首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The GABAergic innervation of the mouse pituitary, including the median eminence, was studied at light microscopic and ultrastructural levels by use of a pre-embedding immunocytochemical technique with antibodies directed against GABA. In the median eminence, a high density of GABA-immunoreactive fibers was found in the external layer where the GABAergic varicosities were frequently observed surrounding the blood vessels of the primary capillary plexus. In the internal and subependymal layers, only few fibers were immunoreactive. The intense labeling of the external layer was observed in the entire rostro-caudal extent of the median eminence. In the pituitary proper, a dense network of GABA-immunoreactive fibers was revealed throughout the neural and intermediate lobes, entering via the hypophyseal stalk. The anterior and tuberal lobes were devoid of any immunoreactivity. The GABA-immunoreactive terminals were characterized in the median eminence, and in the intermediate and posterior lobes at the electron-microscopic level. They contained small clear vesicles, occasionally associated with dense-core vesicles or neurosecretory granules. In the intermediate lobe they were seen to be in contact with the glandular cells. In the posterior lobe and in the median eminence, GABA-immunoreactive terminals were frequently located in the vicinity of blood vessels. These results further support the concept of a role of GABA in the regulation of hypophyseal functions, via the portal blood for the anterior lobe, directly on the cells in the intermediate lobe, and via axo-axonic mechanisms in the median eminence and posterior lobe.  相似文献   

2.
Summary The effects of GABA-elevating agents were examined with respect to the cellular compartments in which GABA increases occurred and the brain region(s) that mediate the anticonvulsant activity of these compounds. Changes in GABA occurring in the presence and absence of GABAergic nerve terminals were estimated in vivo using rats in which the GABA projection to the substantia nigra (SN) was destroyed on one side of the brain. One week post-operatively, the GABA concentration in the denervated SN was 10–20% of control. The net increase in GABA content of the denervated SN was compared to that of the intact SN after intraperitoneal injection of amino-oxacetic acid (AOAA), di-n-propylacetate (DPA) and -vinyl GABA (GVG). In the intact SN, all drugs produced significant increases in GABA. In the denervated SN, both AOAA and GVG produced marked increases in GABA (nearly equivalent to those obtained in the intact SN) whereas DPA was without effect. It therefore appears that the DPA-induced elevation of GABA depends upon the presence of GABAergic nerve terminals whereas AOAA and GVG primarily elevate GABA in non-nerve terminal compartments. An increase in GABA associated with nerve terminals was obtained with GVG only after a latency of more than 12 h following a single injection. The time course of elevation of nerve terminal-associated GABA coincided with the time course of anticonvulsant action of GVG; both effects were maximal at 60 h after a single injection. Taken together, our results indicate that the ability of DPA, AOAA and GVG to protect against chemically- and electrically-induced seizures is directly correlated with increases in nerve terminal GABA and not related to increases in other GABA compartments.Localization of the anatomical site that mediates anticonvulsant activity was examined using intracerebral injections of GVG into fore-, mid-and hindbrain areas. Blockade of tonic hindlimb extension in the maximal electroshock test and blockade of tonic and clonic seizures produced by pentylenetetrazol and bicuculline was obtained by microinjection of GVG (10 µg) into the ventral tegmental area of the midbrain. Injections of GVG (10–40 µg) into forebrain areas (striatum, thalamus) or into hindbrain (pontine tegmentum) were without anticonvulsant activity. Anticonvulsant effects of midbrain GVG were correlated with GABA elevation (3–4 fold) within a 1.5 mm radius of the injection site; these effects were obtained within 6 h and lasted three to four days after a single treatment. After four days seizure activity returned to control. No changes in spontaneous motor activity or reflexes accompanied the GVG injections. Similar but shorter lasting anticonvulsant effects were obtained with the direct GABA receptor agonist muscimol (50 ng) injected into the midbrain site. On the other hand, doses of muscimol up to 500 ng placed in the rostral pontine tegmentum were without anticonvulsant effect, despite the appearance of marked sedation.The time to peak anticonvulsant activity after midbrain microinjection of GVG (6 h) was considerably more rapid than that after intraperitoneal injection (60 h). Compartmental analysis revealed that nerve terminal associated GABA was elevated by 6 h after GVG when the direct microinjection route was used. These results suggest that GABAergic synapses in the midbrain may be critically involved in the control of seizure propagation.  相似文献   

3.
Summary Distribution of (3H)GABA in the rat neural lobe was investigated 5 min after intracarotid administration using quantitative electron-microscopic autoradiography. Specificity of (3H)GABA-uptake was tested by pretreatment of control animals with nipecotic acid. It was concluded that, apart from a small fraction in the perivascular spaces, radioactivity was present exclusively in pituicytes. The results confirm and quantify earlier in-vitro observations; they are compared with recent immunocytochemical findings that reveal the presence of glutamate-decarboxylase-containing axons in the neural lobe. It is concluded that there may be GABAergic terminals that lack an uptake mechanism for exogenous transmitter. Nevertheless, (3H)GABA autoradiography is useful in demonstrating other functional components of GABAergic systems, i.e., glial cells.  相似文献   

4.
In order to obtain an index of the rate of GABA synthesis in different rat brain regions, we examined the rate of accumulation of GABA after irreversible inhibition of GABA-transaminase. Gamma-vinyl-GABA (GVG), a catalytic inhibitor of GABA-transaminase, was microinjected directly into each of four brain areas: superior colliculus (SC), substantia nigra (SN), frontal cortex (CTX) and caudate-putamen (CP). The subsequent rate of GABA accumulation was linear for at least 90 min in all regions, and was found to be 2–3 times higher in the SC and SN than in the CTX and CP. The nerve terminal contribution to the initial rate of GABA accumulation after GVG was determined by comparing values obtained in the intact SN with those obtained in the SN in which the GABAergic afferent terminals had been destroyed. The initial rate of GABA accumulation in the denervated SN was less than one-half of that measured in the intact SN, indicating that, under normal conditions, both nerve-terminal and non-nerve-terminal (perikarya, glia) compartments contribute to the rate of GABA accumulation after GABA-transaminase inhibition. Our results indicate that the intracerebral injection of GVG is a sensitive and reliable method for studying invivo GABA synthesis in brain. Although the rate of GABA accumulation after GVG is sensitive to changes in the nerve terminal compartment, other GABA compartments may also influence these measurements.  相似文献   

5.
Increases (>2.5-fold) in GABA levels in rat brain lead to a large decrease in the level of the 67-kDa form of glutamate decarboxylase (GAD67) through a mechanism involving either a change in GAD67 protein stability or a change in GAD67 mRNA translation. In the present study, brain levels of GABA were manipulated by treating rats with various doses of γ-vinyl-γ-aminobutyric acid (GVG), and the dependence of total GAD activity and levels of GAD67 and GAD65 protein on the levels of GABA was analyzed. Initial studies showed that both GABA and GAD67protein levels reached new steady-state levels after two to four daily injections; GABA increased 1.5- (30 mg of GVG/kg) and fourfold (150 mg of GVG/kg), and GAD67 protein content decreased by 30 and 70%. To assess the sensitivity of GAD67 to GABA, rats were injected with eight different doses of GVG (15-150 mg/kg) for 5 days. With increasing doses of GVG, we observed a gradual increase in both whole-tissue and synaptosomal GABA levels and a gradual decrease in GAD67 protein and GAD activity. The levels of GAD67 remained constant at all GVG doses. GAD67 was remarkably sensitive to GABA. The synaptosomal GAD67 level decreased ∼12% and the whole-neuron GAD67 level decreased ∼3% for each 1 % increase in nerve terminal GABA content when it was close to its physiological level. Our results clearly demonstrate that GAD67 is tightly controlled by intraneuronal GABA, and we suggest that this regulatory mechanism has important implications for the physiological regulation of GABAergic function in the mammalian brain.  相似文献   

6.
The antennal lobe is the primary processing center for olfactory information in insects. To understand further the neural circuitry of this brain area, we have investigated the distribution of γ-aminobutyric acid (GABA) and its colocalization with neuropeptides in the antennal lobe of the noctuid moth Heliothis virescens. Immunocytochemical experiments with an antiserum against GABA showed a large number of labeled somata in the antennal lobe; these somata were located exclusively in the lateral cell cluster. Stained neurites innervating all antennal-lobe glomeruli, including the male-specific macroglomerular complex, suggested a prominent role of GABA in processing olfactory information, including signals from pheromones, interspecifically acting odors, and plant odors. Fibers in two antennocerebral tracts (the middle and dorsal antennocerebral tract) exhibited prominent GABA immunoreactivity. Double-labeling experiments revealed that immunostaining for three neuropeptides, viz., A-type allatostatin, Manduca sexta allatotropin, and FMRFamide-related peptides, was largely colocalized with GABA in cell bodies of the lateral cell cluster. The general absence of peptide immunostaining in the antennocerebral tracts strongly indicated that these peptides were colocalized with GABA in local interneurons of the antennal lobe. In contrast, tachykinin-related peptides occurred in a distinct population of local antennal-lobe neurons that did not exhibit GABA immunostaining. Thus, local interneurons that were not GABAergic were present in the moth antennal lobe. This work was supported by the Norwegian University of Science and Technology (project no. 80902101).  相似文献   

7.
Bilateral ischemia has been shown to alter the net brain levels of energy metabolites such as ATP, phosphocreatine, glucose, and glycogen. The amino acid neurotransmitter gamma-aminobutyric acid (GABA) exerts a tonic inhibitory influence on neural activity. The present studies were designed to evaluate the influence of elevated GABA levels on the metabolic sequelae of ischemia. The GABA transaminase inhibitor gamma-vinyl-GABA (GVG; vigabatrin) was administered to Mongolian gerbils before the production of a bilateral ischemic incident. GABA levels were elevated in all regions assayed. Levels of energy metabolites were also increased, an indication of reduced energy utilization. In control animals, in the absence of GVG, 1 min of bilateral ischemia produced decreases in the levels of all metabolites. In animals pretreated with GVG, the effects of 1 min of bilateral ischemia were attenuated. These data suggest that the level of ongoing activity may affect the response to an ischemic insult. Furthermore, GVG may have a clinical indication in reducing the effect of minor ischemic incidents.  相似文献   

8.
On brain slices from healthy guinea pigs and animals with a model of chronic temporal lobe epilepsy, a comparative study of GABAergic modulation of oscillatory activity of neurons in the medial septal area was carried out. Under the action of GABA, burst activity persisted only in pacemakers in both groups of preparations. In epilepsy, the effectiveness of GABA action on the rhythmic neurons sharply increased. In the control group, GABA significantly reduced bursts frequency in cells preserving their oscillatory activity, whereas in slices from the epileptic brain burst frequency increased under the action of GABA. Blockade of GABAergic receptors led to a disruption of tonic GABAergic intraseptal influences and to a significant decrease in the effectiveness of blockers in epilepsy. The study was the first to demonstrate a dysfunction of the septal GABAergic system in temporal lobe epilepsy, which is a possible cause of a sharp change in the oscillatory properties of septal neurons. These findings contribute to elucidation of the mechanisms of temporal lobe epilepsy.  相似文献   

9.
GABAergic modulation of primary gustatory afferent synaptic efficacy   总被引:1,自引:0,他引:1  
Modulation of synaptic transmission at the primary sensory afferent synapse is well documented for the somatosensory and olfactory systems. The present study was undertaken to test whether GABA impacts on transmission of gustatory information at the primary afferent synapse. In goldfish, the vagal gustatory input terminates in a laminated structure, the vagal lobes, whose sensory layers are homologous to the mammalian nucleus of the solitary tract. We relied on immunoreactivity for the GABA-transporter, GAT-1, to determine the distribution of GABAergic synapses in the vagal lobe. Immunocytochemistry showed dense, punctate GAT-1 immunoreactivity coincident with the layers of termination of primary afferent fibers. The laminar nature and polarized dendritic structure of the vagal lobe make it amenable to an in vitro slice preparation to study early synaptic events in the transmission of gustatory input. Electrical stimulation of the gustatory nerves in vitro produces synaptic field potentials (fEPSPs) predominantly mediated by ionotropic glutamate receptors. Bath application of either the GABA(A) receptor agonist muscimol or the GABA(B) receptor agonist baclofen caused a nearly complete suppression of the primary fEPSP. Coapplication of the appropriate GABA(A) or GABA(B) receptor antagonist bicuculline or CGP-55845 significantly reversed the effects of the agonists. These data indicate that GABAergic terminals situated in proximity to primary gustatory afferent terminals can modulate primary afferent input via both GABA(A) and GABA(B) receptors. The mechanism of action of GABA(B) receptors suggests a presynaptic locus of action for that receptor.  相似文献   

10.
猫下丘中央核GABA能神经元年龄相关变化   总被引:1,自引:1,他引:0  
目的比较研究猫下丘中央核(CIC)GABA能神经元年龄相关变化,探索老年个体听力下降的神经机制。方法Nissl染色显示下丘神经元,免疫组织化学ABC法显示γ-氨基丁酸(GABA)免疫阳性神经元。光镜下观察、拍照,对神经元和GABA能神经元分别计数并换算成密度,测量GABA能神经元直径取平均值。结果GABA阳性反应神经元、阳性纤维及其终末在青年猫及老年猫下丘中央核均有分布。与青年猫相比,老年猫下丘中央核神经元及GABA能神经元密度均显著下降(P<0.01),GABA能神经元下降幅度较大;GABA能神经元胞体直径明显减小(P<0.01),阳性反应明显减弱。结论在衰老过程中猫下丘神经元尤其是GABA能神经元有显著丢失现象,提示GABA能神经元显著减少导致下丘兴奋性和抑制性神经递质之间的平衡失调,可能是引起老年个体听觉功能衰退的重要原因。  相似文献   

11.
Gamma-vinyl GABA (GVG, Vigabatrin), an irreversible inhibitor of GABA transaminase (GABA-T) that inhibits cocaine-induced place preference and self administration has been proposed as a treatment for cocaine addiction. It was therefore important to assess if there was an enhanced toxicity from the combination of GVG with cocaine. No mortality was observed with administration of GVG (60 mg/kg i.v.) alone (n=8) or in combination (n=6) with cocaine (5 mg/kg i.v.). Cocaine-induced EKG alterations were not affected by GVG pretreatment. Plasma alanine amino transferase activity was reduced by GVG treatment and this was not further modified by cocaine administration. These results suggest that acute co-administration of GVG and cocaine does not result in immediate cardiovascular or hepatic toxicity of sufficient significance, to preclude further clinical trials.  相似文献   

12.
The canonical two neuron model of opioid reward posits that mu opioid receptor (MOR) activation produces reward by disinhibiting midbrain ventral tegmental area (VTA) dopamine neurons through inhibition of local GABAergic interneurons. Although indirect evidence supports the neural circuit postulated by this model, its validity has been called into question by growing evidence for VTA neuronal heterogeneity and the recent demonstration that MOR agonists inhibit GABAergic terminals in the VTA arising from extrinsic neurons. In addition, VTA MOR reward can be dopamine-independent. To directly test the assumption that MOR activation directly inhibits local GABAergic neurons, we investigated the properties of rat VTA GABA neurons directly identified with either immunocytochemistry for GABA or GAD65/67, or in situ hybridization for GAD65/67 mRNA. Utilizing co-labeling with an antibody for the neural marker NeuN and in situ hybridization against GAD65/67, we found that 23±3% of VTA neurons are GAD65/67(+). In contrast to the assumptions of the two neuron model, VTA GABAergic neurons are heterogeneous, both physiologically and pharmacologically. Importantly, only 7/13 confirmed VTA GABA neurons were inhibited by the MOR selective agonist DAMGO. Interestingly, all confirmed VTA GABA neurons were insensitive to the GABA(B) receptor agonist baclofen (0/6 inhibited), while all confirmed dopamine neurons were inhibited (19/19). The heterogeneity of opioid responses we found in VTA GABAergic neurons, and the fact that GABA terminals arising from neurons outside the VTA are inhibited by MOR agonists, make further studies essential to determine the local circuit mechanisms underlying VTA MOR reward.  相似文献   

13.

Background

European honeybee (Apis mellifera L.) foragers have a highly developed visual system that is used for navigation. To clarify the neural basis underlying the highly sophisticated visual ability of foragers, we investigated the neural activity pattern of the optic lobes (OLs) in pollen-foragers and re-orienting bees, using the immediate early gene kakusei as a neural activity marker.

Methodology/Principal Findings

We performed double-in situ hybridization of kakusei and Amgad, the honeybee homolog of the GABA synthesizing enzyme GAD, to assess inhibitory neural activity. kakusei-related activity in GABAergic and non-GABAergic neurons was strongly upregulated in the OLs of the foragers and re-orienting bees, suggesting that both types of neurons are involved in visual information processing. GABAergic neuron activity was significantly higher than non-GABAergic neuron activity in a part of the OLs of only the forager, suggesting that unique information processing occurs in the OLs of foragers. In contrast, GABAergic neuron activity in the antennal lobe was significantly lower than that of GABAergic neurons in the OLs in the forager and re-orienting bees, suggesting that kakusei-related visual activity is dominant in the brains of these bees.

Conclusions/Significance

The present study provides the first evidence that GABAergic neurons are highly active in the OL neurons of free-moving honeybees and essential clue to reveal neural basis of the sophisticated visual ability that is equipped in the small and simple brain.  相似文献   

14.
The distribution of GABAergic neurons in brains of the family Salamandridae (Pleurodeles waltli, Triturus alpestris) has been investigated immunohistochemically with an antibody against gamma-aminobutyric acid (GABA). In adult animals, immunoreactive neurons, fibers, and terminals are abundantly labeled. In the telencephalon, pallial areas contain fewer GABAergic neurons and fibers than basal forebrain areas. The amygdalar complex and the habenulae have a complex pattern of GABA-immunoreactivity that is especially pronounced within the neuropil. The pretectal and basal optic systems are provided with GABAergic neurons, corroborating electrophysiological results. The dorsal thalamus and parts of the torus semicircularis are almost completely devoid of GABA-immunoreactive neurons. In the torus, magnocellular neurons known to project to the contralateral counterpart are distinctly GABA-immunoreactive. During ontogeny, GABAergic neurons arise early when the first reflexive movements occur after mechanical stimulation. At stage 28, cells are labeled initially near the nucleus of the medial longitudinal fasciculus, which is the first supraspinal tract to appear in ontogeny. At stage 30 (still before hatching), GABAergic neurons are found in the pretectum, immunoreactive neurons arising in the dorsal tegmentum slightly later. Both systems are known to mediate basic reflexes in gaze stabilization. The commissura posterior is GABAergic at early stages suggesting an important functional role in homonymous inhibition between both sides. Thus in salamanders, the neurotransmitter GABA displays a complex distribution, similar to that in other vertrebrates. This pattern emerges early in ontogeny.  相似文献   

15.
The septal GABAergic system plays a central role in the regulation of activity and excitability of the hippocampus (the main locus of temporal lobe epilepsy, TLE), but the character of changes the septum undergoes in this pathology remains unknown. To address this issue we studied the influences on GABAergic receptors in septal slices from the brain of epileptic guinea pigs compared to a control. In the epileptic brain, the overall increase in the mean frequency of neuronal discharges and the rise in the number of bursting neurons were revealed. The inhibitory action of exogenously applied GABA on neuronal activity is sharply enhanced, whereas the efficacy of action of GABA(A) and GABA(B) receptor blockers decreases, indicating the alteration of intraseptal inhibitory processes in epilepsy. In epilepsy, GABA sharply increases the oscillatory activity of the part of pacemakers, and the opposite effect was observed in the control. In epileptic animals, the GABA receptor blockers did not affect burst neurons, indicating the disturbance of the tonic GABAergic control of the oscillatory activity. Thus, we demonstrated for the first time that the activity of septal neurons and their reactions to GABAergic substances in animals with TLE model changed sharply compared to healthy ones.  相似文献   

16.
1. The GABAergic neurotransmission has been implicated in the modulation of many neural networks in forebrain, midbrain and hindbrain, as well as, in several neurological disorders.2. The complete comprehension of GABA system neurochemical properties and the search for approaches in identifying new targets for the treatment of neural diseases related to GABAergic pathway are of the extreme relevance.3. The present review will be focused on the pharmacology and biochemistry of the GABA metabolism, GABA receptors and transporters. In addition, the pathological and psychobiological implications related to GABAergic neurotransmission will be considered.  相似文献   

17.
为探讨青年猫和老年猫小脑皮质GABA能神经元及其表达的年龄相关性变化,利用Nissl染色显示小脑皮质结构及神经元,免疫组织化学ABC法标记GABA免疫阳性神经元。光镜下观察,采集图像,并利用图像分析软件对分子层、蒲肯野细胞层和颗粒层神经元及GABA免疫阳性神经元及其灰度值进行分析统计。结果显示,GABA免疫阳性神经元、阳性纤维及终末在青年猫和老年猫小脑皮质各层均有分布。与青年猫相比,老年猫分子层、蒲肯野细胞层神经元和GABA免疫阳性神经元密度及其GABA免疫阳性反应强度均显著下降(P<0.01),颗粒层神经元密度和GABA免疫阳性强度也显著下降(P<0.01),但其GABA免疫阳性神经元密度无显著变化(P>0.05);蒲肯野细胞的胞体萎缩,阳性树突分枝减少。因此认为,衰老过程中猫小脑皮质GABA能神经元的丢失和GABA表达的下降,可能是老年个体运动协调、精确调速和运动学习等能力下降的重要原因之一。  相似文献   

18.
The effect of different treatments on amino acid levels in neostriatum was studied to throw some light on the synthesis and metabolism of gamma-aminobutyric acid (GABA). Irreversible inhibition of GABA transaminase by microinjection of gamma-vinyl GABA (GVG) led to a decrease in aspartate, glutamate, and glutamine levels and an increase in the GABA level, such that the nitrogen pool remained constant. The results indicate that a large part of brain glutamine is derived from GABA. Hypoglycemia led to an increase in the aspartate level and a decrease in glutamate, glutamine, and GABA levels. The total amino acid pool was decreased compared with amino acid levels in normoglycemic rats. GVG treatment of hypoglycemic rats led to a decrease in the aspartate level and a further reduction in glutamate and glutamine levels. In this case, GABA accumulation continued, although the glutamine pool was almost depleted. The GABA level increased postmortem, but there were no detectable changes in levels of the other amino acids. Pretreatment of the rats with hypoglycemia reduced both glutamate and glutamine levels with a subsequent decreased postmortem GABA accumulation. The half-maximal GABA synthesis rate was obtained when the glutamate level was reduced by 50% and the glutamine level was reduced by 80%.  相似文献   

19.
Purified antisera against GABA were prepared. A few small GABAergic neurons in the rat locus coeruleus were immunohistochemically demonstrated by both the unlabeled peroxidase-antiperoxidase method and the avidin-biotin peroxidase complex method using affinity-purified GABA antibodies. The glial fibrillary acidic protein immunoreactivity in this nucleus was localized by the latter method in the astrocytal framework encircling medium-sized and small neurons as well as in straight processes. Astrocytes may play a role as energy donors to these neurons.  相似文献   

20.
Ganguly K  Schinder AF  Wong ST  Poo M 《Cell》2001,105(4):521-532
GABA is the main inhibitory neurotransmitter in the adult brain. Early in development, however, GABAergic synaptic transmission is excitatory and can exert widespread trophic effects. During the postnatal period, GABAergic responses undergo a switch from being excitatory to inhibitory. Here, we show that the switch is delayed by chronic blockade of GABA(A) receptors, and accelerated by increased GABA(A) receptor activation. In contrast, blockade of glutamatergic transmission or action potentials has no effect. Furthermore, GABAergic activity modulated the mRNA levels of KCC2, a K(+)-Cl(-) cotransporter whose expression correlates with the switch. Finally, we report that GABA can alter the properties of depolarization-induced Ca(2+) influx. Thus, GABA acts as a self-limiting trophic factor during neural development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号