首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The in vitro effect of colchicine or monensin upon sulfatide delivery from microsomes and perikarya of oligodendroglial cells and its further incorporation into myelin was studied using brain slices obtained from 18-day-old rats incubated during 20 min with [35S]sulfuric acid and reincubated for different times with unlabeled precursor. Labeled sulfatides were measured in a total homogenate, myelin, microsomes and perikarya of oligodendroglial cells. Neither colchicine nor monensin depressed the incorporation of [35S]sulfate into sulfatides of the total homogenate. However, these drugs inhibited by 50% the incorporation of labeled sulfatides into myelin. Furthermore, while the specific radioactivity present in microsomes and perikarya of oligodendroglial cells isolated from controls at 120 min decreased to about 40% of the value at 20 min, no decrease was observed in fractions obtained from slices incubated with colchicine or monensin. Similar results were obtained when the slices were incubated in “Ca2+ free” medium. The perturbed delivery of [35S]sulfatides from microsomes and perikarya of oligodendroglial cells and the diminished incorporation into myelin, in the presence of monensin and colchicine, are consistent with a possible involvement of the Golgi complex and of the cytoplasmic microtubules in the transport of sulfatides towards myelin. Moreover, the transport of these galactolipids appears to require calcium.  相似文献   

2.
The biosynthesis of myelin-associated glycolipids during various stages of myelination was studied by in vitro incorporation of [3H]Gal, [3H]Glc, or [35S]sulfate into the endoneurium of rat sciatic nerve. In the normal adult nerve, where the level of myelin assembly is substantially reduced and Schwann cells are principally involved in maintaining the existing myelin membrane, [3H]Gal was primarily incorporated into monogalactosyl diacylglycerol (MGDG) and the galactocerebrosides (GalCe) with lower levels of incorporation into the sulfatides. Such incorporation was enhanced 35 days after crush injury of the adult rat sciatic nerve, which is characterized by active myelin assembly. In contrast, at 35 days after permanent nerve transection where there is no axonal regeneration or myelin assembly, the incorporation of [3H]Gal or [3H]Glc into GalCe was nearly undetected whereas the incorporation of [3H]Gal into MGDG was completely inhibited. Instead, the 3H-labeled glycolipids in transected nerve were identified as the glucocerebrosides (GlcCe) and oligohexosylceramide derivatives with tetrahexosylceramide being a major product. In contrast, [35S]sulfate was incorporated into endoneurial sulfatides in the transected nerve, which suggests that endogenous GalCe rather than newly synthesized GalCe served as the substrate for the sulfotransferase reaction. The GlcCe homologues are not considered as constituents of the myelin membrane but are likely plasma membrane components synthesized in the absence of myelin assembly. It is likely that the cells responsible for GlcCe biosynthesis are Schwann cells, since they comprise 90% of the total endoneurial cell area in the distal nerve segment at 35 days after transection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Schwann cell biosynthesis of the major myelin glycoprotein, P0, was investigated in the crush-injured adult rat sciatic nerve, where there is myelin assembly, and in the permanently transected nerve, where there is no myelin assembly. Endoneurial fractions from desheathed rat sciatic nerves distal to the crush were compared with similar fractions from the permanently transected nerves at 7, 14, 21, 28, and 35 days after injury. The Schwann cell expression of this asparagine-linked glycoprotein was evaluated after sodium dodecyl sulfate-pore gradient electrophoresis by Coomassie Blue and silver stain and by autoradiography after direct overlay of radioiodinated lectins [wheat germ agglutinin, gorse agglutinin, and concanavalin A (Con A)]. As evaluated by these parameters, the concentration of P0 after crush decreased and subsequently increased as a function of time after injury, corresponding to the events of demyelination and remyelination. After permanent transection, the P0 concentration decreased following the same time course found after crush. At subsequent time points, P0 could not be detected with Coomassie Blue stain, silver stain, or wheat germ agglutinin. Both gorse agglutinin and Con A, however, showed binding to P0. Radioactive precursor incorporation studies with [3H]fucose or [3H]-mannose into endoneurial slices at 35 days posttransection revealed active oligosaccharide processing of P0 glycoprotein by Schwann cells in this permanent transection model. Compared with other Schwann cell glycoproteins in the transected nerve, the highest level of incorporation of [3H]mannose was found in P0 which accounted for 42.7% of the incorporated label. In contrast, incorporation of [3H]mannose into endoneurial slices at 35 days after crush accounted for only 13.3% in P0. In addition, higher levels of Con A binding were observed in P0 in the transected nerve compared with the contralateral control or the crushed nerve. Both the [3H]fucose incorporation and gorse agglutinin binding to P0 in the transected nerve suggest posttranslational processing of this glycoprotein in the Golgi apparatus; however, the absence of wheat germ agglutinin binding, the high level of mannose incorporation, and the high level of binding by Con A imply that additional processing steps are required prior to its assembly into myelin.  相似文献   

4.
Cultured rat Schwann cells transformed by Simian Virus 40 (SV40) have previously been shown to retain their ability to synthesize myelin-associated galactosylceramide and sulfatide. Little is known about the mechanism regulating galactosphingolipid synthesis in Schwann cells. We have found that growing the transformed Schwann cells in the presence of dimethyl sulfoxide (DMSO) markedly inhibits the incorporation of [35S]sulfate into sulfatide, in a time- and dose-dependent manner. The concentration of DMSO which resulted in a half-maximal inhibition after 6 days of incubation was 0.5%, and the incubation time required for a half-maximal effect at 1.0% DMSO was approximately 4 days. In contrast, DMSC did not affect the incorporation of [35S]sulfate into glycosaminoglycans. In addition, DMSO treatment has little effect on the synthesis of cellular DNA, proteins and lipids. When transformed Schwann cells were treated with DMSO, a substantial decrease in the incorporation of [3H]galactose into galactosylceramide was observed. The concentration of DMSO which resulted in a half-maximal inhibition of galactosylceramide synthesis was approximately 0.5%, similar to the concentration required for a similar effect on sulfatide synthesis. However, the incubation time required for a half-maximal inhibitory effect on galactosylceramide synthesis at 1.0% DMSO was less than 1 day, which was substantially shorter than the time required for the inhibition of sulfatide synthesis at this concentration. This finding is consistent with the interpretation that treatment with DMSO inhibits the synthesis of galactosylceramide, a precursor of sulfatide, which results in a decrease in the synthesis of sulfatide during a prolonged incubation of DMSO.  相似文献   

5.
A Fisher rat thyroid cell line was maintained in culture and the cells were labeled with [3H]glucosamine, [35S]sulfate, and [35S]cysteine to examine the synthesis of proteoglycans. 3H and 35S radioactivity from these precursors were incorporated into both chondroitin sulfate (CS) and heparan sulfate (HS) proteoglycans. CS proteoglycans were almost exclusively secreted into the medium while HS proteoglycans remained mainly associated with the cell layer. Single chain glycosaminoglycans released by papain digestion or alkaline borohydride treatment of either the CS or HS proteoglycans had average molecular weights of approximately 30,000 on Sepharose CL-6B chromatography. Both CS and HS proteoglycans were relatively small and contained only one or two glycosaminoglycans chains. 3H and 35S incorporation into both CS and HS proteoglycans were increased by thyroid-stimulating hormone (TSH) in a dose-dependent manner, which is in part explained by an adenylate cyclase-dependent mechanism as indicated by a similar effect in response to dibutyryl cAMP. TSH enhanced the incorporation of 35S into CS from [35S]cysteine about 1.5-fold and that from [35S]sulfate about 2-fold. This result demonstrated that the increased 35S incorporation from the [35S]sulfate precursor reflects an actual increase in sulfate incorporation and is not simply a result from an apparent increase in specific activity of the phosphoadenosine phosphosulfate donor. Analysis of disaccharides from chondroitinase digests revealed that the proportion of non-sulfated, 4-sulfated, and 6-sulfated disaccharides was not altered appreciably by TSH. These results, together with the disproportionate increase in 3H incorporation into CS from [3H]glucosamine, indicated that TSH increased the specific activity of the 3H label as well. Chase experiments revealed that CS proteoglycans were rapidly (t1/2 = 15 min) secreted into the medium and that the degradation of cell-associated proteoglycans was enhanced by TSH.  相似文献   

6.
There is conflicting evidence in the literature on the utilization of cysteine and methionine as precursors to the urinary sulfur-containing amino acid felinine in cats. Three entire domestic short-haired male cats, housed individually in metabolism cages, were injected intraperitoneally with either [35S]-sulfate, [35S]-cysteine, or [35S]-methionine. Daily urine samples were collected quantitatively for up to 9 days after injection. Each cat was injected once with each compound after observing an appropriate interval for [35S] to be depleted between injections. All the urine samples were analysed for felinine content and total radioactivity. Felinine was isolated from each urine sample and analysed for radioactivity. No radioactivity was found in felinine from cats injected with [35S]-sulfate. The mean (±S.E.M.) cumulative recovery of radioactivity in the urine of the [35S]-sulfate injected cats was 90.6±6.1% after 4 days. The mean (±S.E.M.) cumulative incorporation rate of radioactivity into felinine by the cats receiving the [35S]-cysteine and [35S]-methionine were 11.6±1.6 and 8.6±0.6%, respectively, after 9 days. The mean (±S.E.M.) cumulative recoveries of radioactivity in the urine were 58.1±3.7 and 36.0±8.0%, respectively. Cysteine and methionine, but not sulfate, are precursors to felinine, with cysteine being a more quantitatively important precursor compared to methionine.  相似文献   

7.
Effects of Monensin and Colchicine on Myelin Galactolipids   总被引:4,自引:4,他引:0  
Monensin and colchicine have been used in a variety of systems to disrupt functioning of the Golgi apparatus and transport of Golgi-derived vesicles to the plasma membrane. In this study the effects of monensin and colchicine on the synthesis of cerebroside and sulfatide and their appearance in myelin were examined to determine whether these myelin components are processed through the Golgi apparatus. Brain slices from rats 17 days old were incubated with [3H]galactose and [35S]-sulfate to label cerebroside and sulfatide. Myelin was isolated on sucrose density gradients. Fractions highly enriched in cerebroside and sulfatide were prepared from homogenates and myelin fractions by lipid extraction, alkaline methanolysis, and in some cases TLC. Monensin at 0.1 microM had no significant effect on synthesis of these galactolipids as measured by incorporation of [3H]-galactose into cerebroside or [35S]sulfate into sulfatide in homogenates. However, appearance of [35S]sulfatide in the myelin fraction was reduced to 49% of control, while appearance of [3H]cerebroside was not significantly reduced. Colchicine from 1 mM to 0.1 microM had effects similar to monensin, that is, appearance of [35S]sulfatide in myelin was depressed, but again [3H]cerebroside was not affected. Incorporation of [35S]sulfate into sulfatide in homogenate was 93% of control, while appearance of [35S]sulfatide in the myelin fraction was depressed to 58% of control. The inhibition of appearance of sulfatide in myelin by colchicine and monensin is consistent with the view that sulfation of cerebroside occurs in the Golgi and that sulfatide is transported via Golgi-derived vesicles to the forming myelin membrane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Confluent cultures of rat muscle fibroblastic cells respond by increased glycosaminoglycan (GAG) synthesis when cultured in medium containing a solubilized bone matrix fraction (SBM) at a concentration of 100 micrograms/ml. The metabolism of the GAG associated with the cell pellet, the cell surface and the tissue culture medium fractions was studied, in the presence and absence of SBM, by measuring the incorporation of radioactivity from [3H]glucosamine and [35S]SO4 into the isolated GAG. Net synthesis of hyaluronic acid and of chondroitin sulfate in the medium fraction increased more rapidly in cultures containing SBM compared to controls, and the accumulation of labelled GAG in the medium of the treated cultures was approximately linear with respect to the length of incubation. The addition of SBM also resulted in increased incorporation of 3H and of 35S into the GAG of the cell surface and cell pellet fractions. In these fractions, stimulation of incorporation of radioactivity occurred in two waves: an early, relatively minor increase and a later relatively major increase. The relatively major stimulation of radioactivity into the GAG of the cell surface fraction occurred between 24 and 48 h and was independent of any apparent effect of serum.  相似文献   

9.
We have studied the biosynthesis of rat gastric mucin in stomach segments using an antiserum against rat gastric mucin specific for peptide epitopes. Pulse-chase experiments were performed with [35S]methionine, [3H]galactose, and [35S]sulfate to label mucin precursors in different stages of biosynthesis, which were analyzed after immunoprecipitation. The earliest mucin precursor that could be detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was a 300-kDa protein. The occurrence of N-linked "high-mannose" oligosaccharides on this protein was shown by susceptibility to degradation by endo-beta-N-acetylglucosaminidase H. This precursor could be labeled with [35S]methionine and not with [3H]galactose or [35S]sulfate. The 300-kDa precursor was converted into mature mucin after extensive glycosylation and sulfation. The mature mucin but not the 300-kDa precursor was in part secreted into the medium. Specific inhibition of sulfation with sodium chlorate had no effect on rate and amount of mucin secretion. In addition, we show that two core proteins are expressed in rats, slightly varying in Mr among individual animals.  相似文献   

10.
R Krowke  P Berg  H J Merker 《Teratology》1977,15(2):137-147
The effects of cytosine arabinoside, 6-aminonicotinamide, and 6-mercaptopurine riboside on the incorporation of [14C] glucose moieties and [32P] phosphate into acid-soluble material and lipids, RNA, DNA, and protein were measured in the dissected mesoderm and ectoderm of mouse limb buds at the 42-45 (day 11) somite stage. Due to the different proliferative capacities of the two tissues the incorporation of the precursors into mesodermal cells was considerably higher the than into ectodermal ones. Cytosine arabinoside inhibited the incorporation of the precursor moieties only into DNA, but very early after its application. This effect was more obvious in mesoderm than ectoderm. 6-Aminonicotinamide interfered only with glucose metabolism, whereas the incorporation of phosphate was not affected. 14C radioactivity in the various cell components was similarly reduced in mesoderm and ectoderm. 6-mercaptopurine riboside caused an increased incorporation of precursor material in all fractions studied in the mesoderm as well as in the ectoderm during the first 12 hours. This was succeeded by a dramatic decrease of incorporated 14C and 32P radioactivity. Differences of response in the tissues could not be detected with this drug. It is suggested that the malformations of the extrmities caused by these antimetabolites may be predominantly attributed to changes in the cell function rather than to gross effects on cell metabolism.  相似文献   

11.
1. The metabolism of the sulphated glycosaminoglycan fraction in cultured skin fibroblasts derived from a patient with the Hurler syndrome and from a normal subject was studied. Two labelled precursors, Na(2) (35)SO(4) and d-[2-(3)H]glucose, were used and their intracellular fates during uptake and ;chase' periods were assessed after separation of sulphated glycosaminoglycans from hyaluronic acid. After 4 or 8h of exposure to culture medium containing both labels, [(35)S]sulphate incorporation into the sulphated glycosaminoglycan fraction was twofold greater in Hurler-syndrome cells than in normal cells. At the same time, the rate of incorporation of [(3)H]glucose into the sulphated glycosaminoglycan fraction was approximately the same for both cell types. Consequently, an increased (35)S/(3)H ratio (nmol of [(35)S]sulphate incorporated/nmol of [(3)H]glucose incorporated) was observed for Hurler-syndrome cells compared with normal cells. 2. The results of ;chase' experiments revealed that although the expected loss and relative retention of labelled sulphate occurred in the sulphated glycosaminoglycan fraction of normal and Hurler-syndrome cells, both cell types retained all of their radioactivity derived from [(3)H]glucose. 3. After 34h exposure to a ;corrective-factor' preparation from urine, the sulphated glycosaminoglycan content (as hexosamine and [(35)S]sulphate) of the Hurler-syndrome cells approached normal values. At the same time, there was an increase in specific radioactivity of ;corrected' Hurler-syndrome cells.  相似文献   

12.
The biosynthesis of myelin-associated glycolipids was studied in quiescent secondary cultures of Schwann cells and in a rapidly proliferating population of transfected Schwann cells (TSC) by in vitro incorporation of [3H]galactose. The TSC demonstrated a marked increase (>10-fold) in [3H]galactose incorporation when compared to quiescent Schwann cells. The level (or amount) of [3H]galactose incorporation into lipids is dependent upon the number of TSC in culture. The majority of3H-labeled lipids were oligohexosylceramides (GL-2, GL-3, and GL-4). Substrates that inhibit TSC proliferation, collagen type I and Matrigel, an artificial basement membrane, decrease the [3H]galactose incorporation by 25% and 80%, respectively. Our results indicate that the synthesis of glucocerebroside and its homologs is associated with Schwann cell proliferation.Abbreviations HPTLC high-performance thin-layer chromatography - TL total lipids - NL non-polar lipids - GL glycolipids - PL phospholipids - MGDG monogalactosyl diacylglycerol - GalCe galactocerebroside - GalCe-OH galacto hydroxycerebroside - GlcCe glucocerebroside - Su sulfatide - Su-OH hydroxysulfatide - GL-2 lactosylceramide - GL-3 trihexosylceramide - GL-4 tetrahexosylceramide - PE phosphatidylethanolamine - PC phosphatidylcholine - PS phosphatidylserine - PI phosphatidylinositol - TSC transfected Schwann cells A preliminary report of this work was presented at the 22nd Annual Meeting of the American Society for Neurochemistry, Charleston, South Carolina, March 13, 1991.  相似文献   

13.
The incorporation of the sulfur atom of 35S-labeled amino acids into thiamin in Escherichia coli and Saccharomyces cerevisiae was studied. The specific radioactivity of the S atoms was incorporated at similar levels into thiamin and cysteine residues in cell proteins. However, the specific radioactivity of the S atoms from [35S]methionine was not incorporated into thiamin but into methionine residues in cell proteins. Thus, the origin of the S atom of thiamin was established as being the S atom of cysteine. No activity from [U-14C]cysteine was recovered in thiamin, proving that the carbon skeleton of this amino acid was not utilized in synthesizing the thiazole moiety of thiamin.  相似文献   

14.
1. Administration of 10mug. of colchicine/pupa of the beetle Tenebrio molitor L. arrests its differentiation, the pupa remaining alive for 2-3 weeks. 2. The same concentration of colchicine inhibits DNA synthesis and stimulates RNA synthesis (as shown by incorporation into the nucleic acids of labelled adenine, labelled uridine and labelled thymidine). The effects of colchicine on nucleic acid metabolism are first detected 3 days after its administration to first-day pupae. 3. No effects of colchicine are seen on [1-(14)C]glycine incorporation into protein in vivo. 4. Relatively high concentrations of colchicine (e.g. 10mm) suppress incorporation of [8-(14)C]adenine into RNA in dorsal abdominal wall in vitro. Such concentrations have no effect on its incorporation into acid-soluble nucleotides. 5. Colchicine (1mm) suppresses incorporation of [8-(14)C]adenine into DNA to a greater extent than into RNA in various mammalian tissues in vitro (e.g. rat spleen, regenerating rat liver, rat embryo, guinea-pig intestinal mucosa, Ehrlich ascites cells). Colchicine (1mm) has no effect on the rate of respiration of, or on incorporation of radioactivity into acid-soluble nucleotides in, the mammalian tissues tested. 6. Further evidence indicates complex-formation between colchicine and DNA, and it is suggested that the effect of colchicine in suppressing DNA synthesis is due to its combination with the DNA primer (template).  相似文献   

15.
The effects of colchicine on the morphology, substrate adhesiveness, and production of glycosaminoglycan (GAG) macromolecules by cultured pre-capillary pulmonary endothelial cell were studied. Colchicine-treated cells demonstrated altered morphology and decreased substrate adhesiveness compared to untreated cells. In addition, [35S]sulfate incorporation into glycosaminoglycans was decreased 33% after treatment with colchicine. Spectrophotometric measurement of total cellular GAG revealed a similar GAG reduction in colchicine-treated cells. The composition of [35S]sulfate radiolabelled GAG was similar in cultures with and without colchicine, consisting of approximately 56% chondroitin sulfate and the remainder heparin/heparan sulfate. The results indicate that colchicine influences the biological behavior of pre-capillary endothelial cells, in part by altering the amount of glycosaminoglycan molecules produced.  相似文献   

16.
—Total proteins, free amino acids, tritiated water and subcellular proteins of mouse brain were examined for changes in radioactivity during operant conditioning after subcutaneous administration of labelled amino acids. The conditioning was based on appetitive learning, using sweetened milk as a reward. During training and incorporation for 20-30 min, both [3H]leucine and [1-14C]leucine underwent a significant increase in catabolism, resulting in a decreased radioactivity in the free amino acids. [2-2H]Methionine underwent a rapid loss of isotope, so that 90% of the radioactivity was in the form of tritiated water at the end of training, and this phenomenon masked any possible effect of training. The brain uptake of [35S]methionine increased during the training, resulting in an increased radioactivity in the proteins. Uptake of [3H]lysine increased slightly during training only after 1 h incorporation and not after 20 or 30 min, as judged from a time course of radioactivity in the free amino acids. Incorporation into nuclear proteins increased selectively during 20 min, and into nuclear and cytosol proteins after 60 min incorporations. It is concluded that changes in the observed rate of incorporation of a precursor into brain subcellular proteins under the influence of behaviour might be the result of changes in precursor catabolism or uptake, or both, and that each amino acid behaves in a different way. Even the same amino acid gives different results depending on the isotope and its position in the amino acid.  相似文献   

17.
The biosynthetic pathway of sulfoquinovosyldiacylglycerol (SQDG) was investigated using groundnut (Arachis hypogaea) leaf discs and 35S-labeled precursors. [35S]SO4(2-) was actively taken up by the leaf discs and rapidly incorporated into SQDG. After 2 h, 1.5% of the [35S]SO4(2-) added to the incubation medium was taken up, of which 28% was incorporated into SQDG. The methanol-water phases of the lipid extracts of the leaf discs were analyzed for the 35S-labeled intermediates. Up to 2 h of incubation, cysteic acid, 3-sulfopyruvate, 3-sulfolactate, 3-sulfolactaldehyde, and sulfoquinovose (SQ) which have been proposed as intermediates [Davies et al. (1966) Biochem. J. 98, 369-373] were not labeled. Only a negligible amount of radioactivity was observed in these compounds after incubation for 4 h and more. Addition of sodium molybdate inhibited the uptake of [35S]SO4(2-) as well as its incorporation into SQDG by the leaf discs, suggesting that 3'-phosphoadenosine-5'-phosphosulfate may be involved in the biosynthesis of SQDG. Addition of unlabeled cysteic acid to the incubation medium enhanced the uptake of [35S]SO4(2-) but did not affect its incorporation into SQDG. 35S-labeled cysteic acid was taken up by the leaf discs and metabolized to sulfoacetic acid but not incorporated into SQ or SQDG. These results show that cysteic acid is not an intermediate in SQDG biosynthesis. [35S]SQ was taken up by the leaf discs and incorporated into SQDG in a time-dependent manner. [35S]Sulfoquinovosylglycerol was also taken up by the leaf discs but not incorporated into SQDG. It is concluded that SQDG is not biosynthesized by the proposed sulfoglycolytic pathway in higher plants. Though [35S]SQ was converted to SQDG, the rates are much lower compared to [35S]SO4(2-) incorporation, which suggests that a more direct pathway involving sulfonation of a lipid precursor may exist in higher plants.  相似文献   

18.
To define the role of cytoplasmic microtubules in the biogenesis of plasmalemma glycoproteins of rat small-intestinal villus cells, we studied the effect of colchicine on the incorporation of L-[1,5,6-3H]fucose into Golgi, lateral basal and microvillus membranes. Colchicine was administered intraperitoneally before or after injection of radioactive fucose. The incorporation of radioactivity into Golgi membranes was little affected by colchicine, which did not prevent the redistribution of most of the labelled glycoproteins from the Golgi complex into other parts of the villus cell. The incorporation of labelled glycoproteins into the microvillus membrane was greatly inhibited by colchicine given 2 h or 10 min before the radioactive fucose: all labelled glycoproteins present in this membrane were equally affected. In contrast, the administration of colchicine considerably increased the incorporation of radioactivity into the lateral basal part of the plasmalemma, and prevented the disappearance of most of the labelled glycoproteins from this membrane at late times after fucose injection. These results suggest that cytoplasmic microtubular structures are important for the polarization of the intestinal villus cell and the biogenesis of the microvillus membrane, although playing little or no role in the movement of membrane components from the Golgi complex to the lateral basal part of the plasmalemma.  相似文献   

19.
Axonal regulation of Schwann cell glycolipid biosynthesis   总被引:2,自引:0,他引:2  
Schwann cell biosynthesis of glycolipids was studied by in vitro incorporation of [3H]galactose into neonatal rat sciatic nerves before and after endoneurial explant culture and in culture of purified Schwann cells. In neonatal nerves prior to culture, [3H]galactose was actively incorporated into galactocerebrosides (GalCe), monogalactosyl diacylglycerol (MGDG), and the sulfatides (Su). In contrast, the incorporation of [3H]galactose into MGDG, GalCe, and Su was nearly undetected in endoneurial explants after 4 days in vitro (div). Instead, there was increased3H-labeling of glucocerebrosides (GlcCe) and its homologues, with tetrahexosylceramides (GL-4) being a major product, which continued through 8 div. This shift in glycolipid biosynthesis was further demonstrated in the purified Schwann cell cultures. These observations, together with our early findings in the permanent transection paradigm support a direct role of axons in specifying Schwann cell biosynthesis of the GalCe, MGDG, and Su and that the absence of this Schwann cell-axon interaction results in the phenotypic expression of glucocerebroside homologues by the Schwann cell.Abbreviations HPTLC high-performance thin-layer chromatography - C cholesterol - MGDG monogalactosyl diacylglycerol - GlcCe glucocerebroside - GalCe galactocerebroside - GalCe-OH galacto hydroxycerebroside - Su sulfatide - Su-OH hydroxysulfatide - GL-2 lactosylceramide - GL-3 trihexosylceramide - GL-4 tetranexosyl ceramide - PE phosphatidylethanolamine - PI phosphatidylinositol - PS phosphatidylserine - PC phosphatidylcholine - NL nonpolar lipids A preliminary report of this work was presented at the 11th Meeting of the International Society for Neurochemistry and the 18th Meeting of the American Society for Neurochemistry, La Guaira, Venezuela, June 2, 1987.  相似文献   

20.
Abstract— Brain slices from 17 day rats were incubated with [3H]galactose and [35S]sulphate to label cerebroside and sulphatide. Myelin was isolated by centrifugation on a sucrose density gradient. Following lipid extraction and alkaline methanolysis, cerebroside and sulphatide were isolated by tic, and radioactivity was measured. Appearance of [3H]cerebroside and [3H]sulphatide in myelin showed a lag of less than 15min, while appearance of [35S]sulphatide in myelin showed a longer lag of about 30min. In chase experiments, the rate of appearance of [3H]cerebroside and [3SS]sulphatide in the non-myelin fraction and of [3H]cerebroside in the myelin fraction slowed markedly after the chase. In contrast, [35S]sulphatide continued to increase in myelin at a normal rate for 30min after the chase, then stopped, while 3H from galactose continued to accumulate in myelin sulphatides for 60 min. These data are interpreted to demonstrate an interval of 30 min between synthesis of cerebroside and its sulphation in the non-myelin fraction, and another delay of 30 min between sulphation and appearance in myelin. The distribution of newly synthesized cerebroside and sulphatide between myelin and non-myelin fractions also supported the concept that a complex metabolic pool of cerebroside in the non-myelin fraction is precursor to sulphatide of myelin. For comparison, entry of phosphatidyl choline and phosphatidyl ethanolamine into myelin was followed with [2-3H]glycerol as precursor. Like cerebroside, both phospholipids showed little delay in their initial appearance in myelin, and prompt cessation of their addition after a chase with unlabeled precursor. These results are consonant with either rapid entry of these three lipids into myelin after synthesis at an extra-myelin site, or synthesis of the lipids within myelin itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号