首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined oxygen consumption by lung slices and measured the volume density of mitochondria of granular pneumocytes, alveolar type I cells, and alveolar capillary endothelial cells in several species. We found that lung oxygen consumption (mu-1 02 times h-1 times mg DNA-1) varies inversely with the log of animal body weight and with the species alveolar diameter and directly with the species respiratory rate. The volume density of granular pneumocyte mitochondria show a direct linear correlation with the lung's oxygen consumption and the species respiratory rate, and an inverse linear correlation with the species alveolar diameter. The volume density of mitochondria in type I alveolar epithelial cells and capillary endothelial cells, considered together, did not differ in the two species studied (mouse and rat). We conclude that there are interspecies differences in oxygen consumption by lung cells and that granular pneumocytes contribute to these differences. We suggest that, at least part of these differences, are related to interspecies differences in surfactant secretory activity.  相似文献   

2.
A balance sheet describing the integrated homeostasis of secretion, absorption, and surface movement of liquids on pulmonary surfaces has remained elusive. It remains unclear whether the alveolus exhibits an intra-alveolar ion/liquid transport physiology or whether it secretes ions/liquid that may communicate with airway surfaces. Studies employing isolated human alveolar type II (AT2) cells were utilized to investigate this question. Human AT2 cells exhibited both epithelial Na+ channel-mediated Na+ absorption and cystic fibrosis transmembrane conductance regulator-mediated Cl secretion, both significantly regulated by extracellular nucleotides. In addition, we observed in normal AT2 cells an absence of cystic fibrosis transmembrane conductance regulator regulation of epithelial Na+ channel activity and an absence of expression/activity of reported calcium-activated chloride channels (TMEM16A, Bestrophin-1, ClC2, and SLC26A9), both features strikingly different from normal airway epithelial cells. Measurements of alveolar surface liquid volume revealed that normal AT2 cells: 1) achieved an extracellular nucleotide concentration-dependent steady state alveolar surface liquid height of ∼4 μm in vitro; 2) absorbed liquid when the lumen was flooded; and 3) secreted liquid when treated with UTP or forskolin or subjected to cyclic compressive stresses mimicking tidal breathing. Collectively, our studies suggest that human AT2 cells in vitro have the capacity to absorb or secrete liquid in response to local alveolar conditions.  相似文献   

3.
There is little information regarding the effect of hypoxia on alveolar fluid clearance capacity. We measured alveolar fluid clearance, lung water volume, plasma catecholamine concentrations, and serum osmolality in rats exposed to 10% oxygen for up to 120 h and explored the mechanisms responsible for the increase in alveolar fluid clearance. The principal results were 1) alveolar fluid clearance did not change for 48 h and then increased between 72 and 120 h of exposure to hypoxia; 2) although nutritional impairment during hypoxia decreased basal alveolar fluid clearance, endogenous norepinephrine increased net alveolar fluid clearance; 3) the changes of lung water volume and serum osmolality were not associated with those of alveolar fluid clearance; 4) an administration of beta-adrenergic agonists further increased alveolar fluid clearance; and 5) alveolar fluid clearance returned to normal within 24 h of reoxygenation after hypoxia. In conclusion, alveolar epithelial fluid transport capacity increases in rats exposed to hypoxia. It is likely that a combination of endogenous norepinephrine and nutritional impairment regulates alveolar fluid clearance under hypoxic conditions.  相似文献   

4.
The lung's only known essential function is to provide sufficient alveolar surface to meet the organism's need for oxygen and elimination of CO(2). The importance of the magnitude of alveolar surface area (Sa) to O(2) uptake (VO(2)) is supported by the presence among mammals of a direct linear relationship between Sa and VO(2). This match has been achieved, despite the higher body mass-specific VO(2) of small organisms compared with large, by a greater subdivision of alveolar surface, not by a larger relative lung volume in small organisms. This highly conserved relationship between alveolar architecture and VO(2) suggests the presence of similarly conserved mechanisms that control the onset, rate, and cessation of alveolus formation and alveolar size, which are also influenced by retinoids and thyroid and corticosteroid hormones. Furthermore, the "call for oxygen" is met at a breathing rate and tidal volume at which the work of breathing is lowest. Thus there is a complex, fascinating, but poorly understood, signaling relationship among VO(2), the neural regulation of breathing, and lung architecture, composition, and mechanics.  相似文献   

5.
Osteoporosis and periodontal disease (PD) are frequently associated in the elderly, both concurring to the loss of jaw alveolar bone and finally of teeth. Bisphosphonates improve alveolar bone loss but have also been associated with osteonecrosis of the jaw (ONJ), particularly using oncological doses of zoledronate. The effects and therapeutic margin of zoledronate on jaw bone therefore remain uncertain. We reappraised the efficacy and safety of Zoledronate (Zol) in ovariectomized (OVX) periostin (Postn)-deficient mice, a unique genetic model of systemic and jaw osteopenia. Compared to vehicle, Zol 1M (100 µg/kg/month) and Zol 1W (100 µg/kg/week) for 3 months both significantly improved femur BMD, trabecular bone volume on tissue volume (BV/TV) and cortical bone volume in both OVX Postn+/+ and Postn−/− (all p<0.01). Zol 1M and Zol 1W also improved jaw alveolar and basal BV/TV, although the highest dose (Zol 1W) was less efficient, particularly in Postn−/−. Zol decreased osteoclast number and bone formation indices, i.e. MAR, MPm/BPm and BFR, independently in Postn−/− and Postn+/+, both in the long bones and in deep jaw alveolar bone, without differences between Zol doses. Zol 1M and Zol 1W did not reactivate inflammation nor increase fibrous tissue in the bone marrow of the jaw, whereas the distance between the root and the enamel of the incisor (DRI) remained high in Postn−/− vs Postn+/+ confirming latent inflammation and lack of crestal alveolar bone. Zol 1W and Zol 1M decreased osteocyte numbers in Postn−/− and Postn+/+ mandible, and Zol 1W increased the number of empty lacunae in Postn−/−, however no areas of necrotic bone were observed. These results demonstrate that zoledronate improves jaw osteopenia and suggest that in Postn−/− mice, zoledronate is not sufficient to induce bone necrosis.  相似文献   

6.
Small catheters (ca. 3 mm diam at tip) were wedged in subsegmental bronchi in anesthetized coatimundi (Nasua nasua) during spontaneous breathing. Mixed expired gases of a group of lobules were sampled continuously without contamination from neighboring units, and local tidal volume, frequency, carbon dioxide production, and oxygen consumption were measured, as well as mixed venous PO2 and PCO2. Local ventilation-perfusion ratio, alveolar PO2, PCO2, and blood flow were calculated. There was a 22% reduction (range 15-38) in local perfusion (as percent of flow at PAO2 100 mmHg) per 10 mmHg fall in local alveolar oxygen tension over the PAO2 range 150-36 mmHg. Local hypercapnia had little effect on local flow. Local tidal volume (ca. 1% of total tidal volume) was unaffected by changes in alveolar gas tensions. The contribution of vasoconstriction or vasodilatation, as a negative feedback system, to the stability of local PAO2 was greatest close to the physiologic range (65-85 mmHg) falloderate efficiency.  相似文献   

7.
Oxygen mass transfer was studied in conventional, bead mill and baffled roller bioreactors. Using central composite rotational design, impacts of size, rotation speed and working volume on the oxygen mass transfer were evaluated. Baffled roller bioreactor outperformed its conventional and bead mill counterparts, with the highest k L a obtained in these configurations being 0.58, 0.19, 0.41 min?1, respectively. Performances of the bead mill and baffled roller bioreactor were only comparable when a high bead loading (40 %) was applied. Regardless of configuration increase in rotation speed and decrease in working volume improved the oxygen mass transfer rate. Increase in size led to enhanced mass transfer and higher k L a in baffled roller bioreactor (0.49 min?1 for 2.2 L and 1.31 min?1 for 55 L bioreactors). Finally, the experimentally determined k L a in the baffled roller bioreactors of different sizes fit reasonably well to an empirical correlation describing the k L a in terms of dimensionless numbers.  相似文献   

8.
A method was developed that permitted changes in the pressure-volume characteristics of large intrapulmonary vessels occurring with changes in the composition of alveolar gas to be studied in excised lungs. The capillary bed was emptied by keeping intravascular pressure well below alveolar pressure, and the relationship between changes in the volume of the pulmonary arteries or veins with changes in transpulmonary pressure was measured. The volume of the arteries and veins always decreased with a decrease in transpulmonary pressure, but when the alveoli contained carbon dioxide, the decrease in vascular volume was less, for the same decrease in transpulmonary pressure, than when the alveoli contained oxygen or nitrogen without carbon dioxide. This change with carbon dioxide was probably due to a decrease in the compliance of the larger intrapulmonary arteries and veins. Since there was no pathway for carbon dioxide to enter these vessels except by diffusion from the alveoli, it is concluded that carbon dioxide can act directly on the intrapulmonary arteries and veins to reduce their compliance, but it is not known whether this effect has physiological significance. No effect on the large pulmonary vessels was found with variations in alveolar concentrations of oxygen. blood vesselsblood volumecarbon dioxidediffusionlungspulmonary circulation  相似文献   

9.
We have previously reported that the lungs of patients with very severe chronic obstructive pulmonary disease (COPD) contain significantly higher numbers of alveolar macrophages than those of non-smokers or smokers. M1 and M2 macrophages represent pro- and anti-inflammatory populations, respectively. However, the roles of M1 and M2 alveolar macrophages in COPD remain unclear. Immunohistochemical techniques were used to examine CD163, CD204 and CD206, as M2 markers, expressed on alveolar macrophages in the lungs of patients with mild to very severe COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I (mild) n = 11, II (moderate) n = 9, III (severe) n = 2, and IV (very severe) n = 16). Fifteen smokers and 10 non-smokers were also examined for comparison. There were significantly higher numbers of alveolar macrophages in COPD patients than in smokers and non-smokers. The numbers and percentages of CD163+, CD204+ or CD206+ alveolar macrophages in patients with COPD at GOLD stages III and IV were significantly higher than in those at GOLD stages I and II, and those in smokers and non-smokers. In patients with COPD, there was a significant negative correlation between the number of CD163+, CD204+ or CD206+ alveolar macrophages and the predicted forced expiratory volume in one second. Overexpression of CD163, CD204 and CD206 on lung alveolar macrophages may be involved in the pathogenesis of COPD.  相似文献   

10.

Background

Alveolar volume measured according to the American Thoracic Society-European Respiratory Society (ATS-ERS) guidelines during the single breath diffusion test can be underestimated when there is maldistribution of ventilation. Therefore, the alveolar volume calculated by taking into account the ATS-ERS guidelines was compared to the alveolar volume measured from sequentiallly collected samples of the expired volume in two groups of individuals: COPD patients and healthy individuals. The aim of this study was to investigate the effects of the maldistribution of ventilation on the real estimate of alveolar volume and to evaluate some indicators suggestive of the presence of maldistribution of ventilation.

Methods

Thirty healthy individuals and fifty patients with moderate-severe COPD were studied. The alveolar volume was measured either according to the ATS-ERS guidelines or considering the whole expired volume subdivided into five quintiles. An index reflecting the non-uniformity of the distribution of ventilation was then derived (DeltaVA/VE).

Results

Significant differences were found when comparing the two measurements and the alveolar volume by quintiles appeared to have increased progressively towards residual volume in healthy individuals and much more in COPD patients. Therefore, DeltaVA/VE resulted in an abnormal increase in COPD.

Conclusion

The results of our study suggest that the alveolar volume during the single breath diffusion test should be measured through the collection of a sample of expired volume which could be more representative of the overall gas composition, especially in the presence of uneven distribution of ventilation. Further studies aimed at clarifying the final effects of this way of calculating the alveolar volume on the measure of DLCO are needed. DeltaVA/VE is an index that can help assess the severity of inhomogeneity in COPD patients.  相似文献   

11.
Summary Microcalorimetric experiments on growth ofSaccharomyces under oxygen and nitrogen pressure between 0 and 10 kp/cm2 are described. Within this range there are no alterations of the metabolism by the pressureper se but increased cell volume and a pronounced number of cells are observed. With nitrogen the enthalpy change amounts to a value of 130 cal/g glucose invariable with pressure. For oxygen a maximum heat evolution of 650 cal/g glucose is found in stirred cultures at the minimum pressure of almost 0 kp/cm2. With rising O2 pressure one observes a strong repression of heat flux which drops to a minimum value at 2 kp/cm2. This repression is overcome by substrate concentrations less than 2 mg/ml. In unstirred cultures exposed to oxygen pressure the growth is determined by the geometrical and temporal distribution of cells and oxygen in the vessels. The calorimetric data are discussed in view of the mean volume and the dry weight of the cells.Herrn Prof. Dr. W. Stein zum 60. Geburtstag gewidmet.  相似文献   

12.
Several non-biological materials are currently being used to increase the alveolar bone volume to support dental implants. Recently, stem cell therapy has emerged as a promising biological substitute or adjuvant to enhance bone healing. In order to determine if stem cell therapy has enough clinical evidence to bone ridge augmentation in humans, a systematic review and meta-analysis were conducted. Two independent investigators searched the Entrez PubMed, SCOPUS and Web of Science databases for eligible randomized clinical trials that describe stem cell therapies for alveolar bone formation. The included studies were evaluated for risk of bias. A random-effects meta-analysis model was used to evaluate the percentage of bone formation in the selected studies. Heterogeneity was evaluated using the Cochrane Chi 2 and I 2. Nine eligible trials were included. These studies presented an overall unclear risk of bias. A comparison between the lower heterogeneity studies and the long term observational outcomes showed a slight tendency to enhance bone formation. High heterogeneity between the included studies was observed. The lack of outcome standardization made a wide-ranging comparison difficult. The application of stem cells in oral surgery and implantology appears to be promising although more standardized study designs, increased samples and long-term observations are needed to strength the clinical evidence that stem cell therapy is effective for alveolar bone formation.  相似文献   

13.
Detailed topographic and hydrologic surveys were conducted in five intertidal cove marshes in an outer coastal plain landscape to test the hypothesis that the equilibrium geologic state of intertidal habitats residing in similar landscape situations conforms to a consistent geometric form. The equation V=1571.84A1.70 (R2=96.2%) describes the relationship between hectares of marsh (A) and cubic meter volume at mean high tide (V). An empirical relationship between tide height and volume was found to obey the power series Vp=L2.38 (R2=99.6%), where Vp is volume as a percent of full pool and L is water height as a percent of mean high tide. A dimensionless index describing the relationship between area and volume is consistent for each marsh and approaches 0.10. A channel form parameter describing width to channel depth ratios is of consistent value for four of the five marshes. These provide evidence of deterministic rather than stochastic geologic development. The benefits of applying natural basin shape patterns in the design and engineering of created/restored intertidal marshes are highlighted and a generic basin is modeled (based on the geometrical section of a paraboloid retained by simple integration) as an example of the potential applicability of the study.  相似文献   

14.
From analysis of the literature data for humans aged 1–60 years, equations were obtained relating the respiratory (respiratory minute volume, minute oxygen consumption) and hemodynamic (stroke volume) variables in males and in females. If the value of one of these three variable is known, the other two can be determined from the equations describing their relationship. For healthy adults aged 23–40 years, the calculated results differed from the experimental data by no more than ±5%. Analysis of the equations relating the hemodynamic variables to the respiratory variables suggested that oxygen consumption is regulated by different mechanisms depending on the nature of regulatory stimuli and the oxygen requirements of the body.  相似文献   

15.
Ig-Hepta/GPR116 is a member of the G protein-coupled receptor family predominantly expressed in the alveolar type II epithelial cells of the lung. Previous studies have shown that Ig-Hepta is essential for lung surfactant homeostasis, and loss of its function results in high accumulation of surfactant lipids and proteins in the alveolar space. Ig-Hepta knock-out (Ig-Hepta−/−) mice also exhibit emphysema-like symptoms, including accumulation of foamy alveolar macrophages (AMs), but its pathogenic mechanism is unknown. Here, we show that the bronchoalveolar lavage fluid obtained from Ig-Hepta−/− mice contains high levels of inflammatory mediators, lipid hydroperoxides, and matrix metalloproteinases (MMPs), which are produced by AMs. Accumulation of reactive oxygen species was observed in the AMs of Ig-Hepta−/− mice in an age-dependent manner. In addition, nuclear factor-κB (NF-κB) is activated and translocated into the nuclei of the AMs of Ig-Hepta−/− mice. Release of MMP-2 and MMP-9 from the AMs was strongly inhibited by treatment with inhibitors of oxidants and NF-κB. We also found that the level of monocyte chemotactic protein-1 is increased in the embryonic lungs of Ig-Hepta−/− mice at 18.5 days postcoitum, when AMs are not accumulated and activated. These results suggest that Ig-Hepta plays an important role in regulating macrophage immune responses, and its deficiency leads to local inflammation in the lung, where AMs produce excessive amounts of reactive oxygen species and up-regulate MMPs through the NF-κB signaling pathway.  相似文献   

16.
We report that the burst of oxygen consumption, as well as the resultant production of O2?? and H2O2, occurring in activated human polymorphonuclear leukocytes is inhibited by various compounds which have in common the ability to antagonize the effects of proteolytic enzymes. This effect of protease inhibitors was observed with a variety of stimuli, both phagocytic and non-phagocytic, used to activate O2?? production in human polymorphonuclear leukocytes. Inhibition was also noted in rat polymorphonuclear leukocytes and alveolar macrophages. The results indicate that proteolysis may be involved in activating the burst of oxygen consumption following stimulation of phagocytic cells.  相似文献   

17.
Post-lactational involution of the mammary gland is initiated within days of weaning. Clearing of cells occurs by apoptosis of the milk-secreting luminal cells in the alveoli and through stromal tissue remodeling to return the gland almost completely to its pre-pregnant state. The pathways that specifically target involution of the luminal cells in the alveoli but not the basal and ductal cells are poorly understood. In this study we show in cultured human mammary alveolar structures that the involution process is initiated by fresh media withdrawal, and is characterized by cellular oxidative stress, expression of activated macrophage marker CD68 and finally complete clearing of the luminal but not basal epithelial layer. This process can be simulated by ectopic addition of reactive oxygen species (ROS) in cultures without media withdrawal. Cells isolated from post-involution alveoli were enriched for the CD49f+ mammary stem cell (MaSC) phenotype and were able to reproduce a complete alveolar structure in subcultures without any significant loss in viability. We propose that the ROS produced by accumulated milk breakdown post-weaning may be the mechanism underlying the selective involution of secretory alveolar luminal cells, and that our culture model represents an useful means to investigate this and other mechanisms further.  相似文献   

18.
The lung is an interface where host cells are routinely exposed to microbes and microbial products. Alveolar macrophages are the first-line phagocytic cells that encounter inhaled fungi and other microbes. Macrophages and other immune cells recognize Aspergillus motifs by pathogen recognition receptors and initiate downstream inflammatory responses. The phagocyte NADPH oxidase generates reactive oxygen intermediates (ROIs) and is critical for host defense. Although NADPH oxidase is critical for neutrophil-mediated host defense1-3, the importance of NADPH oxidase in macrophages is not well defined. The goal of this study was to delineate the specific role of NADPH oxidase in macrophages in mediating host defense against A. fumigatus. We found that NADPH oxidase in alveolar macrophages controls the growth of phagocytosed A. fumigatus spores4. Here, we describe a method for assessing the ability of mouse alveolar macrophages (AMs) to control the growth of phagocytosed Aspergillus spores (conidia). Alveolar macrophages are stained in vivo and ten days later isolated from mice by bronchoalveolar lavage (BAL). Macrophages are plated onto glass coverslips, then seeded with green fluorescent protein (GFP)-expressing A. fumigatus spores. At specified times, cells are fixed and the number of intact macrophages with phagocytosed spores is assessed by confocal microscopy.  相似文献   

19.
Photorhabdus luminescens, a bacterial symbiont of entomoparasitic nematodes, was cultured in a 10 L bioreactor. Cellular density and bioluminescence were recorded and volumetric oxygen transfer coefficient (kLa) and specific oxygen transfer rates were determined during the batch process. Exponential phase of the bacterium lasted for 20 h, showing a maximum specific growth rate of 0.339 h?1 in a defined medium. Bioluminescence peaked within 21h, and was maintained until the end of the batch process (48 h). The specific oxygen uptake rate (SOUR) was high during both lag and early exponential phase, and eventually reached a stable value of 0.33 mmol g?1 h?1 during stationary phase. Maintenance of 200 rpm agitation and 1.4 volume of air per volume of medium per minute (vvm) aeration, gave rise to a kLa value of 39.5 h?1. This kLa value was sufficient to meet the oxygen demand of 14.4 g L?1 (DCW) biomass. This research is particularly relevant since there are no reports available on SOURs of symbiotic bacteria or their nematode partners. The insight gained through this study will be useful during the development of a submerged monoxenic culture of Heterorhabditis bacteriophora and its symbiotic bacterium P. luminescens in bioreactors.  相似文献   

20.
To detect changes in the oxygen concentration during biochemical reactions, the exchange broadening in the ESR spectra of nitroxide radicals caused by the dissolved oxygen, has been used. The measurements have been carried out using changes in the width either of the proton hyperfine structure components or of the nitrogen hyperfine structure line with an unresolved proton structure. Detection of mitochondrial respiration in a volume of about 10?3 cm3 and respiration for 100±5 liver cells in a volume of about 10?4 cm3 has been carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号