首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anchoring functions of collagen VII depend on its ability to form homotypic fibrils and to bind to other macromolecules to form heterotypic complexes. Biosensor-based binding assays were employed to analyze the kinetics of the NC1 domain-mediated binding of collagen VII to laminin 5, collagen IV, and collagen I. We showed that collagen VII interacts with laminin 5 and collagen IV with a Kd value of 10(-9) M. In contrast, the NC1-mediated binding to collagen I was weak with a Kd value of 10(-6) M. Binding assays also showed that the NC1 domain utilizes the same region to bind to both laminin 5 and collagen IV. We postulate that the ability of the NC1 domains to bind with high affinities to laminin 5 and collagen IV facilitates stabilization of the structure of the basement membrane itself and that the NC1-collagen I interaction may be less important for stabilization of the dermal-epidermal junction.  相似文献   

2.
The widespread application of collagen as a biomaterial warrants research in understanding the stabilization of the same. In this study, interaction of iron-tetrakis (hydroxymethyl) phosphonium (THP) complex with type I collagen has been investigated. DSC and hydrothermal measurement studies reveal that the shrinkage temperature of iron-THP treated rat tail tendon (RTT) collagen is 33 degrees C higher than that of native RTT collagen. Fe-THP complex also brings about high degree of enzymatic stability to type I collagen. The effect of Fe-THP on the conformation of collagen was studied using circular dichroism and it was found that no major alterations in the triple helical structure of collagen occur on treatment with Fe-THP. It is observed from viscosity experiment results that though Fe-THP complex is able to bring about long range ordering of collagen, as evident from the thermal and enzymatic stability imparted to collagen, this ordering does not lead to any aggregation of collagen. Since THPS is reducing in nature, it is expected to keep iron in the +2 state and if THP chelates to Fe(II), the hydrolytic behavior of iron can also be controlled.  相似文献   

3.
Stabilization of type I rat tail tendon (RTT) collagen by various aldehydes, viz. formaldehyde, gluteraldehyde, glyoxal and crotanaldehyde was studied to understand the effect of each on the thermal, enzymatic and conformational stability of collagen. The aldehydes have been found to increase the heat stability of rat tail tendon collagen fibres from 62 to 77-86 degrees C. The increase in thermal stability was found to be in a species dependent manner. The variation in the thermal stability of collagen brought about by aldehydes was in the order of formaldehyde > gluteraldehyde > glyoxal > crotanaldehdye. The aldehydes also impart a high degree of stability to collagen against the activity of the degrading enzyme, collagenase. The order of enzymatic stability brought about by aldehydes follows the same trend as the thermal stability brought about by them. This shows that the number of cross-links formed influence both the thermal and enzymatic stability in the similar manner. The effect of various aldehydes on the secondary structure of collagen was studied using circular dichroism and it was found that the aldehydes lead to changes in the amplitude of the circular dichroic (CD) spectrum but did not alter the triple helical conformation of collagen. The secondary structure of collagen is not significantly altered on interaction with different aldehydes.  相似文献   

4.
The interaction between two group IV metals, the highly toxic lead and the relatively inactive and low toxic zirconium, was studied in the bone marrow chromosomes ofMus musculus in vivo. Low and high doses of zirconium oxychloride were fed orally to the experimental mice (i) 2 h before, (ii) 2 h after or (iii) together with different doses of lead nitrate. Protection against lead-induced clastogenicity was observed only when the lower dose of zirconium was administered prior to lead. All other combinations gave an additive or synergistic effect as was seen by significant increases in the frequencies of chromosomal aberrations.  相似文献   

5.
Type I collagen from rat tail tendon (RTT) fibres was crosslinked with dialdehyde cellulose to bring about stabilization of the matrix. Dialdehyde cellulose (DAC) was prepared by periodate oxidation of hydrolyzed cellulose. Autoclaving of DAC resulted in hydrolysis and lower molecular weight oligomeric species. The formation of the crosslinked network between DAC and the collagen fibres has brought about significant thermal and enzymatic stability to collagen. DAC crosslinked collagen fibres exhibited an increase in hydrothermal stability by 20 °C with autoclaved DAC at pH 8. The collagen matrix resulted in an increase in denaturation peak temperature (TD) and an increase in phase change of activation energy (Ea) and enthalpy change (ΔH) for the shinking process indicating intermolecular crosslinking arising from covalent interactions. Thermal stability and crosslinking efficiency was found to increase with pH and concentration of DAC. DAC treated collagen exhibited 93% resistance to collagenolytic hydrolysis.  相似文献   

6.
Summary Some salts of tin, titanium, zirconium, hafnium, niobium, tantalum, molybdenum and tungsten can act as mordants which can combine with polysaccharides and their presence can be detected as colored compounds with an acid alcoholic solution of gallocyanin. None of these metals produced color reaction when used alone. Titanium, zirconium, hafnium, niobium, tantalum and tin form a blue gallocyanin color with salivary, laryngeal, bronchial, gastrointestinal, uterine cervical gland mucins, cartilage and rat mast cells. In addition, tin (IV), titanium (IV), hafnium, niobium and tantalum stained Brunner gland bluish violet to a purple. Gallocyanin mordanted with molybdenum and tungsten stained collagen, reticulum and cartilage blue to dark blue. In addition, tungsten stained some elastic fibers a bright red violet. Paneth cells were stained dark blue by niobium, molybdenum and acidified titanium potassium oxalate. Molybdenum could be extracted by alkalis and titanium by strong acids after tissues have been mordanted. Methylation prior to mordanting inhibits staining of the mucosubstances by titanium. Sulfation enhances staining reactions by titanium and molybdenum.  相似文献   

7.
In order to estimate the impact of the low-molecular-mass (l.m.m.) VO(IV) binders of blood serum on the potentially insulin-enhancing compound VO(HPO)(2) (HPO, 2-hydroxypyridine-N-oxide): and VO(MPO)(2) (MPO, 2-mercaptopyridine-N-oxide), the speciation in the binary system VO(IV)-HPO and VO(IV)-MPO and in the ternary systems VO(IV)-HPO(MPO)-ligand B (B=oxalate, lactate, citrate or phosphate) was studied by pH-potentiometry. The stability constants of the complexes formed were determined in aqueous solution at I=0.2 M (KCl) and T=25 degrees C. The most probable binding modes of the complexes were determined by EPR method. The pyridine-N-oxides were found to form very stable bis complexes, which are predominant in the pH range 2-7. The results in the ternary systems demonstrate that only the citrate is a strong enough VO(IV) binder to compete with the carrier ligands. The binding ability of the high-molecular-mass (h.m.m.) serum proteins albumin and transferrin were also assessed and transferrin was found to be an efficient binder molecule. The actual solution state of these compounds in blood serum is compared with that of other insulin-mimic VO(IV) complexes.  相似文献   

8.
Binding of laminin to type IV collagen: a morphological study   总被引:18,自引:14,他引:4       下载免费PDF全文
A mixture of laminin and type IV collagen was analyzed by rotary shadowing using carbon/platinum and electron microscopy. Laminin was found to form distinct complexes with type IV collagen: one site of interaction is located 140 nm from the COOH-terminal, noncollagenous (NC1) domain and the other is located within the NH2-terminal region. The isolated NC1 fragment of type IV collagen does not appear to interact with laminin, while pepsin-treated type IV collagen, which lacks the NC1 domain, retains its ability to form complexes with laminin. Analysis of the laminin-type IV complexes indicates that laminin binds to type IV collagen via the globular regions of either of its four arms. This finding is supported by experiments using fragment P1 of laminin which lacks the globular regions and which does not bind to type IV collagen in a specific way. In addition, after heat-denaturation of laminin no specific binding is observed.  相似文献   

9.
K M Koshy  J Wang    J M Boggs 《Biophysical journal》1999,77(1):306-318
Divalent cations mediate a carbohydrate-carbohydrate association between the two major glycolipids, galactosylceramide (GalCer) and its sulfated form, cerebroside sulfate (CBS), of the myelin sheath. We have suggested that interaction between these glycolipids on apposed extracellular surfaces of myelin may be involved in the stability or function of this multilayered structure. A mutant mouse lacking galactolipids because of a disruption in the gene that encodes a galactosyltransferase forms myelin that initially appears relatively normal but is unstable. This myelin contains glucosylceramide (GlcCer) instead of GalCer. To better understand the role of GlcCer in myelin in this mutant, we have compared the ability of divalent cations to complex CBS (galactosyl form) with GlcCer or GalCer in methanol solution by using positive ion electrospray ionization mass spectrometry. Because both the alpha-hydroxylated fatty acid species (HFA) and the nonhydroxylated fatty acid species (NFA) of these lipids occur in myelin, we have also compared the HFA and NFA species. In addition to monomeric Ca2+ complexes of all three lipids and oligomeric Ca2+ complexes of both GalCer and GlcCer, Ca2+ also caused heterotypic complexation of CBS to both GalCer and GlcCer. The heterotypic complexes had the greatest stability of all oligomers formed and survived better at high declustering potentials. Complexes of CBS with GlcCer were less stable than those with GalCer. This was confirmed by using the free sugars and glycosides making up the carbohydrate headgroups of these lipids. HFA species of CBS and GalCer formed more stable complexes than NFA species, but hydroxylation of the fatty acid of GlcCer had no effect. The ability of GlcCer to also complex with CBS, albeit with lower stability, may allow GlcCer to partially compensate for the absence of GalCer in the mouse mutant.  相似文献   

10.
The series of new zirconium(IV) and hafnium(IV) phthalocyanines with various β-dicarbonyl ligands were prepared via direct interaction between di(chloro)zirconium(IV) or hafnium(IV) phthalocyanines and free β-diketones and also with 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one. The structure of the obtained bis(β-dicarbonilato) zirconium(IV) and hafnium(IV) phthalocyanines was studied by two dimension 1H NMR spectroscopy (COSY, NOESY, ROESY). Absorption and fluorescence spectroscopic studies have been investigated in various solvents. Analyzed compounds of concentration range below 10?5 mol/dm3 do not aggregate in the organic solvents. Fluorescence quantum yields (ΦF) and natural life times (τ) of zirconium phthalocyanine complexes have been calculated in toluene, DMSO and THF.  相似文献   

11.
The collagen substrate specificity of rat uterus collagenase   总被引:4,自引:0,他引:4  
The collagen substrate specificity of rat uterus collagenase was studied as a function of both collagen type and species of substrate origin. For each collagen examined, values for the basic kinetic parameters, Km and Vmax (kcat), were determined on collagen in solution at 25 degrees C. In all cases, Lineweaver-Burk plots were linear and rat uterus collagenase behaved as a normal Michaelis-Menten enzyme. Collagen types I, II, and III of all species tested were degraded by rat uterus collagenase. Collagen types IV and V were resistant to enzymatic attack. Both enzyme-substrate affinity and catalytic rates were very similar for all susceptible collagens (types I-III). Values for Km ranged from 0.9 to 2.5 X 10(-6) M. Values for kcat varied from 10.7 to 28.1 h-1. The homologous rat type I collagen was no better a substrate than the other animal species type I collagens. The ability of rat uterus collagenase to degrade collagen types I, II, and III with essentially the same catalytic efficiency is unlike the action of human skin fibroblast collagenase or any other interstitial collagenase reported to date. The action of rat uterus collagenase on type I collagen was compared to that of human skin fibroblast collagenase, with regard to their capacity to cleave collagen as solution monomers versus insoluble fibrils. Both enzymes had essentially equal values for kcat on monomeric collagen, yet the specific activity of the rat uterus collagenase was 3- to 6-fold greater on collagen fibrils than the skin fibroblast enzyme. Thus, in spite of their similar activity on collagen monomers in solution, the rat uterus collagenase can degrade collagen aggregated into fibrils considerably more readily than can human skin fibroblast collagenase.  相似文献   

12.
Protease nexin 1 (PN1) in solution forms inhibitory complexes with thrombin or urokinase, which have opposing effects on the blood coagulation cascade. An initial report provided data supporting the idea that PN1 target protease specificity is under the influence of collagen type IV (1). Although collagen type IV demonstrated no effect on the association rate between PN1 and thrombin, the study reported that the association rate between PN1 and urokinase was allosterically reduced 10-fold. This has led to the generally accepted idea that the primary role of PN1 in the brain is to act as a rapid thrombin inhibition and clearance mechanism during trauma and loss of vascular integrity. In studies to identify the structural determinants of PN1 that mediate the allosteric interaction with collagen type IV, we found that protease specificity was only affected after transient exposure of PN1 to acidic conditions that mimic the elution protocol from a monoclonal antibody column. Because PN1 used in previous studies was purified over a monoclonal antibody column, we propose that the allosteric regulation of PN1 target protease specificity by collagen type IV is a result of the purification protocol. We provide both biochemical and kinetic data to support this conclusion. This finding is significant because it implies that PN1 may play a much larger role in the modeling and remodeling of brain tissues during development and is not simply an extravasated thrombin clearance mechanism as previously suggested.  相似文献   

13.
Collagen is a natural protein, which is used as a vital biomaterial in tissue engineering. The major concern about native collagen is lack of its thermal stability and weak resistance to proteolytic degradation. In this scenario, the crosslinking compounds used for stabilization of collagen are mostly of chemical nature and exhibit toxicity. The enzyme mediated crosslinking of collagen provides a novel alternative, nontoxic method for stabilization. In this study, aldehyde forming enzyme (AFE) is used in the bioconversion of hydroxylmethyl groups of collagen to formyl groups that results in the formation of peptidyl aldehyde. The resulted peptidyl aldehyde interacts with bipolar ions of basic amino acid residues of collagen. Further interaction leads to the formation of conjugated double bonds (aldol condensation involving the aldehyde group of peptidyl aldehyde) within the collagen. The enzyme modified collagen matrices have shown an increase in the denaturation temperature, when compared with native collagen. Enzyme modified collagen membranes exhibit resistance toward collagenolytic activity. Moreover, they exhibited a nontoxic nature. The catalytic activity of AFE on collagen as a substrate establishes an efficient modification, which enhances the structural stability of collagen. This finds new avenues in the context of protein–protein stabilization and discovers paramount application in tissue engineering. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 903–911, 2014.  相似文献   

14.
We here present a detailed study of the ligand-receptor interactions between single and triple-helical strands of collagen and the α2A domain of integrin (α2A), providing valuable new insights into the mechanisms and dynamics of collagen-integrin binding at a sub-molecular level. The occurrence of single and triple-helical strands of the collagen fragments was scrutinized with atom force microscopy (AFM) techniques. Strong interactions of the triple-stranded fragments comparable to those of collagen can only be detected for the 42mer triple-helical collagen-like peptide under study (which contains 42 amino acid residues per strand) by solid phase assays as well as by surface plasmon resonance (SPR) measurements. However, changes in NMR signals during titration and characteristic saturation transfer difference (STD) NMR signals are also detectable when α2A is added to a solution of the 21mer single-stranded collagen fragment. Molecular dynamics (MD) simulations employing different sets of force field parameters were applied to study the interaction between triple-helical or single-stranded collagen fragments with α2A. It is remarkable that even single-stranded collagen fragments can form various complexes with α2A showing significant differences in the complex stability with identical ligands. The results of MD simulations are in agreement with the signal alterations in our NMR experiments, which are indicative of the formation of weak complexes between single-stranded collagen and α2A in solution. These results provide useful information concerning possible interactions of α2A with small collagen fragments that are of relevance to the design of novel therapeutic A-domain inhibitors.  相似文献   

15.
Two major gelatinolytic metalloproteinases (gelatinases) of 65 kDa and 92 kDa were purified from a tumor cell line. Analysis of collagen degradation showed that native full-length Engelbreth-Holm-Swarm (EHS) type IV collagen was not cleaved by the purified gelatinases under conditions where native pepsin-extracted human placental type IV and V collagen and heat-denatured collagens were markedly degraded. However, EHS type IV collagen degradation was noted at 37 degrees C, i.e., under conditions that would favor denaturation of the collagen molecule in solution. The pattern of degradation of human placental type IV and V collagen appeared similar for both gelatinases. Zymogram analysis of gelatinase activity in the absence of sodium dodecyl sulfate (SDS) (to eliminate possible SDS-mediated denaturation of type IV collagen) confirmed the inability of 65 and 92-kDa gelatinases to degrade native full-length EHS type IV collagen. Under the same conditions and in SDS-polyacrylamide gel electrophoresis zymograms the gelatinases degraded pepsin-predigested EHS type IV collagen and pepsin-extracted human placental type IV collagen. These data suggest that the 65- and 92-kDa tumor cell gelatinases are not true type IV collagenases. Their ability to degrade pepsin-solubilized, or denatured, type IV collagen suggests a specificity for telopeptide precleaved or conformationally altered forms of this molecule.  相似文献   

16.
17.
The interaction of N-hydroxyacetamide (acetohydroxamic acid, HL) with V(IV) in aqueous solution has been investigated using potentiometric and spectrophotometric experiments. Density functional method (DFT) has been used aiming to understand the ligand chelation at a molecular level. Stability constants have been estimated for species with the metal/ligand ratios 1:1 and 1:2 from spectrophotometric and potentiometric measurements. The stability of these V(IV) species toward oxidation has been investigated. Experiments carried out in an oxygen atmosphere led to the displacement of the titration curves with respect to the one obtained under inert atmosphere. Spectrophotometric evidence of the V(IV)/V(V) oxidation in the presence of N-hydroxyacetamide is presented. It has been shown that V(IV)/V(V) oxidation in the presence of N-hydroxyacetamide by the oxygen can be simulated using the standard programs for simulating the equilibrium in a multiligand/multimetal system. In this approach, the oxygen is considered a ligand and the log beta estimated from the standard oxidation potential. The structure and respective tautomers of the species have been optimized from DFT calculations. Geometrical and thermodynamical properties have been estimated for the most stable complexes. The VOL-->VOL(2) equilibrium constant has been theoretically estimated with a less than 1.5 logarithmic unit of error with respect to the experimental estimate. The oxidation process has also been investigated and it is adequately described by the equation: 4[VOL(2)]+2H(2)O+O(2)-->4[VO(OH)L(2)]. The calculated value of DeltaG for this reaction is about -46.2 kcal mol(-1), in excellent agreement with the experimental estimates.  相似文献   

18.
The interaction between Cu(II) and the growth-modulating tripeptide glycyl-L-histidyl-L-lysine in the presence and absence of L-histidine was investigated by potentiometric titration and visible-absorption spectrophotometry at 25 degrees C in 0.15 M-NaCl. Analyses of the results in the pH range 3.5--10.6 indicated the presence of multiple species in solution in the binary system and extensive amounts of the ternary complexes in the ternary system. The species distribution and the stability constants, as well as the visible-absorption spectra of the species, were evaluated. The combined results were used to propose the structure of some of the complexes. The influence of the epsilon-amino group of the peptide in the enhancement of the stability constants was reflected prominently when compared with those complexes formed by either glycyl-L-histidine or glycyl-L-histidylglycine. The results obtained from the equilibrium-dialysis experiments showed that this tripeptide was able to compete with albumin for Cu(II) at pH 7.5 and 6 degrees C. At equimolar concentrations of albumin and the peptide, about 42% of the Cu(II) was bound to the peptide. At the physiologically relevant concentrations of Cu(II), albumin, L-histidine and this peptide, about 6% of the Cu(II) was associated with the low-molecular-weight components. This distribution could be due to the binary as well as the ternary complexes. The possible physiological role of these complexes in the transportation of Cu(II) from blood to tissues is discussed.  相似文献   

19.
Evaluation of stability of vanadium(IV) and (V) complexes under similar conditions is critical for the interpretation and assessment of bioactivity of various vanadium species. Detailed understanding of the chemical properties of these complexes is necessary to explain differences observed their activity in biological systems. These studies are carried out to link the chemistry of both vanadium(IV) and (V) complexes of two ligands, 2,6-pyridinedicarboxylic acid (dipicolinic acid, H(2)dipic) and 4-hydroxy-2,6-pyridinedicarboxylic acid (H(2)dipic-OH). Solution speciation of the two 2,6-pyridinedicarboxylic acids with vanadium(IV) and vanadium(V) ions was determined by pH-potentiometry at I=0.2 M (KCl) ionic strength and at T=298 K. The stability and the metal affinities of the ligands were compared. Vanadium(V) complexes were found to form only tridentate coordinated 1:1 complexes, while vanadium(IV) formed complexes with both 1:1 and 1:2 stoichiometries. The formation constant reflects hindered coordination of a second ligand molecule, presumably because of the relatively small size of the metal ion. The most probable binding mode of the complexes was further explored using ambient and low temperature EPR spectroscopy for vanadium(IV) and 51V NMR spectroscopy for vanadium(V) systems. Upon complex formation the pyridinol-OH in position 4 deprotonates with pK approximately 3.7-4.1, which is approximately 6 orders of magnitude lower than that of the free ligand. The deprotonation enhances the ligand metal ion affinity compared to the parent ligand dipicolinic acid. In the light of the speciation and stability data of the metal complexes, the efficiency of the two ligands in transporting the metal ion in the two different oxidation states are assessed and discussed.  相似文献   

20.
Surface modification of natural fibers has been made using different methods. In this paper, cellulose fibers from sugarcane bagasse were bleached and modified by zirconium oxychloride in situ. The chemically modified cellulose fibers were compared to those of bleached ones. Cellulose fibers were modified with ZrO2·nH2O nanoparticles through the use of zirconium oxychloride in acidic medium in the presence of cellulose fibers using urea as the precipitating agent. The spatial distribution characterization of hydrous zirconium oxide on cellulose fibers was carried out by combining both processing and image analyses obtained by SEM and statistical methodologies. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TG) were also used to characterize the nanocomposite. Results indicated that ZrO2·nH2O nanoparticles of about 30-80 nm diameter deposited on cellulose fibers were heterogeneously dispersed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号