首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Summary A model based on the canal theory (Katou andFurumoto 1986 a, b) is proposed for the absorption of solute and water at the root periphery. The present canal model in the periphery and the model which was previously proposed for the exudation in the stele (Katou et al. 1987), are organized into a model for radial transport across excised plant roots, in the light of anatomical and physiological knowledge of maize roots. The canal equations for both canals are numerically solved to give quite a good explanation for the observed exudation of maize roots. It is found that the regulation of solute transport has a primary importance in the regulation of water transport across excised roots. The internal cell pressure of the symplast adjusts the water absorption at the root periphery to the water secretion into the vessels. There seems no need for this explanation of the radial water transport across roots to assume cell membranes with low reflection coefficient or variable water permeability. It would seem that the apoplast wall layers play a crucial role in metabolic control of water transport in roots as well as in hypocotyls.Abbreviations J s ex* the theoretically estimated rate of solute exudation per unit surface area of model maize roots - J that of volume exudation per unit surface area of model maize roots - the reflection coefficient of the cell membrane against solutes  相似文献   

2.
Hydraulic and osmotic properties of oak roots   总被引:3,自引:1,他引:2  
Hydraulic and osmotic properties of root systems of 2.5–8-months-oldoak seedlings (Quercus robur and Q. petraea) were measured usingthe root pressure probe. Root pressures of excised roots rangedbetween 0.05 and 0.15 MPa which was similar to values obtainedfor herbaceous species. Root hydraulic conductivity (Lpr; perunit of root surface area) was much larger in the presence ofhydrostatic than in the presence of osmotic pressure differencesdriving water flow across the roots. Differences were as largeas a factor of 20 to 470. Roots of the young seedlings of Q.robur grew more rapidly than those of Q. petraea and had a hydraulicconductivity which was substantially higher. Nitrogen nutritionaffected root growth of Q. robur more than that of Q. petraea,but did not affect root Lpr of either species. For Q. robur,Lpr decreased with root age (size) which is interpreted by aneffect of suberization during the development of fine roots.Root hydraulic conductance remained constant for both species.For Q. robur, this was due to the fact that the overall decreasein Lpr was compensated for by an increase in root surface area.Root reflection coefficients (sr) were low and ranged betweensr=0.1 and 0.5 for solutes for which cell membranes exhibitreflection coefficients of virtually unity (salts, sugars etc.).Solute permeability was small and was usually not measurablewith the technique. When root systems were attached to the rootpressure probe for longer periods of time (up to 10d), solutepermeability increased due to ageing effects which, however,did not cause a general leakiness of the roots as Lpr decreased.Hence, values were only used from measurements taken duringthe first day. Transport properties of oak roots are comparedwith those recently obtained for spruce (Rdinger et al., 1994).They are discussed in terms of a composite transport model ofthe root which explains low root sr at low solute permeabilityand reasonable rootLpr The model predicts differences betweenosmotic and hydraulic water flow and differences in the transportproperties of roots of herbs and trees as found. Key words: Composite transport, hydraulic conductivity, nitrogen nutrition, Quercus, reflection coefficient, root transport, water relations  相似文献   

3.
Permeability of Lipid Bilayer Membranes to Organic Solutes   总被引:6,自引:2,他引:4       下载免费PDF全文
A sensitive fluorescence technique was used to measure transport of organic solutes through lipid bilayer membranes and to relate permeability to the functional groups of the solute, lipid composition of the membrane, and pH of the medium. Indole derivatives having ethanol, acetate, or ethylamine in the 3-position, representing neutral, acidic, and basic solutes, respectively, were the primary models. The results show: (a) Neutral solute permeability is not greatly affected by changes in lipid composition but presence or absence of cholesterol in the membranes could greatly alter permeability of the dissociable substrates. (b) Indole acetate permeability was reduced by introduction of phosphatidylserine into membranes to produce a net negative charge on the membranes. (c) Permeability response of dissociable solutes to variation in pH was in the direction predicted but not always of the magnitude expected from changes in the calculated concentrations of the undissociated solute in the bulk aqueous phase. Concentration gradients of amines across the membranes caused substantial diffusion potentials, suggesting that some transport of the cationic form of the amine may occur. It is suggested that factors such as interfacial charge and hydration structure, interfacial polar forces, and lipid organization and viscosity, in addition to the expected solubility-diffusion relations, may influence solute flux.  相似文献   

4.
The relationship between local and global transport parameters is derived for an epithelial membrane having series-parallel topology and an asymmetric transport mechanism at its apical and/or basolateral cell membranes. The result shows that the difference in the local forward and backward solute permeability coefficients is manifest in the global volume flow equation as distinct forward and backward reflection coefficients. The analytical result is applicable to the first order (low concentration) domain of Michaelis-Menten kinetics and a procedure is given for simulating the remainder of the domain on SPICE2.  相似文献   

5.
The enantioseparation of 14 structurally similar chiral solutes, with one or two chiral centers, are studied for a commercially important polysaccharide‐based chiral stationary phase, amylose tris(3,5‐dimethylphenylcarbamate) (ADMPC). Among these solutes, only two solutes show significant enantioresolutions of 2 to 2.5 in n‐hexane/2‐propanol (90/10, v/v) at 298 K. The retention factors of the chiral solutes vary significantly from 0.7 to 7.0, and they are compared with those of simpler nonchiral solutes having similar but fewer functional groups. The sorbent–solute H‐bonding interactions between the solute functional groups and the polymer C?O and NH functional groups are probed with attenuated total reflection infrared spectroscopy (ATR‐IR). The H‐bonding interactions of the polymer C?O and NH groups with the solutes result in changes in the IR amide band wavenumbers of ADMPC upon solute adsorption. The nanostructure of an ADMPC cavity and the potential interactions with the chiral solutes are proposed based on the sorbent–solute–solvent HPLC data, the sorbent–solute IR data, and the sorbent–solute molecular dynamics (MD) simulations. The results are consistent with the three point attachment hypothesis and indicate that a significant enantioresolution in ADMPC requires at least three different interaction sites for simultaneous H‐bonds and phenyl–phenyl interactions for phenylpropylamine (PPA) and various structurally similar chiral solutes. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
The effects of bovine serum albumin adsorption on the transport characteristics of asymmetric poly(ether sulfone) ultrafiltration membranes were determined using polydisperse dextrans with gel permeation chromatography. Actual dextran sieving coefficients were evaluated from observed sieving data for both the clean and preadsorbed membranes using a stagnant film model. The flux dependence of the actual dextran sieving coefficients was used to evaluate the intrinsic membrane hindrance factors for convective (i.e., sieving) and diffusive transport for the different molecular weight dextrans using classical membrane transport theory. Protein adsorption caused a reduction in both dextran sieving and diffusion, with the magnitude of the reduction a function of the dextran molecular weight and pore size. The effects of adsorption on the specific pore area and the membrane porosity were then determined using a recent model for solute transport through asymmetric ultrafiltration membranes. The data indicate that protein adsorption occurs preferentially in the larger membrane pores, causing a greater reduction in solute sieving compared to the membrane hydraulic permeability and porosity than would be predicted on the basis of either a simple pore blockage or pore constriction model.  相似文献   

7.
8.
A "translation" of the phenomenological permeability coefficients into friction and distribution coefficients amenable to physical interpretation is presented. Expressions are obtained for the solute permeability coefficient ω and the reflection coefficient σ for both non-electrolytic and electrolytic permeants. An analysis of the coefficients is given for loose membranes as well as for dense natural membranes where transport may go through capillaries or by solution in the lipoid parts of the membrane. Water diffusion and filtration and the relation between these and capillary pore radius of the membrane are discussed. For the permeation of ions through the charged membranes equations are developed for the case of zero electrical current in the membrane. The correlation of σ with ω and Lp for electrolytes resembles that for non-electrolytes. In this case ω and σ depend markedly on ion concentration and on the charge density of the membrane. The reflection coefficient may assume negative values indicating anomalous osmosis. An analysis of the phenomena of anomalous osmosis was carried out for the model of Teorell and Meyer and Sievers and the results agree with the experimental data of Loeb and of Grim and Sollner. A set of equations and reference curves are presented for the evaluation of ω and σ in the transport of polyvalent ions through charged membranes.  相似文献   

9.
The potential influence of mechanical loading on transvascular transport in vascularized soft tissues has not been explored extensively. This experimental investigation introduced and explored the hypothesis that dynamic mechanical loading can pump solutes out of blood vessels and into the surrounding tissue, leading to faster uptake and higher solute concentrations than could otherwise be achieved under unloaded conditions. Immature epiphyseal cartilage was used as a model tissue system, with fluorescein (332 Da), dextran (3, 10, and 70 kDa) and transferrin (80 kDa) as model solutes. Cartilage disks were either dynamically loaded (± 10% compression over a 10% static offset strain, at 0.2 Hz) or maintained unloaded in solution for up to 20 h. Results demonstrated statistically significant solute uptake in dynamically loaded (DL) explants relative to passive diffusion (PD) controls for all solutes except unbound fluorescein, as evidenced by the DL:PD concentration ratios after 20 h (1.0 ± 0.2, 2.4 ± 1.1, 6.1 ± 3.3, 9.0 ± 4.0, and 5.5 ± 1.6 for fluorescein, 3, 10, and 70 kDa dextran, and transferrin). Significant uptake enhancements were also observed within the first 30s of loading. Termination of dynamic loading produced dissipation of enhanced solute uptake back to PD control values. Confocal images confirmed that solute uptake occurred from cartilage canals into their surrounding extracellular matrix. The incidence of this loading-induced transvascular solute pumping mechanism may significantly alter our understanding of the interaction of mechanical loading and tissue metabolism.  相似文献   

10.
Newman EI 《Plant physiology》1976,57(5):738-739
When the pressure gradient across a root alters, there is often an apparent change in the permeability of the root to water. Fiscus (Plant Physiol. 1975. 55: 917-922) has suggested that this can be explained by a simple two-compartment model which takes into account rates of solute uptake into the xylem. A method of testing actual data against the Fiscus model is proposed; this shows that in some cases the apparent changes in permeability cannot be explained by the model. The model is not adequate to predict the amounts of solute reaching the xylem by passive drag: a three-compartment model would be more realistic.  相似文献   

11.
Osmotic responses of maize roots   总被引:16,自引:0,他引:16  
Water and solute relations of excised seminal roots of young maize (Zea mays L) plants, have been measured using the root pressure probe. Upon addition of osmotic solutes to the root medium, biphasic root pressure relaxations were obtained as theoretically expected. The relaxations yielded the hydraulic conductivity Lp r) the permeability coefficient (P sr), and the reflection coefficient (σ sr) of the root. Values of Lp r in these experiments were by nearly an order of magnitude smaller than Lp r values obtained from experiments where hydrostatic pressure gradients were used to induce water flows. The value of P sr was determined for nine different osmotica (electrolytes and nonelectrolytes) which resulted in rather variable values (0.1·10-8–1.7·10-8m·s-1). The reflection coefficient σ sr of the same solutes ranged between 0.3 and 0.6, i.e. σ sr was low even for solutes for which cell membranes exhibit a σ s≈1. Deviations from the theoretically expected biphasic responses occured which may have reflected changes of either P sr or of active pumping induced by the osmotic change. The absolute values of Lp r, P sr, and σ sr have been critically examined for an underestimation by unstirred layer effecs. The data indicate a considerable apoplasmic component for radial movement of water in the presence of hydrostatic gradients and also some solute flow byppassing root protoplasts. In the presence of osmotic gradients, however, there was a substantial cell-to-cell transport of water. Cutting experiments demonstrated that the hydraulic resistance for the longitudinal movement of water was much smaller than for radial transport except for the apical ends of the segments (length=5 to 20 mm). The differences in Lp r as well as the low σ sr values suggest that the simple osmometer model of the root with a single osmotic barrier exhibiting nearly semipermeable properties should be extended for a composite membrane model with hydraulic and osmotic barriers arranged in series and in parallel.  相似文献   

12.
The low permeability of the mycobacterial cell wall is thought to contribute to the intrinsic drug resistance of mycobacteria. In this study, the permeability of the Mycobacterium tuberculosis cell wall is studied by computer simulation. Thirteen known drugs with diverse chemical structures were modeled as solutes undergoing transport across a model for the M. tuberculosis cell wall. The properties of the solute-membrane complexes were investigated by means of molecular dynamics simulation, especially the diffusion coefficients of the solute molecules inside the cell wall. The molecular shape of the solute was found to be an important factor for permeation through the M. tuberculosis cell wall. Predominant lateral diffusion within, as opposed to transverse diffusion across, the membrane/cell wall system was observed for some solutes. The extent of lateral diffusion relative to transverse diffusion of a solute within a biological cell membrane may be an important finding with respect to absorption distribution, metabolism, elimination, and toxicity properties of drug candidates. Molecular similarity measures among the solutes were computed, and the results suggest that compounds having high molecular similarity will display similar transport behavior in a common membrane/cell wall environment. In addition, the diffusion coefficients of the solute molecules across the M. tuberculosis cell wall model were compared to those across the monolayers of dipalmitoylphosphatidylethanolamine and dimyristoylphosphatidylcholine, are two common phospholipids in bacterial and animal membranes. The differences among these three groups of diffusion coefficients were observed and analyzed.  相似文献   

13.
The contribution of water-filled, selective membrane pores (water channels) is integrated into a general concept of water transport in plant tissue. The concept is based on the composite anatomical structure of tissues which results in a composite transport pattern. Three main pathways of water flow have been distinguished, ie the apoplastic, symplastic and transcellular (vacuolar) paths. Since the symplastic and transcellular components can not be distinguished experimentally, these components are summarized as a cell-to-cell component. Water channel activity may control the overall water flow across tissues provided that the contribution of the apoplastic component is relatively low. The composite transport model has been applied to roots where most of the data are available. Comparison of the hydraulic conductivity at the root cell and organ levels shows that, depending on the species, there may be a dominating cell-to-cell or apoplastic water flow. Most remarkably, there are differences in the hydraulic conductivity of roots which depend on the nature of the force used to drive water flows (osmotic or hydrostatic pressure gradients). This is predicted by the model. The composite transport model explains low reflection coefficients of roots, the variability in root hydraulic resistance and differences between herbaceous and woody species. It is demonstrated that there is also a composite transport of water at the membrane level (water channel arrays vs bilayer arrays). This results in low reflection coefficients of plasma membranes for certain test solutes as derived for isolated internodes of Chara. The titration of water channel activity in this alga with mercurials and its dependence on changes in temperature or external concentration show that water channels do not exclusively transport water. Rather, they are permeable to relatively big uncharged organic solutes. The result indicates that, at least for Chara, the concept of an exclusive transport of water across water channels has to be questioned.  相似文献   

14.
The reflection coefficients of bilayer lipid vesicles (liposomes) of various compositions have been determined for a number of non-electrolytes. The solutes were the same and the method of measurement was essentially the same as those which have been used to estimate an equivalent pore radius for erythrocytes. The method involves matching the osmotic pressure of solutions of a permeant test solute with that of a known inpermeant solute. Reflection coefficients for cholesterol-containing liposomes and those of erythrocytes are, when account is taken of those solutes known to permeate the erythrocyte by specialized pathways, not greatly different. Lipid bilayers can thus account for most of the permeability characteristics of the cell originally interpreted as due to aqueous pores. Reflection coefficients are significantly higher for egg phosphatidylcholine membranes that contain cholesterol than those which do not. There is a strong correlation between relative permeabilities derived from reflection coefficients and oil-water partition coefficients. There is also good agreement between these permeabilities and permeabilities measured by others, which exhibit an inverse dependence on molecular size. It is suggested that this tendency of membranes to pass small molecules more readily than large molecules, other properties being equal, is a consequence of the surface pressure of the constituent monolayers of the membrane.  相似文献   

15.
The magnitude of passive diffusional solute transfer through artificial membranes is usually considered to be independent of the direction of the concentration gradient driving force. It can be shown, however, that a composite membrane, having as one component a membrane with a chemical reaction-facilitated diffusion transport mechanism, can result in an asymmetrical flux. An asymmetric flux caused by this type of structural heterogeneity may be one mechanism contributing to the asymmetric properties of biological membranes. Similar vectorial fluxes can be generated in interfacial solute transfer through membranes if hydrodynamic boundary layers occur at the membrane interface and reversible chemical reactions with the permeant species are involved in either phase.  相似文献   

16.
Osmotic water flow through membranes with uniform defined pores was measured for a variety of macromolecular solutes. Water flow increased linearly with applied hydrostatic pressure, allowing the effective osmotic pressure of the solutes to be estimated by extrapolation. Reflection coefficients for each solute-membrane combination were calculated and correlated with the ratio of solute size to pore size. For the same mean molecular size, proteins were found to have larger reflection coefficients than dextrans. Molecular rigidity may play a role in this difference in behavior.  相似文献   

17.
Low molecular weight solutes often exhibit elution characteristics on gel filtration columns which deviate from ideal behaviour. In many previous studies this anomalous behaviour was attributed to the existence of extremely narrow pores in the gel, inaccessible even to very small solute molecules, to explain Kd values lower than unity. Kd values of small solutes higher than unity were usually ascribed to adsorption of the solute to the gel matrix. In the present paper several observations are presented that contradict these suggestions. Experimental evidence indicates that with small solute molecules Kd values differing from unity can be fully explained by the anomalous properties of vicinal water layers at the gel matrix-water interface.  相似文献   

18.
19.
Inorganic solutes are shown to alter the permeability of root and leaf tissues. Experiments with beet root tissues reveal that CaCl(2) decreases leakage of betacyanin from the tissue, that (NH(4))(2)SO(4) increases leakage, and that each salt can relieve the effects of the other. A comparison of cations and anions shows a range of effects with the various solutes. Experiments with Rumex obtusifolius L. leaf discs reveal that whereas CaCl(2) defers the development of senescence, (NH(4))(2)SO(4) hastens senescence and increases the leakage of materials out of the leaf discs. The solute effect on Rumex obtusifolius L. is prevented by gibberellin. CaCl(2) can relieve the (NH(4))(2)SO(4) effect. The results are interpreted as indicating that the inorganic solutes may serve to alter the permeability of membranes through alterations of interactions between water and macromolecules in the tissues; the interpretation is consistent with the evidence for opposite effects of Ca and NH(4), the effective concentrations being about 10(-3)m, and the reversibility of the effects of one solute by another of opposite stabilization-destabilization effect.  相似文献   

20.
Four sites located in the north-eastern region of the United States of America have been chosen to investigate the impacts of soil heterogeneity in the transport of solutes (bromide and chloride) through the vadose zone (the zone in the soil that lies below the root zone and above the permanent saturated groundwater). A recently proposed mathematical model based on the cumulative beta distribution has been deployed to compare and contrast the regions' heterogeneity from multiple sample percolation experiments. Significant differences in patterns of solute leaching were observed even over a small spatial scale, indicating that traditional sampling methods for solute transport, for example the gravity pan or suction lysimeters, or more recent inventions such as the multiple sample percolation systems may not be effective in estimating solute fluxes in soils when a significant degree of soil heterogeneity is present. Consequently, ignoring soil heterogeneity in solute transport studies will likely result in under- or overprediction of leached fluxes and potentially lead to serious pollution of soils and/or groundwater.The cumulative beta distribution technique is found to be a versatile and simple technique of gaining valuable information regarding soil heterogeneity effects on solute transport. It is also an excellent tool for guiding future decisions of experimental designs particularly in regard to the number of samples within one site and the number of sampling locations between sites required to obtain a representative estimate of field solute or drainage flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号