首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nipponosaurus sachalinensis is the only definitive lambeosaurine hadrosaurid from Sakhalin Island of Russia. Previous studies suggested it was a member of Lambeosaurini (derived lambeosaurines). However, its phylogenetic status within Lambeosaurini remains controversial. In addition, some studies argued the juvenile ontogenetic stage of the holotype and regarded Nipponosaurus as an invalid taxon. In order to solve these problems, its definite growth stage is determined through histological studies. Absence of a line of arrested growth, presence of osteons with large vascular spaces, and presence of primary bone remnants even in the highly modified regions of the femur confirm that the holotype was a juvenile. More than a hundred of the 350 characters used to determine the phylogenetic position of Nipponosaurus are ontogenetically variable characters based on the different ontogenetic stages of Hypacrosaurus stebingeri. Our phylogenetic analysis reveals that Nipponosaurus is a basal lambeosaurine hadrosaurid, much further down in the tree than previously suggested, and shows a polytomy with Blasisaurus and Arenyisaurus. This study also indicates that Nipponosaurus is a valid taxon because it possesses unique characters within the Lambeosaurinae (presence of massive surangular anterodorsal process, presence of lateral shelf of the dentary, and a relatively short ulna), which are independent of ontogeny.  相似文献   

2.
This research resulted from the determination that MCZ 8791 is a specimen of Deinonychus antirrhopus between one and two years of age and that the morphological variations within particular growth stages of this taxon have yet to be described. The primary goal of the research is to identify ontogenetic variations in this taxon. Histological analyses determined that the Deinonychus specimens AMNH 3015 and MOR 1178 were adults. Comparisons are made between MCZ 8791 and these adult specimens. The holotype, YPM 5205, and the other associated specimens of this taxon within the YPM collection are similar in size and morphology to AMNH 3015. Further comparisons were made with the three partial specimens OMNH 50268, MCZ 4371, and MOR 1182. Although these specimens represent only a partial ontogenetic series, a number of morphological variations can be described. One secondary goal of this research is to compare the known pattern of variable, informative, ontogenetic characters in MCZ 8791 to a similar pattern of morphological characters in the sub-adult dromaeosaurid specimen Bambiraptor feinbergorum, AMNH FR: 30556. If the characters that have been determined to represent variable juvenile morphology in the ontogeny of Deinonychus are exhibited in Bambiraptor, this study will begin the process of determining whether a similar, conservative, ontogenetic pattern exists throughout the rest of Dromaeosauridae. If defensible, it may reduce the number of sympatric taxa within this clade. The other secondary goal relates to the forelimb function. The approximate body size, forelimb length, wrist development, and the presence of a more prominent olecranon on the ulna of MCZ 8791 support the hypothesis that juveniles of this taxon possessed some form of flight capability.  相似文献   

3.
Phylogenetic taxonomy is applied for the systematization of a new Hesionidae , rather than the traditional Linnean system, with an apomorphy-based definition of the name and without reference to rank. It is argued that biological diversity is better represented without species concepts, but that it is useful to specify when a name refers to a smallest known clade which currently cannot be further subdivided; for this we apply the newly introduced concept LITU (Least-Inclusive Taxonomic Unit) for the new taxon. LITUs are made identifiable by being italicised with lower-case initial letter; all other taxon names are italicised with capital initial letter. The Hesionidae is accordingly named capricornia , new taxon, and was found in shallow water at One Tree Island, Capricorn Group, southernmost part of the Great Barrier Reef. capricornia is small (length < 2 mm), and exhibits a number of larval Hesionidae characters, but is characterized by large paired ventrally situated penes on segment 9 in adult males. A cladistic parsimony analysis based on morphological characters of capricornia and a selection of other Hesionidae indicates that it belongs within Gyptini Pleijel 1998, and is the sister group of Amphiduros Hartman (1959) .  相似文献   

4.
Acoel sperm characters proved useful in deciphering acoel taxonomy. The phylogenetic value of sperm characters in closely related sub-groups or in a monophyletic taxon has not yet been assessed. We have investigated sperm ultrastructure in seven members of the monophyletic taxon Childia sensu (Tekle et al. J Zool Sys Evol Res 43(1):72–90, 2005) and in their closest relatives, the Mecynostomidae (four taxa). All members of Childia examined show little variation in their sperm ultrastructure. The common characters of Childia taxa are: 9 + 1 axoneme structure, the presence of six distal cytoplasmic microtubules in the absence of axial or cortical ones, long nucleus and extensive nucleus–flagella overlap. We have identified a new set of cytoplasmic microtubules lying in the centriolar end of the sperm cell, distal microtubules. The origin and phylogenetic significance of this character is discussed. The types and arrangement of cytoplasmic granules could be used as phylogenetic characters at a low taxonomic level. A loose membrane amorphous core type of granule was found to be a synapomorphy for the following clade within the taxon Childia: C. crassum + C. groenlandica + C. vivipara + C. brachyposthium + C. macroposthium. Sausage shaped granules are plesiomorphic among the taxa examined. The rest of the granule characters were found to be homoplasious. Sperm ultrastructural characters have again proven their concordance with molecular phylogeny. The only morphological synapomorphies known for the sister taxa Childia–Mecynostomidae, in the molecular phylogeny, are characters derived from sperm ultrastructure: distal microtubules arranged in two groups of three microtubules each and a 9 + 1 axoneme structure. The spermatozoa of Childia and Mecynostomidae show 9 + 1 axoneme configuration, seemingly similar to the 9 + ‘1’ axoneme pattern of the Platyhelminthes—Trepaxonemata. Using electron-microscope immunocytochemistry, we have demonstrated that, unlike the central cylinder of trepaxonematans, the central cylinder of the 9 + 1 axonemal pattern in acoels is immunoreactive to tubulin and contains a single central microtubule. Therefore, the 9 + 1 patterns in acoels and trepaxonematans are homoplasious.  相似文献   

5.
Abstract. The muscid genus Thricops Rondani comprises forty‐four species and two subspecies restricted to the northern hemisphere. A species‐level phylogenetic analysis of Thricops was conducted using forty‐four morphological characters, 426 bp of the nuclear gene white and 523 bp spanning the 5′ end of the cytochrome c oxidase subunit I (COI), the tRNA leucine gene (L2 region) and the 3′ end of the cytochrome c oxidase subunit II (COII). Thirty‐nine species and two subspecies of Thricops were included in the analysis. Two species of Azelia Robineau‐Desvoidy and one species of Hydrotaea Robineau‐Desvoidy were used as outgroups. Morphological characters were coded for all included species, the mitochondrial gene fragment (COI + II) was sequenced for a subset of seventeen species of Thricops and three outgroup species, and white for twelve of those seventeen Thricops species and two outgroup species. Six separate maximum parsimony analyses were performed on three taxon sets of different sizes (n = 14, n = 20, n = 44). Results from the partition homogeneity test indicated no significant incongruence between data partitions, and four combined maximum parsimony analyses were conducted (DNA + morphology for n = 14; COI + II + morphology for n = 20; DNA + morphology for n = 20; DNA + morphology for n = 44). The relative contribution of each data partition to individual nodes was assessed using partitioned Bremer support. Strict consensus trees resulting from the unweighted analyses of each dataset are presented. Combination of datasets increased resolution for the small taxon set (n = 14), but not for the larger ones (n = 20, n = 44), most probably due to increasing amounts of missing data in the larger taxon sets. Results from both individual and combined analyses of the smaller taxon sets (n = 14, n = 20) provided support for the monophyly of Thricops and a complete division of the genus into two monophyletic subgroups. The strict consensus cladograms resulting from the analysis of the morphological data alone and the combined data for the large taxa set (n = 44) both supported the monophyly of the genus, but placed the species Thricops foveolatus (Zetterstedt) and Thricops bukowskii (Ringdahl) at the base of the ingroup, in a polytomy with a relatively well‐resolved branch comprising all remaining species of the genus. The basal position of these two species, included in the morphological taxon set but absent in the others, illustrates the potential pitfalls of taxon sampling and missing data in phylogenetic analyses. The synonymy of Alloeostylus with Thricops as proposed by previous authors was supported by our results. Relative contributions of different data partitions is discussed, with the mitochondrial sequence generally providing finer resolution and better branch support than white.  相似文献   

6.
The gadoid fishes Theragra finnmarchica from the coast of northern Norway and Theragra chalcogramma from the north‐east Pacific could not be taxonomically discriminated by sequencing the mitochondrial cytochrome c oxidase I (COI) gene. However, the taxa differed in 10 of 42 non‐osteological and in four of 17 osteological characters. Ontogenetic changes were found for 16 of the examined non‐osteological characters. Five taxon‐specific characters, unaffected by ontogenetic scaling, were examined by discriminant analysis. A 100% correct classification was obtained from a discriminant function based on number of pyloric caeca and number of gill rakers on the upper part of the gill arch. However, all examined characters overlapped between the two taxa, except the number of pyloric caeca. On the basis of their genetic similarity and slight morphological differences, T. finnmarchica should be considered a junior synonym of T. chalcogramma.  相似文献   

7.
Herein we describe a new rhynchocephalian taxon from the Middle Jurassic of Patagonia, Argentina, representing the first Jurassic record of the group in South America. The new taxon, consisting of a complete dentary, is ascribed to Sphenodontia based on the presence of a deep and wide Meckelian groove, long posterior process, well‐developed coronoid process, and acrodont teeth showing dental regionalization including successional, alternate hatchling, and additional series. This allocation is reinforced by a phylogenetic analysis that places the new taxon in a basal position within a clade of sphenodontians that excludes Diphydontosaurus and Planocephalosaurus. Additionally, the new taxon clusters within a Gondwanan clade with the Indian Godavarisaurus from the Jurassic Kota Formation, sharing the presence of recurved and relatively large posterior successional teeth that are ribbed and bear a peculiar anterolingual groove. This sister‐group relationship is intriguing from a palaeobiogeographical viewpoint, as it suggests some degree of endemism during the initial stages of the breakup of Pangaea. We also discuss the ontogenetic stage of the new taxon and provide insights on the evolution of successional dentition in rhynchocephalians. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 342–360.  相似文献   

8.
Previous attempts to resolve plesiosaurian phylogeny are reviewed and a new phylogenetic data set of 66 taxa (67% of ingroup taxa examined directly) and 178 characters (eight new) is presented. We recover two key novel results: a monophyletic Plesiosauridae comprising Plesiosaurus dolichodeirus, Hydrorion brachypterygius, Microcleidus homalospondylus, Occitanosaurus tournemirensis and Seeleyosaurus guilelmiimperatoris; and five plesiosaurian taxa recovered outside the split between Plesiosauroidea and Pliosauroidea. These taxa are Attenborosaurus conybeari, ‘Plesiosaurusmacrocephalus and a clade comprising Archaeonectrus rostratus, Macroplata tenuiceps and BMNH 49202. Based on this result, a new name, Neoplesiosauria, is erected for the clade comprising Plesiosauroidea and Pliosauroidea. Taxon subsamples of the new dataset are used to simulate previous investigations of global plesiosaurian relationships. Based on these simulations, most major differences between previous global phylogenetic hypotheses can be attributed to differences in taxon sampling. These include the position of Leptocleididae and Polycotylidae and the monophyly or paraphyly of Rhomaleosauridae. On this basis we favour the results recovered by our, larger analysis. Leptocleididae and Polycotylidae are sister taxa, forming a monophyletic clade within Plesiosauroidea, indicating that the large‐headed, short‐necked ‘pliosauromorph’ body plan evolved twice within Plesiosauria. Rhomaleosauridae forms the monophyletic sister taxon of Pliosauridae within Pliosauroidea. Problems are identified with previous phylogenetic definitions of plesiosaurian clades and new, stem‐based definitions are presented that should maintain their integrity over a range of phylogenetic hypotheses. New, rank‐free clade names Cryptoclidia and Leptocleidia are erected to replace the superfamilies Cryptoclidoidea and Leptocleidoidea. These were problematic as they were nested within the superfamily Plesiosauroidea. The incongruence length difference test indicates no significant difference in levels of homoplasy between cranial and postcranial characters.  相似文献   

9.
Allium purpureoviride M. Koyuncu & ?. Genç (sect. Melanocrommyum) is described as a new species from east Anatolia, Turkey. The new species is closely related to A. rothii Zucc. from Israel and some characters of the new taxon show similarity with A. cyrilli Ten. and A. asclepiadeum Bornm. The morphological characters of the related taxa are discussed and the distribution of the taxa is mapped. The diploid chromosome number is 2n = 16.  相似文献   

10.
Heterochrony produces morphological change with effects in shape, size, and/or timing of developmental events of a trait related to an ancestral ontogeny. This paper analyzes heterochrony during the ontogeny of Ceratophryinae (Ceratophrys, Chacophrys, and Lepidobatrachus), a monophyletic group of South American frogs with larval development, and uses different approaches to explore their morphological evolution: (1) inferences of ancestral ontogenies and heterochronic variation from a cladistic analysis based on 102 morphological larval and adult characters recorded in ten anuran taxa; (2) comparisons of size, morphological variation, and timing (age) of developmental events based on a study of ontogenetic series of ceratophryines, Telmatobius atacamensis, and Pseudis platensis. We found Chacophrys as the basal taxon. Ceratophrys and Lepidobatrachus share most derived larval features resulting from heterochrony. Ceratophryines share high rates of larval development, but differ in rates of postmetamorphic growth. The ontogeny of Lepidobatrachus exhibits peramorphic traits produced by the early onset of metamorphic transformations that are integrated in an unusual larval morphology. This study represents an integrative examination of shape, size, and age variation, and discusses evolutionary patterns of metamorphosis. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 752–780.  相似文献   

11.
12.
Phylogeny and classification of Hesionidae (Polychaeta)   总被引:3,自引:1,他引:2  
  相似文献   

13.
The cranial anatomy of the helmet‐crested lambeosaurine Hypacrosaurus altispinus (Ornithischia: Hadrosauridae) is described, with a focus on ontogenetic and individual variation in phylogenetically significant characters of the cranial crest, braincase, and facial skeleton. Cranial material of H. altispinus represents a relatively complete growth series that includes crestless juveniles of less than half the size of large individuals with fully developed crests. Cranial ontogeny is compared with other lambeosaurines using bivariate morphometrics and through qualitative comparison of a size‐standardized cranial growth series. Bivariate analyses reveal that the relative growth of the skull and cranial crest of H. altispinus and H. stebingeri are similar, and that Hypacrosaurus more closely resembles Corythosaurus than Lambeosaurus. Hypacrosaurus altispinus is systematically revised. The taxon is characterized by five autapomorphies, most of which are concentrated in the skull, as well as an enlarged terminal ischial foot. Maximum parsimony and Bayesian likelihood (Mk+gamma) phylogenetic analyses were conducted to test the monophyly of the genus. Hypacrosaurus monophyly is corroborated in light of new anatomical data. Although H. stebingeri and H. altispinus share few derived characters of the skull, the hypothesis that H. stebingeri is a metaspecies that represents the ancestor of H. altispinus cannot be rejected. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159 , 398–434.  相似文献   

14.
Several recent studies using analyses of morphological characters have addressed the interrelationships of Osteoglossomorpha, a group that sometimes is considered the living sister group of all other living teleosts. Many characters used in these studies were found to be poorly defined, to be coded incorrectly or illogically, or to display more variation than was described. The goal of this study is to address these concerns and contribute generally to knowledge of the morphology and systematic relationships of osteoglossomorphs. Analysis of 72 characters (65 informative) scored for 20 genera resulted in two most parsimonious cladograms (171 steps, CI = 0.6433, CI = 0.6139 excluding uninformative characters, HI = 0.3977, HI = 0.3861 excluding uninformative characters; RI = 0.7782; RC = 0.5006). Osteoglossomorpha is supported by both synapomorphies and homoplasies, although its monophyly was not truly tested in this analysis (only a single outgroup, Elops , was included in the analysis). The only difference in the topologies of these cladograms is in the position of ?Lycoptera (recovered as either the sister group of all other osteoglossomorphs sampled or of ?Eohiodon +Hiodon ). ?Ostariostoma is recovered as the sister group of all non‐hiodontiform osteoglossomorphs. Mormyrids are the sister group of notopterids + osteoglossids. This clade has not been found in other recent analyses. Mormyrids and notopterids usually are considered more closely related to each other than to any other group; characters not included here support this relationship and future consideration of these characters must be made. Although almost completely dichotomous, many nodes of the resulting trees lack rigorous support. For example, ?Palaeonotopterus is interpreted as the sister group of all mormyrids sampled, although for this taxon only 22% of characters could be scored. © 2003 The Linnean Society of London. Zoological Journal of the Linnean Society , 2003, 137 , 1?100.  相似文献   

15.
An hypothesis of phylogenetic relationships of Asilidae and its constituent taxa is presented, combining morphological and DNA sequence data in a total evidence framework. It is based on 77 robber fly species, 11 Asiloidea outgroup species, 211 morphological characters of the adult fly, and approximately 7300 bp of nuclear DNA from five genes (18S and 28S rDNA, AATS, CAD, and EF-1α protein-encoding DNA). The equally weighted, simultaneous parsimony analysis under dynamic homology in POY resulted in a single most parsimonious cladogram with a cost of 27,582 (iterative pass optimization; 27,703 under regular direct optimization). Six of the 12 included subfamily taxa are recovered as monophyletic. Trigonomiminae, previously always considered as monophyletic based on morphology, is shown to be non-monophyletic. Two of the three Trigonomiminae genera, Holcocephala Jaennicke, 1867 and Rhipidocephala Hermann, 1926, group unexpectedly as the sister taxon to all other Asilidae. Laphriinae, previously seen in the latter position, is the sister group of the remaining Asilidae. Five other subfamily taxa, i.e. Brachyrhopalinae, Dasypogoninae, Stenopogoninae, Tillobromatinae, and Willistonininae, are also shown to be non-monophyletic. The phylogenetic relationships among the higher-level taxa are partly at odds with findings of a recently published morphological study based on more extensive taxon sampling. The total evidence hypothesis is considered as the most informative one, but the respective topologies from the total-evidence, morphology-only, and molecular-only analyses are compared and contrasted in order to discuss the signals from morphological versus molecular data, and to analyze whether the molecular data outcompete the fewer morphological characters. A clade Apioceridae+Mydidae is corroborated as the sister taxon to Asilidae.  相似文献   

16.
17.
Megalosaurus bucklandii (Dinosauria: Theropoda), the oldest named dinosaur taxon, from the Bathonian (Middle Jurassic) of England, is a valid taxon diagnosed by a unique character combination of the lectotype dentary. Abundant referred material is described and several autapomorphies are identified: ventral surfaces of first and third to fifth sacral centra evenly rounded, ventral surface of second sacral centrum bearing longitudinal, angular ridge; dorsally directed flange around midheight on the scapular blade; an array of posterodorsally inclined grooves on the lateral surface of the median iliac ridge; anteroposteriorly thick ischial apron with an almost flat medial surface; and complementary groove and ridge structures on the articular surfaces between metatarsals II and III. A new phylogenetic analysis focuses on basal tetanurans and includes 41 taxa, six of which have never been included in a cladistic analysis, and 213 characters, 29 of which are new. This is the first phylogenetic analysis to focus on basal tetanuran relationships, and it reveals several new results. Megalosauroidea (= Spinosauroidea) includes two clades, basal to the traditional content of Megalosauridae + Spinosauridae. These comprise Xuanhanosaurus, Marshosaurus, Condorraptor + Piatnitzkysaurus and Chuandongocoelurus + Monolophosaurus. Almost all large‐bodied Middle Jurassic theropods are megalosauroids, but Poekilopleuron is an allosauroid. Megalosauroids show geographical differentiation among clades, indicating the development of endemic theropod faunas across Pangaea during the Middle Jurassic. Notably, megalosaurids are not known from outside of Europe during this epoch. Megalosauroids are less diverse and abundant during the Late Jurassic, when most theropods are neotetanurans and allosauroids dominate the large‐bodied predator niche. This indicates faunal turnover between the Middle and Late Jurassic. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 882–935.  相似文献   

18.
PACT: an efficient and powerful algorithm for generating area cladograms   总被引:2,自引:1,他引:1  
Aim To introduce and describe the functioning of a new algorithm, phylogenetic analysis for comparing trees (PACT), for generating area cladograms that provide accurate representation of information contained in taxon–area cladograms. Methods PACT operates in the following steps. Convert all phylogenies to taxon–area cladograms. Convert all taxon–area cladograms to Venn diagrams. Choose any taxon–area cladogram from the set of taxon–area cladograms to be analysed and determine its elements. This will be the template area cladogram. Select a second taxon–area cladogram. Determine its elements. Document which elements in the second tree occur in the template tree (denoted by ‘Y’) and which do not (denoted by ‘N’). Each ‘Y’ indicates a match with previous pattern and these are combined. Each ‘N’ is a new element and is attached to the template area cladogram at the node where it is linked with a Y. This requires two rules: (1) ‘Y + Y = Y’ (combine common elements) as long as they are connected at the same node; and (2) ‘Y + N = YN’ (add novel elements to the template area cladogram at the node where they first appear). Once the novel elements in the second taxon–area cladogram have been added to the template area cladogram, see if any of them can be further combined. This requires three additional rules: (1) ‘Y(Y? = Y(Y?’ (do not combine Y's if they are attached at different nodes on the template area cladogram); (2) ‘Y + YN = YN’ (Y is part of group YN); and (3) ‘YN + YN = YNN’ (Y is the same for each, but each N is different). Repeat for all available taxon–area cladograms. Results Three exemplars demonstrate that PACT provides the most accurate area cladograms for vicariance‐driven biotic diversification, dispersal‐driven biotic diversification and taxon pulse‐driven biotic diversification. PACT can also be used as an a priori method of biogeographical analysis. Main conclusions PACT embodies all the strong points and none of the weaknesses of previously proposed methods of historical biogeography. It is most useful as an a posteriori method, but it is also superior to all previous a priori methods because it does not specify costs, or weights or probabilities, or likelihoods of particular biogeographical processes a priori and is thus sensitive to clade‐specific historical contingencies.  相似文献   

19.
Phylogenetic analysis of the Malacostraca (Crustacea)   总被引:13,自引:0,他引:13  
The Malacostraca comprises about 28 000 species with a broad disparity in morphology, anatomy, embryology, behaviour and ecology. The phylogenetic relationships of the major taxa are still under debate. Is the Leptostraca the sister group of the remaining Malacostraca, or is this taxon more closely related to other Crustacea? Does the Stomatopoda or the Bathynellacea represent the most basal taxon within the remaining taxa? Is the Peracarida monophyletic or are some peracarid taxa more closely related to other ‘caridoid’ taxa? Is the Thermosbaenacea part of the Peracarida or its sister group, and how much support is there for a taxon Amphipoda + Isopoda? To answer these questions a phylogenetic analysis of the Malacostraca combining different phylogenetic approaches was undertaken. In a first step, the monophyly of the Malacostraca including the Leptostraca is shown using the ‘Hennigian approach’. A computer cladistic analysis of the Malacostraca was carried out with NONA and PEE ‐WEE , based on 93 characters from morphology, anatomy and embryology. Nineteen higher malacostracan taxa are included in our analysis. Taxa whose representatives are exclusively fossils were not included. The Leptostraca was used as an operational out‐group. The present analysis supports the basal position of the Stomatopoda. Syncarida and Peracarida (including Thermosbaenacea) are supported as monophyletic, the Eucarida is not. Instead a sister‐group relationship is suggested between Euphausiacea and Peracarida (including Thermosbaenacea), with the Syncarida as the sister group to both taxa. Certain embryonic characters are interpreted as support for the monophyly of the Peracarida (without Thermosbaenacea) because convergences or reversals of these characters seem implausible. Within the Peracarida, the Mysidacea (Lophogastrida + Mysida) represents the sister group to the remaining taxa. A sister‐group relationship between Amphipoda and Isopoda is not supported.  相似文献   

20.
The phylogenetic relationships of species attributed to the ornithopod family Hypsilophodontidae are evaluated using morphological characters from the skull, dentition, and postcranium. Based on our analyses, Hypsilophodontidae constitutes a monophyletic taxon that comprises the sister taxon to Iguanodontia, together forming Euornithopoda. Three clades within the family are consistently demonstrated: Zephyrosaurus schaff+Orodromeus makelai, Parksosaurus warreni+Hypsilophodon foxii and Yandusaurus hongheensis+Othnielia rex. Thescelosaurus neglectus is the sister taxon to these six genera and constitutes the basal hypsilophodontid. Tenontosaurus tilletti is the basal member of Iguanodontia, with species of Dryosaurus and Camptosaurus as higher taxa within the clade. To understand the effects missing data may have on tree topology, tree length, and consistency indices, poorly represented characters were secondarily removed from the character matrix. In these analyses, all relationships remain stable, but tree length and consistency index decrease with increasingly more complete culled data sets. An average of 42.5 million years is accumulated as minimal divergence time for the hypsilophodontid and basal iguanodontian relationships described here. These figures underscore the large amount of hypsilophodontid evolution yet unaccounted for in the fossil record.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号