV in the growth medium of CEM-7A cells resulted in resumption of normal MRP1 expression. These results establish for the first time that MRP1 is the primary folate efflux route in CEM leukemia cells and that the loss of folate efflux activity is an efficient means of markedly augmenting cellular folate pools. These findings suggest a functional role for MRP1 in the maintenance of cellular folate homeostasis.  相似文献   

11.
The present study was conducted to characterise the transporter(s) responsible for the uptake of cyclic nucleotides to human erythrocytes. Western blotting showed that hRBC expressed OAT2 (SLC22A7), but detection of OAT1 (SLC22A6), or OAT3 (SLC22A8) was not possible. Intact hRBC were employed to clarify the simultaneous cyclic nucleotide egression and uptake. Both these opposing processes were studied. The Km‐values for high affinity efflux was 3.5 ± 0.1 and 39.4 ± 5.7 μM for cGMP and cAMP, respectively. The respective values for low affinity efflux were 212 ± 11 and 339 ± 42 μM. The uptake was characterised with apparently low affinity and similar Km‐values for cGMP (2.2 mM) and cAMP (0.89 mM). Using an iterative approach in order to balance uptake with efflux, the predicted real Km‐values for uptake were 100–200 μM for cGMP and 50–150 μM for cAMP. The established OAT2‐substrate indomethacin showed a competitive interaction with cyclic nucleotide uptake. Creatinine, also an OAT2 substrate, showed saturable uptake with a Km of 854 ± 98 μM. Unexpectedly, co‐incubation with cyclic nucleotides showed an uncompetitive inhibition. The observed Km‐values were 399 ± 44 and 259 ± 30 μM for creatinine, in the presence of cGMP and cAMP, respectively. Finally, the OAT1‐substrate para‐aminohippurate (PAH) showed some uptake (Km‐value of 2.0 ± 0.4 mM) but did not interact with cyclic nucleotide or indomethacin transport.  相似文献   

12.
Scott SP  Shea PW  Dryer SE 《Biochemistry》2007,46(33):9417-9431
Hyperpolarization activated cyclic nucleotide modulated (HCN) ion channel currents are activated by hyperpolarization and modulated in response to changes in cytosolic adenosine 3',5'-cyclic monophosphate (cAMP) concentrations. A cDNA chimera combining the rat HCN2 cyclic nucleotide binding domain and the DNA binding domain of the cAMP receptor protein (CRP) from E. coli and the histidine tag (HCN2/CRP) was expressed and purified. The construct is capable of forming only non-ligand dependent dimers because the C-linker region of the channel is not present in this construct. The construct binds 8-[[2-[(fluoresceinylthioureido) amino] ethyl] thio] adenosine-3',5'-cyclic monophosphate (8-fluo cAMP) with a Kd of 0.299 microM as determined with a monomer binding model. The Ki values of 20 ligands related to cAMP were measured in order to determine the properties necessary for a ligand to bind to the HCN2 binding domain. This is the first report of cAMP and gunaosine 3',5'-cyclic monophosphate (cGMP) affinities to the HCN2 binding domain being equivalent, even though they modulate the channel with a 10-fold difference in K0.5. Furthermore, the array of ligands measured allows the preference rank order for each purine ring position to be determined: position 1, H > NH2 > O; position 2, NH2 > Cl > H > O; position 6, NH2 > Cl > H > O; and position 8, NH2 > Cl > H > O. Finally, the ability of HCN2/CRP to bind cyclic nucleotide pyrimidine rings at concentrations approximately 1.33 times greater than cAMP suggests that ribofuranose is key for binding.  相似文献   

13.
The doxorubicin-resistant, acute myelogenous leukemia cell line, AML-2/DX100, characterized by the over-expression of multidrug resistance protein (MRP) and the down-regulation of catalase, has advantages for the screening of MRP inhibitors as well as for cytotoxic substances producing potential reactive oxygen species. The screening power of AML-2/DX100 cells for an MRP inhibitor, probenecid, was approximately 4-fold stronger than that of another resistant cell line, HL-60/Adr, over-expressing MRP. AML-2/DX100 was approximately 2- to 5-fold more sensitive to pro-oxidants such as Paraquat, H2O2 and t-butyl hydroperoxide, when compared with its parental cells.  相似文献   

14.
Breast cancer resistance protein (BCRP/ABCG2) is currently the only ABC transporter that exports mono- and polyglutamates of folates and methotrexate (MTX). Here we explored the relationship between cellular folate status and BCRP expression. Toward this end, MCF-7 breast cancer cells, with low BCRP and moderate multidrug resistance protein 1 (MRP1/ABCC1) levels, and their mitoxantrone (MR)-resistant MCF-7/MR subline, with BCRP overexpression and low MRP1 levels, were gradually deprived of folic acid from 2.3 microm to 3 nm resulting in the sublines MCF-7/LF and MCF-7/MR-LF. These cell lines expressed only residual BCRP mRNA and protein levels and retained a poor MRP2 (ABCC2) through MRP5 (ABCC5) expression. Furthermore, MCF-7/MR-LF cells also displayed 5-fold decreased MRP1 levels relative to MCF-7/MR cells. In contrast, BCRP overexpression was largely retained in MCF-7/MR cells grown in MR-free medium containing 2.3 microm folic acid. Loss of BCRP expression in MCF-7/LF and MCF-7/MR-LF cells resulted in the following: (a) a prominent decrease in the efflux of Hoechst 33342, a BCRP substrate; (b) an approximately 2-fold increase in MR accumulation as revealed by flow cytometry; this was accompanied by a 2.5- and approximately 84-fold increased MR sensitivity in these cell lines, respectively. Consistently, Ko143, a specific BCRP inhibitor, rendered MCF-7 and MCF-7/MR cells 2.1- and approximately 16.4-fold more sensitive to MR, respectively. Loss of BCRP expression also resulted in the following: (c) an identical MTX sensitivity in these cell lines thereby losing the approximately 28-fold MTX resistance of the MCF-7/MR cells; (d) an approximately 2-fold increase in the 4- and 24-h accumulation of [(3)H]folic acid. Furthermore, MCF-7/MR-LF cells displayed a significant increase in folylpoly-gamma-glutamate synthetase activity. Hence, consistent with the mono- and polyglutamate folate exporter function of BCRP, down-regulation of BCRP and increased folylpoly-gamma-glutamate synthetase activity appear to be crucial components of cellular adaptation to folate deficiency conditions. This is the first evidence for the possible role of BCRP in the maintenance of cellular folate homeostasis.  相似文献   

15.
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-binding cassette (ABC) polytopic membrane transporter of considerable clinical importance that confers multidrug resistance on tumor cells by reducing drug accumulation by active efflux. MRP1 is also an efficient transporter of conjugated organic anions. Like other ABC proteins, including the drug resistance conferring 170-kDa P-glycoprotein (ABCB1), the 190-kDa MRP1 has a core structure consisting of two membrane-spanning domains (MSDs), each followed by a nucleotide binding domain (NBD). However, unlike P-glycoprotein and most other ABC superfamily members, MRP1 contains a third MSD with five predicted transmembrane segments with an extracytosolic NH(2) terminus. Moreover, the two nucleotide-binding domains of MRP1 are considerably more divergent than those of P-glycoprotein. In the present study, the first structural details of MRP1 purified from drug-resistant lung cancer cells have been obtained by electron microscopy of negatively stained single particles and two-dimensional crystals formed after reconstitution of purified protein with lipids. The crystals display p2 symmetry with a single dimer of MRP1 in the unit cell. The overall dimensions of the MRP1 monomer are approximately 80 x 100 A. The MRP1 monomer shows some pseudo-2-fold symmetry in projection, and in some orientations of the detergent-solubilized particles, displays a stain filled depression (putative pore) appearing toward the center of the molecule, presumably to enable transport of substrates. These data represent the first structural information of this transporter to approximately 22-A resolution and provide direct structural evidence for a dimeric association of the transporter in a reconstituted lipid bilayer.  相似文献   

16.
(-)-Epigallocatechin-3-gallate (EGCG), a major polyphenol of green tea, has many interesting biological activities. The uptake of EGCG and involvement of specific efflux pumps were studied in MDCKII cells transfected with hPgp, hMRP1, and hMRP2 genes. Total cell associated [3H]EGCG increased 7-fold in the presence of the MRP inhibitors, indomethacin and probenecid, in MDCKII/MRP1 cells, compared to a 2-fold increase in wild-type cells. Intracellular levels of EGCG, 4(")-O-methyl EGCG, and 4('),4(")-di-O-methyl EGCG were increased by 13-, 11-, and 3-fold, respectively, by indomethacin in MDCKII/MRP1 cells. Accumulation of EGCG and its methyl metabolites was also increased approximately 10-fold in the presence of MK-571 in MDCKII/MRP2 cells. Co-treatment with isoflavones, curcumin and tetrahydrocurcumin, increased [3H]EGCG accumulation significantly in MDCKII/MRP1 and HT-29 cells. The results indicate that EGCG and its methyl metabolites are substrates for MRP1 and MRP2, but not for Pgp. MRP type efflux pumps may limit the bioavailability of EGCG.  相似文献   

17.
Central obesity shows impaired platelet responses to the antiaggregating effects of nitric oxide (NO), prostacyclin, and their effectors—guanosine 3′,5′‐cyclic monophosphate (cGMP) and adenosine 3′,5′‐cyclic monophosphate (cAMP). The influence of weight loss on these alterations is not known. To evaluate whether a diet‐induced body‐weight reduction restores platelet sensitivity to the physiological antiaggregating agents and reduces platelet activation in subjects affected by central obesity, we studied 20 centrally obese subjects before and after a 6‐month diet intervention aiming at reducing body weight by 10%, by measuring (i) insulin sensitivity (homeostasis model assessment of insulin resistance (HOMAIR)); (ii) plasma lipids; (iii) circulating markers of inflammation of adipose tissue and endothelial dysfunction, and of platelet activation (i.e., soluble CD‐40 ligand (sCD‐40L) and soluble P‐selectin (sP‐selectin)); (iv) ability of the NO donor sodium nitroprusside (SNP), the prostacyclin analog Iloprost and the cyclic nucleotide analogs 8‐bromoguanosine 3′,5′‐cyclic monophosphate (8‐Br‐cGMP) and 8‐bromoadenosine 3′,5′‐cyclic monophosphate (8‐Br‐cAMP) to reduce platelet aggregation in response to adenosine‐5‐diphosphate (ADP); and (v) ability of SNP and Iloprost to increase cGMP and cAMP. The 10 subjects who reached the body‐weight target showed significant reductions of insulin resistance, adipose tissue, endothelial dysfunction, and platelet activation, and a significant increase of the ability of SNP, Iloprost, 8‐Br‐cGMP, and 8‐Br‐cAMP to reduce ADP‐induced platelet aggregation and of the ability of SNP and Iloprost to increase cyclic nucleotide concentrations. No change was observed in the 10 subjects who did not reach the body‐weight target. Changes of platelet function correlated with changes of HOMAIR. Thus, in central obesity, diet‐induced weight loss reduces platelet activation and restores the sensitivity to the physiological antiaggregating agents, with a correlation with improvements in insulin sensitivity.  相似文献   

18.
The 190 kDa multidrug resistance protein 1 (MRP1; ABCC1) is comprised of three membrane spanning domains (MSDs) and two nucleotide binding domains (NBDs) configured MSD1-MSD2-NBD1-MSD3-NBD2. MRP1 overexpression in tumor cells results in an ATP-dependent efflux of many oncolytic agents and arsenic and antimony oxyanions. MRP1 also transports GSSG and GSH as well as conjugated organic anions, including leukotriene C(4) and 17beta-estradiol 17-(beta-D-glucuronide) and certain xenobiotics in association with GSH. Previous studies have shown that portions of MSD1 and the cytoplasmic loop (CL3) connecting it to MSD2 are important for MRP1 transport function. In the present study, Cys residues at positions 43, 49, 85, 148, and 190 in MSD1 and positions 208 and 265 in CL3 were mutated to Ala and Ser, and the effects on protein expression, plasma membrane localization, trypsin sensitivity, organic anion transport, and drug resistance properties were investigated. Confocal microscopy showed that 11 of 14 mutants displayed significant levels of nonplasma membrane-associated MRP1. Most mutant proteins were also more resistant to trypsin proteolysis than wild-type MRP1. All Cys mutants transported organic anions (0.5-1.5-fold wild-type MRP1 activity), and cells expressing Ser-substituted but not Ala-substituted Cys43 and Cys265 MRP1 mutants exhibited a 2.5-fold decrease and a 3-fold increase in arsenite resistance, respectively; Cys43Ser MRP1 also conferred lower levels of vincristine resistance. These results indicate that certain Cys residues in the NH(2) proximal region of MRP1 can be important for its structure and selected transport activities.  相似文献   

19.
Cyclic GMP transporters   总被引:4,自引:0,他引:4  
The biokinetics of guanosine 3',5'-cyclic monophosphate (cGMP) is characterized by three distinct processes: synthesis by guanylate cyclases (GCs), conversion of cGMP to GMP by cyclic nucleotide phosphodiesterases (PDEs) and the excretion of unchanged cGMP by transport proteins in the cell membrane. Efflux is observed in virtually all cell types including cells which originate from brain. Studies of intact cells, in which metabolic inhibitors and probenecid reduced extrusion of cGMP and wherein cGMP was extruded against concentration gradients, indicated the existence of ATP requiring organic anion transport system(s). Functional studies of inside-out vesicles have revealed cGMP transport systems wherein translocation is coupled to hydrolysis of ATP. The extrusion of cGMP is inhibited by a number of unrelated compounds and this indicates that cGMP is substrate for multispecific transporters. Recent transfection studies suggest that members of the MRP (multidrug resistance protein) family; MRP4, MRP5 and MRP8 translocate cGMP across the cell membrane. Many of the MRPs have been detected in brain. In addition tertiary active transport by the organic anion transporter family has also been identified. At least one member (OAT1) shows relative high affinity for cGMP and is also expressed in brain. The biological significance of cGMP transporters has to be clarified. Their role in cGMP biokinetics, being responsible for one of the cellular elimination pathways, is well established. However, there is growing evidence that extracellular cGMP has effects on cell physiology and pathophysiology by an auto- or paracrine mechanism.  相似文献   

20.
Multidrug resistance protein 4 (MRP4/ABCC4), transports cyclic nucleoside monophosphates, nucleoside analog drugs, chemotherapeutic agents, and prostaglandins. In this study we characterize ATP hydrolysis by human MRP4 expressed in insect cells. MRP4 hydrolyzes ATP (Km, 0.62 mm), which is inhibited by orthovanadate and beryllium fluoride. However, unlike ATPase activity of P-glycoprotein, which is equally sensitive to both inhibitors, MRP4-ATPase is more sensitive to beryllium fluoride than to orthovanadate. 8-Azido[alpha-32P]ATP binds to MRP4 (concentration for half-maximal binding approximately 3 microm) and is displaced by ATP or by its non-hydrolyzable analog AMPPNP (concentrations for half-maximal inhibition of 13.3 and 308 microm). MRP4 substrates, the prostaglandins E1 and E2, stimulate ATP hydrolysis 2- to 3-fold but do not affect the Km for ATP. Several other substrates, azidothymidine, 9-(2-phosphonylmethoxyethyl)adenine, and methotrexate do not stimulate ATP hydrolysis but inhibit prostaglandin E2-stimulated ATP hydrolysis. Although both post-hydrolysis transition states MRP4.8-azido[alpha-32P]ADP.Vi and MRP4.8-azido[alpha-32P]ADP.beryllium fluoride can be generated, nucleotide trapping is approximately 4-fold higher with beryllium fluoride. The divalent cations Mg2+ and Mn2+ support comparable levels of nucleotide binding, hydrolysis, and trapping. However, Co2+ increases 8-azido[alpha-32P]ATP binding and beryllium fluoride-induced 8-azido[alpha-32P]ADP trapping but does not support steady-state ATP hydrolysis. ADP inhibits basal and prostaglandin E2-stimulated ATP hydrolysis (concentrations for half-maximal inhibition 0.19 and 0.25 mm, respectively) and beryllium fluoride-induced 8-azido[alpha-32P]ADP trapping, whereas Pi has no effect up to 20 mm. In aggregate, our results demonstrate that MRP4 exhibits substrate-stimulated ATP hydrolysis, and we propose a kinetic scheme suggesting that ADP release from the post-hydrolysis transition state may be the rate-limiting step during the catalytic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号