首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Four ruminally cannulated Holstein cows (BW 615 kg) in mid lactation were used to evaluate the effects of fibre level (39, 32, 28, 24 and 19% physically effective NDF [peNDF] in DM) in diets consisting of hay and slowly degradable concentrate on chewing activity, under a constant intake level (18 kg DM · d?1). The different dietary fibre concentrations were achieved by adjusting the hay to concentrate ratio. The above-mentioned levels of peNDF corresponded to 25, 40, 50, 60 and 70% concentrate respectively. The diets with decreasing share of concentrate were offered in sequence according to the progressive lactation of the cows. A decrease of the peNDF from 39 – 28% reduced total chewing and rumination time, total number of chews and number of boluses per day as well as chewing time spent per unit of DM. No significant change in chewing behaviour occurred between peNDF level of 28 and 24%. This peNDF level (i.e., 24%) might be considered as a tolerable fibre level. A further reduction of peNDF to 19% led to a significant reduction of chewing activity. This level can be considered as critical for chewing activity and presumably for the rumen health. The chewing parameters correlated linearly to fibre and non-fibre carbohydrates with R2 of 23 – 51%.  相似文献   

2.
Four multiparous ruminally cannulated Holstein cows (mean bodyweight [BW] 615 kg) in mid-lactation (103 days in milk and 32 kg milk x d(-1) at start of the experiment) were used in an one-factorial experiment to evaluate the effects of fibre level (19, 24, 28, 32 and 39% physically effective NDF [peNDF] in dry matter [DM]) in diets consisting of hay and slowly degradable concentrate on rumen fermentation patterns and digesta particle size, under a constant intake level (146 g DM x kg(-0.75). The different fibre concentrations in the diet were achieved by adjusting the hay to concentrate ratio. The above-mentioned levels of peNDF corresponded to 70, 60, 50, 40 and 25% concentrate in diet DM, respectively, and followed the lactation curve of the cows. The ruminal pH was positively and linearly correlated to the percentage of fibre (peNDF, NDF or CF) in ration DM with R2 of 0.76-0.88 (p < 0.001) for solid digesta (particle-associated rumen fluid, PARL), and R2 of 0.26-0.29 (p < 0.05) for fluid digesta (free rumen liquid, FRL). The lowest fibre level in the diet (19% peNDF) or the highest level of concentrate (70% on DM basis) caused pH values lower than 6.0 at almost all sampling times only in PARL but not in FRL, and significantly increased the proportion of large particles in rumen digesta, which in turn was reflected by a depression of fibre digestibility. A level of 24% peNDF or 60% concentrate in the diet maintained the ruminal pH higher than 6.0 and 5.8 in FRL and PARL, respectively. Therefore, the inclusion of more than 60% slowly degradable concentrate in dairy cows diets fed approximately 18 kg DM x d(-1) is discouraged. Based on the response of ruminal solid digesta to dietary fibre, it can be concluded that the recommendations of feeding a structural value > or =1 per kg DM (De Brabander et al. 1999) underestimated, and 400 g CF per 100 kg BW (Hoffmann 1990) overestimated the evaluation of structural effectiveness of the present diet.  相似文献   

3.
Dairy cows are commonly fed energy-dense diets with high proportions of concentrate feedstuffs to meet the increased energy needs of early lactation. However, feeding large amounts of concentrates may cause rumen acidosis and impact cow health. The hypothesis tested was that the energy supply and metabolic health of early-lactation Simmental cows can be maintained when high-quality hay rich in water-soluble carbohydrates (WSC) and crude protein (CP) is fed, despite the proportion of concentrates in the diet being reduced or even excluded. Twenty-four Simmental cows were allocated to one of four feeding groups beginning 10 d before the expected calving date, until 28 d thereafter. The feeding groups were 60CH (60% conventional fibre-rich hay plus 40% concentrate feed), 60HQH (60% high-quality hay plus 40% concentrate feed), 75HQH (75% high-quality hay plus 25% concentrate feed) and 100HQH (100% high-quality hay). The fibre-rich hay and high-quality hay differed in WSC content (110 g vs. 198 g of dry matter (DM)), neutral detergent fibre (646 g vs. 423 g of DM) and CP (65 g vs. 223 g of DM). Individual feed intake and milk production were monitored daily, and blood samples were collected weekly. Dry matter intake (DMI) and milk yield increased post partum, but 4 weeks post partum, the DMI of cows fed 100HQH only reached a daily mean DMI of 18.6 kg, whereas the DMI of the other groups averaged 21.9 kg (p < 0.046). The negative energy balance was less pronounced in cows fed 75HQH since they showed similar milk yields to the cows fed 60CH and 100HQH, but their energy intake was higher. Concentrations of milk components were similar across rations 60CH, 60HQH and 75HQH, as were most of blood parameters. Cows fed 100HQH responded to the energy deficit post partum with a higher ratio of non-esterified fatty acids to cholesterol and a higher concentration of ß-hydroxybutyrate (significant in comparison to cows fed 75HQH, p < 0.05). In conclusion, feeding high-quality hay with a WSC content of 20% in DM has the potential to decrease the proportion of concentrates in dairy cow feeding in early lactation, but cannot fully replace their supplementation due to a limited rumen capacity for forage intake.  相似文献   

4.
The aim of this study was to investigate the effects of high-quality hay with an elevated sugar content alone or with graded amounts of concentrate feed on chewing and ruminating activity, apparent total tract digestibility (ATTD) and ruminal pH at different time points after feeding in the free ruminal liquid (FRL) and the particle-associated ruminal liquid (PARL). Eight rumen cannulated non-lactating Holstein cows were arranged in a Latin square design in four experimental runs lasting 25 d each. The four diets tested were 60NQ (60% normal-quality hay + 40% concentrate), 60HQ (60% high-quality hay + 40% concentrate), 75HQ (75% high-quality hay + 25% concentrate) and 100HQ (100% high-quality hay). Normal and high-quality hays differed in sugar contents (11.3% vs. 18.7% in dry matter [DM]), neutral detergent fibre (NDF; 57.7% vs. 46.3% in DM), acid detergent fibre (ADF, 35.0% vs. 23.5% in DM) and crude protein (CP, 11.3% vs. 23.5% in DM). Data showed that ATTD of DM, CP, NDF and ADF was higher with the high-quality hay diets. Time spent eating was reduced with high-quality hay. However, time spent ruminating was longest in Group 100HQ. In all groups, ruminal pH of FRL and PARL decreased with time after the morning feeding. But 10 h later, pH of Group 100HQ was higher again compared with the other groups. Considering the average pH in FRL over all measured time points, cows in Groups 60NQ and 100HQ had higher pH values of 6.85 and 6.83, respectively. Regarding pH values in PARL, animals of Group 60NQ displayed the highest pH value (6.68), whereas the lowest value of 6.21 was found in Group 60HQ. Overall, results suggest that high-quality hay maintains the diet’s structural effectiveness by stimulating rumination and stabilising ruminal pH while greatly improving ATTD. However, the structural effectiveness of the high-quality hay gets impaired with increasing proportion of concentrate feed in the diet.  相似文献   

5.
The objective of this study was to evaluate in lactating cows the effect of either chopping or ensiling of wheat roughage on: intake, digestibility, lactation performance and animal behavior. Three groups of 14 lactating cows each, were fed total mixed rations (TMRs) based on either long wheat hay (HL), short wheat hay (HS) or wheat silage (SI), as the sole roughage source (30% of TMR dry matter (DM)). Parameters examined: sorting behavior, DM intake, milk yield and composition, rumination, recumbence, average daily rumen pH, digesta passage rate, and in-vivo digestibility. Performance data was summarized by day and analyzed using a proc-mixed model. The content of physically effective neutral detergent fiber (peNDF) was similar in the HL and SI and lower in the HS, resulting in similar differences among the three corresponding TMRs. In vitro DM digestibility of wheat silage was higher than that of the two hays (65.6% v. 62.8%) resulting in higher in vitro DM digestibility of the SI-TMR compared with the hay-based TMRs (79.3 v. 77.0%). HS-TMR was better than HL- or SI-TMRs at preventing feed sorting by cows after 12 or 24 h eating of the diets. Cows fed HS-TMR consumed more DM and NDF but less peNDF than the other two groups. Average daily rumen pH was similar in the three groups, but daily rumination time was highest in the cows fed HS-TMR. Rumen retention time was longest in cows fed HL-TMR. DM digestibility in cows fed SI-TMR was higher than that of HS and HL groups (65.2%, 61.8% and 62.4%, respectively), but NDF digestibility was similar in the three treatments. The highest intake of digestible DM was observed in cows fed SI-TMR, HS cows were intermediate and HL cows were the lowest. Consequently, cows fed SI-TMR had higher yields of milk, 4% fat corrected milk and energy-corrected milk (47.1, 42.9 and 43.2 kg/day, respectively) than cows fed HS-TMR (45.7, 41.0 and 41.0 kg/day, respectively) or HL-TMR (44.1, 40.3 and 40.3 kg/day, respectively). Net energy production (NEL+M+gain) per kg DM intake was highest in the SI-TMR, lowest in the HS-TMR and intermediate in the HL-TMR (1.52, 1.40 and 1.45, respectively). Animal welfare, as expressed in daily recumbence time and BW gain was similar in the SI and HS groups and higher than the HL cows.  相似文献   

6.
This study examined the effects on intake, diurnal rumen pH changes, rumination and digestibility of feeding ruminally cannulated non-lactating cows in a Latin square design (four cows×four periods) with four total mixed rations (TMRs) typical for lactating cows. TMRs were based on: long wheat hay or short wheat hay, wheat silage or wheat silage+1.5% NaHCO3 buffer, as the sole roughage source (30% of TMR dry matter (DM)). The level of physically effective NDF remaining above the 8 mm screen (peNDF) was similar in the long hay and silage-based TMRs (9.45% to 9.64% of DM) and lower in the short hay TMR (7.47% of DM). The four TMRs were offered individually at 95% of ad libitum intake to avoid orts within 24 h. Cows fed long hay consumed less DM than the short hay and silage groups (9.6 v. 10.5 and 10.8 kg/day, respectively) and sorted against large hay particles at 12 h post-feeding. Under the limitations of this study (non-lactating cows fed at restricted intake) short hay TMR prevented sorting within 12 h post-feeding, encouraged rumination per kg peNDF ingested, and had higher average rumen pH (6.24), whereas preventing sub acute ruminal acidosis (SARA, defined as pH<5.8 for at least 5 h/day). In contrast, the long hay and silage-based groups were under SARA. In vitro methane production of rumen fluid was higher in the hay-fed cows than in their silage-fed counterparts, and in all treatments lower at 1 h pre-feeding than at 6 h post-feeding. In vivo DM and NDF digestibility were similar for the short hay and silage TMRs, and higher than those of the long hay TMR. Under the conditions of this study, addition of 1.5% buffer to the wheat silage TMR had no effect on intake, rumen pH, creation of SARA and digestibility.  相似文献   

7.
The influence of fibre content of hay (H) and concentrate level (C) on local differences in the composition of ruminal digesta (ratio of solid to fluid digesta, DM, NDF, ADF and ADL content), particle size (MPL), specific gravity (SG) and fermentation (pH and concentrations of SCFA and bicarbonate) have been tested on two ruminally cannulated Friesian cows (520 kg BW) which were fed restricted, using individual cows as experimental units. Digesta samples were collected via cannula from three rumen layers: 5 to 10 cm (top) and 25-35 cm beneath the top of the particle mat (middle) and 5-10 cm above the rumen floor (bottom). For a main plot treatment (H x C), repeated samples were collected at four time intervals (1 h before and 2, 5 and 10 h after morning feeding) on each of two days. From top to bottom rumen the share of solid digesta mass (SM), DM and NDF contents of squeezed digesta fluid (SRF) and concentration of SCFA decreased (P < 0.05); pH and bicarbonate concentration increased (P < 0.05), while DM, NDF, ADF and ADL contents in SM, MPL and SG did not differ. Higher NDF content of hay (from 47-62%) increased SM, fibre fractions in SM, MPL, pH and concentration of bicarbonate in ruminal digesta, especially when 50% concentrate was given, while SG decreased. When the concentrate level was enhanced from 20 to 50%, digesta SM, MPL and the content of DM and NDF in SRF increased, while pH, concentrations of SCFA and acetate decreased when low-fibre hay was given. With longer time after feeding the digesta SM was reduced and fibre content in SM increased. The increase of the fibre content of hay reduced the possible negative effect of high concentrate level on the stratification of ruminal digesta. The decrease of the fibre content of hay promised better conditions for fibre digestion in the rumen when concentrate availability is limited.  相似文献   

8.
In order to study the main effects of particle size, three ruminally fistulated cows (550 to 580 kg BW) were fed a constant low concentrate level (3.56 kg DM/d, 20% of total DMI) and a fibre‐rich hay (approximately 60% NDF in DM) in long (28.7 mm), chopped (9.2 mm) and fine ground (2.9 mm) form in a 3 x 3 Latin square design. In another three factorial experiment with 8 wethers (4 animals were ruminally fistulated, mean BW = 68 kg) the main effects and interactions of the above mentioned hay particle sizes at two concentrate levels (10.4 to 13.3% and 29.5 to 40.1% of DMI, resp.) and two intake levels (restricted and ad libitum) were investigated. In comparison to long hay (28.7 mm), feeding of chopped hay (9.2 mm) at low concentrate levels, increased not only the hay intake (7% in dairy cows and 13% in sheep) but also the intake of digestible organic matter (12% in dairy cows and 32% in sheep), due to an increase in the apparent digestibility of OM by 3.8% in dairy cows and 8.2% in sheep. Ad libitum feeding of fine ground hay in combination with low concentrate amount in the ration increased the passage rate in the hindgut and consequently the hay intake, but not the intake of DOM, due to a significant depression of digestibility, especially of fibre fractions (4 to 7% in dairy cows and 4.5 to 14% in sheep), in comparison to 28.7 and 9.2 mm hay particle sizes. The digestibility decreased significantly with restricted feeding of fine ground hay in sheep only in comparison to 9.2 mm particle size. A threefold increase of concentrate amount levelled out all effects of the particle size reduction. The effect of particle size was more pronounced in sheep than in dairy cows.  相似文献   

9.
This study investigated effects of dietary forage particle size (PS) and concentrate level (CL) on fermentation profiles of particle-associated rumen liquid (PARL) and free rumen liquid (FRL), in vitro degradation characteristics and concentration of bacterial mass attached to the solid or fluid rumen digesta phase in dairy cows. The experiment was a 4 × 4 Latin square design with four late-lactation dairy cows in four 23 day periods. Cows were restrictively fed (17 kg dry matter (DM)/d) one of four diets varying in the theoretical PS (6 and 30 mm) of grass hay and in the levels (approximately 200 and 550 g/kg, DM basis) of a cereal-based concentrate. Proportion of large particles (>6 mm) and the content of structural fibre in the diet increased by reducing dietary CL and, particularly, by increasing hay PS. This effect was not reflected by changes in mean total volatile fatty acid concentration or pH in the rumen. However, cows fed high concentrate diets had pH of 5.28 and 5.37 in PARL at 3 h after the last meal, when fine or long chopped hay was offered. The low pH may indicate a depression of the capacity of PARL to degrade fibre in vitro. Gas production in vitro of concentrate increased with the high concentrate diet at 12 h, suggesting that amylolytic capacity was affected only in early phases of fermentation. In addition, elevating dietary CL appeared to shift ruminal fermentation outputs from propionate to butyrate and valerate. Inclusion of coarsely chopped hay to a high concentrate diet does not appear to bring advantages due to increased structure in restrictively fed dairy cows. In addition, results suggest that the response of pH in PARL is more sensitive to dietary changes (i.e., forage PS and CL) than the response in FRL, and so PARL might be better to evaluate the risk of ruminal disfunction in dairy cows.  相似文献   

10.
Chemical composition, digestibility, nutritive value and intake of hay from an agri-environmental management (EH) were compared with those from hay (Lolium perenne) from an intensive management (IH). IH was of low to moderate quality because of unfavourable weather conditions. EH was harvested mid-June of 2000 (EH1) and 2001 (EH2) on the same sward that had not received mineral fertilizer for 10 years. The EH was characterized by a species-rich botanical composition. On average, it had lower contents of protein (32%), NDF (9%) and ash (35%), and a higher concentration of water-soluble carbohydrates (117%) than IH. Digestibility of dry and organic matter, determined with sheep, was not different between IH and EH and averaged 59 and 63%, respectively. Crude fibre and NDF digestibility were lower in EH (58 and 57%, respectively) than in IH (70 and 69%, respectively). Net energy value for lactation did not differ between IH and EH and amounted to 4.78 MJ per kg DM. True protein digested in the small intestine and rumen degraded protein balance were lower in EH (63 and -60 g per kg DM) than in IH (71 and -33 g per kg DM). Intake of hay was investigated in Holstein-Friesian heifers and Belgian Blue double-muscled heifers (mean BW 280 +/- 22 kg and 269 +/- 21 kg, respectively), and in Belgian Blue non-lactating and non-pregnant double-muscled cows (initial BW 642 +/- 82 kg), using a cross-over design. Hay was freely available. It was supplemented with 1 kg concentrate daily. Dry matter intake from hay was higher for EH than for IH in heifers (4% and 13%, respectively in Holstein-Friesian and Belgian Blue heifers) and in cows (22%). Hay from an agri-environmental management may be used for low-performing animals, as energy intake only exceeded maintenance requirements by 20 to 35%. Several characteristics of EH were different between years, such as dry matter digestibility, net energy value for lactation and fermentable organic matter content.  相似文献   

11.
The influence of fibre content of hay (H) and concentrate level (C) on local differences in the composition of ruminal digesta (ratio of solid to fluid digesta, DM, NDF, ADF and ADL content), particle size (MPL), specific gravity (SG) and fermentation (pH and concentrations of SCFA and bicarbonate) have been tested on two ruminally cannulated Friesian cows (520?kg BW) which were fed restricted, using individual cows as experimental units. Digesta samples were collected via cannula from three rumen layers: 5 to 10?cm (top) and 25?–?35?cm beneath the top of the particle mat (middle) and 5?–?10?cm above the rumen floor (bottom). For a main plot treatment (H·C), repeated samples were collected at four time intervals (1?h before and 2, 5 and 10?h after morning feeding) on each of two days. From top to bottom rumen the share of solid digesta mass (SM), DM and NDF contents of squeezed digesta fluid (SRF) and concentration of SCFA decreased (P?P?相似文献   

12.
Wet corn gluten feed (WCGF) is a high moisture feed containing rapidly digestible, non-forage fiber and protein. The objective of this study was to investigate the effect of substituting WCGF and corn stover for alfalfa hay in total mixed ration (TMR) silage on lactation performance and nitrogen balance in dairy cows. Nine multiparous Holstein dairy cows (BW = 532 ± 28.9 kg and day in milk = 136 ± 5.6 d; mean ± SD) were used in a replicated 3 × 3 Latin square design with 21-d periods (14 d of diet adaption and 7 d of sample collection). Groups were balanced for parity, day in milk, and milk production and consumed one of three treatment diets during each period. The treatment diets were fed as TMR and contained similar concentrate mixtures and corn silage but different proportions of roughage and WCGF. The three treatments were: (1) 0% WCGF, 0% corn stover, and 22.1% alfalfa hay (0% WCGF); (2) 6.9% WCGF, 3.4% corn stover, and 11.8% alfalfa hay (7% WCGF); and (3) 13.3% WCGF, 4.9% corn stover, and 3.9% alfalfa hay (13.3% WCGF). Compared to the 0% WCGF diet, the cows fed the 7% and 13.3% WCGF diets had a higher milk yield and concentration of milk fat, protein, lactose, and total solids. Effective degradability of DM was higher in the cows fed the 7% and 13.3% WCGF diets than it was with the 0% WCGF diet. Cows fed the 13.3% WCGF had a higher CP effective degradability and a lower rumen undegraded protein than cows fed the 0% WCGF diet. The concentration of ruminal volatile fatty acids and ammonia-N was higher in cows fed the 7% and 13.3% WCGF diets than cows fed the 0% WCGF diet. The fecal N was lower in cows fed the 7% and 13.3% WCGF diets than it was in cows fed the 0% WCGF diet. Milk N secretion and milk N as a percent of N intake were higher in cows fed the 13.3% WCGF diet than cows fed the 0% and 7% WCGF diets. In conclusion, it appears that feeding a TMR silage containing WCGF and corn stover in combination, replacing a portion of alfalfa hay, may improve lactation performance and nitrogen utilization for lactating dairy cows.  相似文献   

13.
Daily voluntary intakes of feed by each of 89 Holstein cows were compared between day 220 of gestation and day 30 postpartum over a 21-month period. Diets designed to meet NRC requirements and which contained either chopped hay (29 cows), hay crop silage (HCS; 30 cows) or corn silage (CS; 30 cows) were compared prepartum (27 to 0 days), peripartum (1 day before to 3 days after calving) and postpartum (days 4 to 30 postpartum). Mixed rations, fed during lactation, were 60% forage and 40% concentrate dry matter (DM). Cow management was similar to commercial operations. The experimental hypothesis was that pre-disposition for partum and postpartum disorders (abnormal) could be related either to voluntary intake of different diets or to physical traits. Intakes (DM or estimated net energy) across diets decreased 30% between days 7 and 1 prepartum and averaged 18% and 20% lower peripartum and postpartum, respectively, in abnormal cows than in control cows. Seasonal effects on intakes were significant. In general, changes in body weight and condition and differences in udder edema and milk yield reflected intakes. The results support the original hypothesis.  相似文献   

14.
The protein nutrition of dairy cows is of great importance because of its direct influence on milk production, reproductive efficiency, and feeding cost. Eight first-lactation Holstein cows were randomly assigned to two contemporary 4 × 4 Latin squares in a 2 × 2 factorial design to evaluate the effects of replacing soybean meal with yeast-derived microbial protein (YMP) as a protein source (0% or 1.5% of dry matter (DM)) and its combination with slow-release urea (SRU; 0% or 0.75% of DM) on DM intake and milk production and composition, as well as blood parameters and nitrogen balance. Each experimental period lasted 28 days, with 21 days of adaptation and 7 days of data collection. The diets were formulated to attend the nutritional recommendations of the National Research Council and consisted of 49% forage (47% corn silage and 2% Tifton hay) and 51% concentrate, with 16.8% CP and 1.6 Mcal net energy for lactation/kg DM. For diets without YMP, the inclusion of SRU decreased DM intake, milk production as well as N intake and balance, but did not affect efficiency of production, milk composition or most of blood parameters. On the contrary, for diets with YMP, DM intake and milk production were increased by inclusion of SRU, while minor effects were observed for milk efficiency and composition, blood parameters as well as N intake, excretion and balance. When diets with SRU were compared, the inclusion of YMP increased DM intake, 4% fat-corrected milk, and N intake and balance (P<0.05), with no differences in milk production (kg/day), milk energy, efficiency of milk production or most of the blood parameters. For diets without SRU, YMP inclusion decreased DM intake, milk production, milk energy, N intake, fecal N and N balance (P<0.05), with no effects on milk efficiency and composition, or most of blood parameters. In conclusion, the use of YMP, SRU or both as partial substitutes of soybean meal in the diet of lactating cows has no negative effects on productivity parameters.  相似文献   

15.
Chemical composition, digestibility, nutritive value and intake of hay from an agri-environmental management (EH) were compared with those from hay (Lolium perenne) from an intensive management (IH). IH was of low to moderate quality because of unfavourable weather conditions. EH was harvested mid-June of 2000 (EH1) and 2001 (EH2) on the same sward that had not received mineral fertilizer for 10 years. The EH was characterized by a species-rich botanical composition. On average, it had lower contents of protein (32%), NDF (9%) and ash (35%), and a higher concentration of water-soluble carbohydrates (117%) than IH. Digestibility of dry and organic matter, determined with sheep, was not different between IH and EH and averaged 59 and 63%, respectively. Crude fibre and NDF digestibility were lower in EH (58 and 57%, respectively) than in IH (70 and 69%, respectively). Net energy value for lactation did not differ between IH and EH and amounted to 4.78 MJ per kg DM. True protein digested in the small intestine and rumen degraded protein balance were lower in EH (63 and ??60?g per kg DM) than in IH (71 and ??33?g per kg DM). Intake of hay was investigated in Holstein-Friesian heifers and Belgian Blue double-muscled heifers (mean BW 280?±?22?kg and 269?±?21?kg, respectively), and in Belgian Blue non-lactating and non-pregnant double-muscled cows (initial BW 642?±?82?kg), using a cross-over design. Hay was freely available. It was supplemented with 1?kg concentrate daily. Dry matter intake from hay was higher for EH than for IH in heifers (4% and 13%, respectively in Holstein-Friesian and Belgian Blue heifers) and in cows (22%). Hay from an agri-environmental management may be used for low-performing animals, as energy intake only exceeded maintenance requirements by 20 to 35%. Several characteristics of EH were different between years, such as dry matter digestibility, net energy value for lactation and fermentable organic matter content.  相似文献   

16.
The effect of the rate of increase in concentrate allowance after calving with two concentrate mixes (A and B) differing in composition was evaluated using 64 Finnish Ayrshire cows during the first 100 days of lactation. After calving, the concentrate allowance of multiparous cows was increased stepwise from 4 to 17 kg/day, and of primiparous cows from 3 to 13.5 kg/day over 12 days (F rate of increase; multiparous 1.08 kg/day, primiparous 0.88 kg/day) or 24 days (S rate of increase; mutiparous 0.54 kg/day, primiparous 0.44 kg/day). The concentrates were formulated to have similar crude protein and metabolizable energy concentrations but differing starch and NDF concentrations. For concentrate A the starch and NDF concentrations were 421 and 167 g/kg dry matter (DM) and for concentrate B 258 and 251 g/kg DM. All cows received grass silage ad libitum. The higher concentrate intake during weeks 1 to 4 of lactation with F compared with the S rate of increase caused higher DM, energy and protein intake. The higher concentrate intake for F than for S treatment in early lactation did not cause a large decrease in silage intake (8.8 v. 8.3 kg DM/day). The intake of concentrate A and B after calving did not differ for S treatment. However, for F treatment the intake of fibrous concentrate B increased faster than starch-rich concentrate A during weeks 1 to 4 of lactation. The concentrate composition had no effect on energy-corrected milk (ECM) yield during weeks 1 to 4 of lactation for S treatments, but with F treatments the cows fed B concentrate produced more milk. The F rate of increase in concentrate allowance compared with the S rate increased the calculated energy balance after calving. The rate of increase in concentrate feeding post partum or concentrate composition had no effect on DM, energy or protein intake during the whole 100-day experiment. The average ECM yield over days 1 to 100 of lactation was higher for S than for F treatments and tended to be higher with concentrate B than A. Results of this study showed that by the fast rate of increase in concentrate allowance after calving on a grass silage diet, it was possible to improve the energy status of the cows in early lactation. This had, however, no effect on production later in lactation.  相似文献   

17.
Biotin is involved in many vital metabolic pathways and must be provided for an efficient fermentation in the rumen, as well as for the intermediary metabolism of the host animal. Factors influencing ruminal biotin metabolism and output are widely unknown at present. Therefore, dairy cows fitted with permanent cannulas in the dorsal rumen and in the proximal duodenum were fed differently composed diets, and the biotin flow at the proximal duodenum was measured. The diets (on DM basis) consisted of 8.9 kg grass hay (Diet 1), 8.9 kg corn silage plus 2.0 kg concentrate (Diet 2), or 7.3 and 7.4 kg grass silage plus 10.0kg concentrate (Diets 3 and 4). The concentrate in Diets 3 and 4 contained 87% wheat and corn grain, respectively. The cows were pre-fed the rations for 21 days. Thereafter duodenal digesta was sampled every two h for 5 days. Cr2O3 served as a flow marker and the microbial proportion of total nitrogen at the duodenum was estimated by near infrared spectroscopy (NIRS). The duodenal flow of biotin was not related to biotin intake, but to the amount of fermented organic matter (FOM) and the amount of microbial protein (Biotin [mg/d] = 0.518 kg FOM - 0.300; r=0.85 and biotin [mg/d] = 0.012 x g microbial protein + 1.478; r = 0.84), irrespective of the composition of the diet fed. Mean daily biotin flow was 0.48 +/- 0.11 mg/kg FOM without any systematic effect of diet composition. The ruminal biotin balance, calculated as the difference between biotin flow at the duodenum and biotin intake, was positive (1.4 - 2.0 mg/d) in cows fed the mixed roughage/concentrate diets and negative (-0.71 mg/d) when the pure hay diet was fed.  相似文献   

18.
The aim of this study was to evaluate effects of partial replacement of neutral detergent soluble fibre (NDSF) for starch in diets varying in particle size (PS) of alfalfa hay on chewing activities, ruminal fermentation, nutrient digestibility and performance in mid-lactation dairy cows. Eight multiparous Holstein cows (146 ± 6.0 d in milk; 36.7 ± 2.57 kg milk/d) were used in a replicated 4 × 4 Latin square design with four 21 d periods with the last 7 d for data collection. The experiment was a 2 × 2 factorial arrangement with 2 levels of NDSF (low = 85 g/kg or high = 130 g/kg diet dry matter) each combined with 2 PS (short = 20 mm or long = 40 mm) of alfalfa hay. Results show that forage PS alone, or in combination with NDSF inclusion, had no effect on dry matter (DM) intake. Although total chewing, eating and ruminating times were not affected by treatments, eating time per kg of neutral detergent fibre (NDF) ingested was higher in long versus short alfalfa hay-based diets (P<0.05). Feeding long forage PS increased sorting of the diet against particles >19 mm, and in favor of those <8 mm (P<0.05). Feeding diets high in NDSF lowered DM intake (P<0.05), but increased apparent digestibility of all nutrients including NDF (P<0.05) independent of forage PS. Ruminal pH and concentrations of total volatile fatty acids were unaffected by dietary treatments, however the proportion of butyrate was higher in ruminal fluid of cows fed high NDSF diets (P<0.05). Changes in milk composition included lower milk crude protein content in high NDSF diets and higher lactose content for short hay-based diets (P<0.05). That milk yield and milk energy output were similar in low versus high NDSF diets suggests that high NDSF-fed cows had higher energy efficiency due to lower DM intake. Results suggest that, independent of forage PS, NDSF sources can be successfully included to partly replace starchy grains in diets exceeding minimum fibre recommendations.  相似文献   

19.
The objective of this study was to determine the effects of varying forage particle length on chewing activity, sorting behavior, rumen pH and rumen fill in late lactation and dry dairy cattle, fed rations with similar physically effective NDF but different mean particle length. Treatments consisted of three diets differing only in geometric mean length of forage: hay (5.40, 8.96 and 77.90 mm, for short (S), medium (M) and long (L) diets, respectively) for Experiment 1 (E1), and straw (10.16, 24.68 and 80.37 mm) for S, M and L diets, respectively, for Experiment 2 (E2). Hay or straw comprised the sole source of forage (50% and 75% of ration dry matter (DM) for E1 and E2, respectively). Both experiments used three rumen cannulated Holstein dairy cows, in late lactation for E1 and dry in E2, with 3 × 3 Latin square designs with 14 day periods. In E1, DM intake (DMI; 18.3 ± 2.1 kg/day; mean ± s.e.), pH (6.4 ± 0.1), time spent eating (280 ± 22.5 min/day), time spent ruminating (487 ± 17 min/day), and total time spent chewing (767 ± 34 min/day) were not different, whereas eating minutes per kilogram of DMI and NDF intake (NDFI) tended to increase linearly as forage length increased. Rumen digesta volume (l; 113.3 S, 117.8 M and 114.4 L ± 17.1) had a quadratic response, and rumen digesta weight tended to respond quadratically; however, differences were numerically small. In E2, DMI (8.3 ± 1.3 kg/day), pH (6.7 ± 0.1), time spent eating (236 ± 23.5 min/day), time spent ruminating (468 ± 45.2 min/day), total time spent chewing (704 ± 67.7 min/day) and minutes per kilogram NDFI were not different, whereas minutes per kilogram of DMI had a trend for a quadratic effect. Rumen digesta volume (111 ± 18.8 l) and weight (103 ± 17.4 kg) were not different. In both experiments, cows sorted against longer particles as determined by a particle length selection index; this behavior increased linearly as particle length increased. Greater forage particle length increased sorting behavior, but had no effect on rumen fermentation or chewing behavior.  相似文献   

20.
Cannulated beef cattle (four cows: 556 kg initial weight; four steers: 504 kg initial weight) were used in an experiment with two simultaneous Latin squares to determine effects of substituting alfalfa and(or) corn for vegetative bermudagrass (BER; 77% neutral detergent fibre and 5.5% acid detergent lignin) or mature bromegrass (BRO; 70% neutral detergent fibre and 6.6% acid detergent lignin) hay on digestion characteristics. For Controls, BER or BRO was fed at 1.32 or 1.54% body weight of cows and steers, respectively; other treatments entailed substitution for hay DM of alfalfa cubes (17%) or ground corn (33%). A protein supplement was given to all animals. In vitro neutral detergent fibre (NDF) digestion was slightly greater for BER than BRO. Supplement treatments did not affect the concentration of total volatile fatty acids or the molar proportion of propionate in ruminai fluid. True ruminai organic matter (OM) digestion was similar among diets; greater duodenal microbial OM flow and postruminal NDF digestion for BRO than BER diets were responsible for higher (P < 0.05) postruminal OM digestion for BRO diets. Supplement treatment did not affect duodenal microbial nitrogen flow or efficiency of microbial growth. Corn supplementation increased total tract OM digestion (P < 0.05). Alfalfa addition depressed total tract OM and NDF digestibilities more when added to BER than BRO; depressions in total tract NDF digestion with alfalfa and corn substitutions were additive. With constant DM intake, slightly less than ad libitum, alfalfa or corn substituted alone or together for hay did not improve characteristics of digestion by cattle consuming vegetative bermudagrass or mature bromegrass other than increased postruminal and total tract OM digestiblities with corn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号