首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The effects of ionic strength and cationic valency of the fluid medium on the surface potential and dextran-induced aggregation of red blood cells (RBC's) were investigated. The zeta potential was calculated from cell mobility in a microelectrophoresis apparatus; the degree of aggregation of normal and neuraminidase-treated RBC's in dextrans (Dx 40 and Dx 80) was quantified by microscopic observation, measurement of erythrocyte sedimentation rate, and determination of low-shear viscosity. A decrease in ionic strength caused a reduction in aggregation of normal RBC's in dextrans, but had no effect on the aggregation of neuraminidase-treated RBC's. These findings reflect an increase in electrostatic repulsive force between normal RBC's by the reduction in ionic strength due to (a) a decrease in the screening of surface charge by counter-ions and (b) an increase in the thickness of the electric double layer. Divalent cations (Ca++, Mg++, and Ba++) increased aggregation of normal RBC's in dextrans, but had no effect on the aggregation of neuraminidase-treated RBC's. These effects of the divalent cations are attributable to a decrease in surface potential of normal RBC's and a shrinkage of the electric double layer. It is concluded that the surface charge of RBC's plays a significant role in cell-to-cell interactions.  相似文献   

2.
Different methods are commonly used to study the red blood cell aggregation phenomenon. The major interest of the ultrasonic method presently discussed is to assess the mean size of red blood cell (RBC) aggregates by measuring ultrasonic intensity backscattered by blood. Applying Rayleigh theory of sound to blood medium, one can show that the scattered ultrasonic intensity is proportional to the 6th power of the size of the RBC aggregates. The ultrasonic method is used to evaluate the mean size of RBC aggregates induced by dextrans. RBCs are suspended at various hematocrits H, in solution of dextrans of different molecular weights M and at different weight concentrations Cw. Results are presented by using the ultrasonic backscattering coefficient chi which is a relevant quantity in a scattering experiment. For suspensions of RBCs aggregated with dextran of molecular weight 70,000 dalton (dextran 70) at concentration Cw = 40 g/l, variations of chi as a function of H are similar to those obtained for normal blood. At a fixed hematocrit, variation of chi versus Cw for dextran 70 exhibits a maximum at 40 g/l. In the case of RBCs suspended at hematocrit 20% and aggregated with dextrans of molecular weight M, 70,000 less than or equal to M less than or equal to 2,000,000, the variations of chi versus molar concentration Cm are similar to those of the microscopic aggregation index defined by Chien (1). Finally, a statistical model of the blood structure previously described (2) is applied to evaluate the mean size of the aggregates. According to this model, the mean size of aggregates is independent of hematocrit for H less than or equal to 40% and independent of the molecular weight of dextran for M greater than or equal to 150,000 dalton.  相似文献   

3.
Aggregation of human RBC in binary dextran-PEG polymer mixtures   总被引:1,自引:0,他引:1  
The present study was prompted by prior reports suggesting that small polymers can affect RBC aggregation induced by large macromolecules. Human RBC were washed and re-suspended in isotonic buffer solutions containing 72.5 kDa dextran (DEX 70, 2 g/dl) or 35.0 kDa poly(ethylene glycol) (PEG 35, 0.35 g/dl), then tested for aggregation in these solutions with and without various concentrations of smaller dextrans (10.5 and 18.1 kDa) or PEGs (3.35, 7.5 and 10.0 kDa). RBC aggregation was measured at stasis and at low shear using a photometric cone-plate system (Myrenne Aggregometer) and RBC electrophoretic mobility (EPM) in the various polymer solutions via an automated system (E4, HaSoTec GmbH). Our results indicate: (1) a heterogeneous effect with greater reduction of aggregation for small PEGs added to DEX 70 or for small dextrans added to PEG 35 than for small polymers of the same species; (2) for cells in DEX 70, aggregation decreased with increasing molecular mass and concentration of the small dextrans or PEGs; (3) for cells in PEG 35, small dextrans decreased aggregation with increasing molecular mass and concentration, whereas small PEGs had minimal effects with a minor influence of concentration and an inverse association between molecular mass and inhibition of aggregation. RBC EPM results indicated the expected polymer depletion for cells in DEX 70 or PEG 35, and that small PEGs yielded greater EPM values than small dextrans for cells in PEG 35 whereas the opposite was true for cells in DEX 70. Interpretation of our results in terms of the depletion model for RBC aggregations appears appropriate, and our findings are consistent with the assumption that inhibition of aggregation occurs because of an increase of small molecules in the depletion region. Our results thus suggest the merit of further studies of red blood cell aggregation in binary polymer systems.  相似文献   

4.
The effectiveness of dextran fractions (Dx-500, Dx-100, Dx-70) and polyvinylpyrrolidone (PVP-360, PVP-40) in inducing aggregation of red blood cells (RBC) was studied in a nonflowing environment. The Dx fractions, at low concentrations, induced aggregation of human RBC but failed to do so at high concentrations (concentrations greater than 70 g/L). The effect was different on RBC from animal species (cat and rabbit); aggregation increased steadily with the Dx concentration and there was no critical concentration beyond which Dx failed to induce aggregation. The PVP was found to be very effective, at all concentrations, in inducing aggregation of RBC from both human and the animal species. These results have a twofold significance (1) they suggest that Dx and PVP, both neutral polymers, interact differently with the human RBC membrane; and (2) the association of Dx with the human RBC membrane is different from that with cat and rabbit RBC membranes.  相似文献   

5.
Aggregation of human red blood cells (RBCs) induced by dextrans of various molecular weight has been studied by using a new ultrasonic interferometry method. This method, based on A-mode echography, allowed for the measurement of the accumulation rate of particles on a solid plate which is related to their sedimentation rate (i.e., to their mean size). The initial aggregation process, the mean and the maximum sedimentation rate of aggregates and the packing of the sedimented RBCs have been investigated. Effects of hematocrit, molecular weight of dextrans and inhibition by dextran 40 on the RBC aggregation induced by dextran of higher molecular weight have been determined by analysing variations of the aggregate size. Results obtained confirm the aggregation effect of dextrans of molecular weights equal or higher than 70,000 dalton and disaggregation effect of dextran 40,000 dalton on aggregation by dextrans of higher molecular weight.  相似文献   

6.
K M Jan 《Biorheology》1986,23(2):91-98
Red blood cell (RBC) aggregation in heparin-saline solution was quantified by microscopic observation. The adsorption isotherms of heparin onto normal and neuraminidase-treated RBC surfaces were determined by radioactive heparin labeled with 125I-Bolton-Hunter Reagent. RBC aggregation by heparin requires the presence of sialic acids at cell surface and was enhanced by reduction of ionic strength of the suspending medium. Adsorption of heparin onto RBC surface was increased by removal of sialic acids. These findings not only serve to elucidate the basic mechanism of cell-cell interaction mediated by negatively charged macromolecules, but also provide experimental evidence for the possible conformational change of macromolecules at the charged surface.  相似文献   

7.
P Snabre  H Baümler  P Mills 《Biorheology》1985,22(3):185-195
The aggregation behaviour of normal and heat treated (48.4 degrees C, 48.8 degrees C, 49.5 degrees C) red blood cells (RBCs) suspended in dextran-saline solutions (Dx 70, Dx 173) was investigated by a laser light reflectometric method over a wide range of bridging energies. The characteristic times of rouleau formation were found to be increased after RBC heat treatment. The disaggregation shear stress is not significantly different between normal RBCs and heat treated RBCs. The loss of cell deformability is nevertheless shown to improve slightly the dissociation efficiency of the flowing liquid in a shear flow resulting in a small reduction of the disaggregation shear rate after heat treatment. Heat treatment is also shown to alter the structure of RBC network at equilibrium. These results indicate that heat induced alterations of erythrocytes only affects the mechanical properties of the cell membrane without significant changes in the macromolecular bridging energy.  相似文献   

8.
In isolated perfused guinea pig hearts, coronary flow causes a positive inotropic effect [positive coronary flow-induced effect (+CFIE)] that could be altered by dextrans (Dx) in the coronary perfusion solution. To test this possibility, Dx of 20, 40, 70, and 500 kDa were infused and found to modulate +CFIE; however, when Dx infusion was terminated, the effect persisted, i.e., was irreversible/nonwashable, suggesting that Dx may bind to luminal endothelial lectinic structures. This hypothesis was tested when Dx [with fluorescent traces (D*)] bound to the vessel wall was hydrolyzed by dextranase infusion and washout of D* fragments completely reverted the +CFIE, and it was found that bound D* to be displaced by free Dx required concentrations 50-100 times that used during binding. In addition, dose-response curves for Dx on +CFIE show that the higher the Dx molecular mass, the lesser the concentration required to have an effect. Because a large Dx molecule has a greater number polymeric glucose branches, it can bind to a larger number of endothelial lectinic sites, requiring a lower concentration to affect +CFIE. Our results suggest that luminal endothelial lectinic structures are part of the flow-sensing assembly.  相似文献   

9.
Koala, a marsupial, and echidna, a monotreme, are mammals native to Australia. Blood viscosity (62.5–1250 s?1), red blood cell (RBC) deformability, RBC aggregation, aggregability and surface charge, and hematological parameters were measured in blood samples from six koalas and six echidnas and compared to adult human blood. Koala had the largest RBC mean cell volume (107.7±2.6 fl) compared to echidna (81.3±2.6 fl) and humans (88.4±1.2 fl). Echidna blood exhibited the highest viscosity over the entire range of shear rates. Echidna RBC were significantly less deformable than koala RBC but more deformable than human RBC. Echidna RBC had significantly lower aggregability (i.e., aggregation in standardized dextran medium) than koala or human RBC, while aggregation in autologous plasma was similar for the three species. Erythrocyte surface charge as indexed by RBC electrophoretic mobility was similar for human and echidna cells but was 40% lower for koala RBC. Data obtained during this preliminary study indicate that koala and echidna have distinct hemorheological characteristics; investigation of these properties may reveal patterns relevant to specific behavioral and physiological features of these animals.  相似文献   

10.
M Singh  K P Joseph 《Biorheology》1987,24(1):53-61
The erythrocytes sedimentation profiles (ESP) of normal blood and of blood mixed with saline, albumin (7%), and various molecular weight dextrans of different concentrations, at various height and widths of the sample holder are determined. These observations show that the sedimentation characteristics of the erythrocytes depend on the influence of these substitutes on the plasma and cellular constituents. The normalised aggregation and the sedimentation rate, as determined from these profiles, show that the dextran 40 and dextran 70 retard the erythrocytes sedimentation, for high molecular weight it is similar to that of normal blood and is the maximum for saline. This change for high molecular weight dextrans could be attributed to the enhanced aggregation tendency of erythrocytes and for saline to the enhanced sedimentation due to decrease in the viscosity and density of suspending medium. The influence of the various concentrations of dextrans on these parameters has been determined.  相似文献   

11.
Polymer-induced red blood cell (RBC) aggregation is of current basic science and clinical interest, and a depletion-mediated model for this phenomenon has been suggested; to date, however, analytical approaches to this model are lacking. An approach is thus described for calculating the interaction energy between RBC in polymer solutions. The model combines electrostatic repulsion due to RBC surface charge with osmotic attractive forces due to polymer depletion near the RBC surface. The effects of polymer concentration and polymer physicochemical properties on depletion layer thickness and on polymer penetration into the RBC glycocalyx are considered for 40 to 500 kDa dextran and for 18 to 35 kDa poly (ethylene glycol). The calculated results are in excellent agreement with literature data for cell-cell affinities and with RBC aggregation-polymer concentration relations. These findings thus lend strong support to depletion interactions as the basis for polymer-induced RBC aggregation and suggest the usefulness of this approach for exploring interactions between macromolecules and the RBC glycocalyx.  相似文献   

12.

Introduction

Given the severity of the current imbalance between blood donor supply and recipient demand, discarded blood drawn from the routine venesections of haemochromatosis (HFE-HH) patients may serve as a valuable alternative source for blood banks and transfusion. We investigated whether functional or biochemical differences existed between HFE-HH and control blood samples, with particular focus upon the haemorheological properties, to investigate the viability of venesected blood being subsequently harvested for blood products.

Methods

Blood samples were collected from HFE-HH patients undergoing venesection treatment (n = 19) and healthy volunteers (n = 8). Moreover, a second experiment investigated the effects of a dose-response of iron (0, 40, 80, 320 mM FeCl3) on haemorheology in healthy blood samples (n = 7). Dependent variables included basic haematology, iron status, haematocrit, red blood cell (RBC) aggregation (native and standardised haematocrit) and “aggregability” (RBC tendency to aggregate in a standard aggregating medium; 0.4 L/L haematocrit in a Dx70), and RBC deformability.

Results

Indices of RBC deformability were significantly decreased for HFE-HH when compared with healthy controls: RBC deformability was significantly decreased at 1–7 Pa (p < 0.05), and the shear stress required for half maximal deformability was significantly increased (p < 0.05) for HFE-HH. RBC aggregation in plasma was significantly increased (p < 0.001) for HFE-HH, although when RBC were suspended in plasma-free Dx70 no differences were detected. No differences in RBC deformability or RBC aggregation/aggregability were detected when healthy RBC were incubated with varying dose of FeCl3.

Conclusion

HFE-HH impairs the haemorheological properties of blood; however, RBC aggregability was similar between HFE-HH and controls when cells were suspended in a plasma-free medium, indicating that plasma factor(s) may explain the altered haemorheology in HFE-HH patients. Acute exposure to elevated iron levels does not appear (in isolation) to account for these differences. Further consideration is required prior to utilising routine venesection blood for harvesting RBC concentrates due to the potential risk of microvascular disorders arising from impaired haemorheology.  相似文献   

13.
Propranolol, in the presence of calcium, causes marked K efflux from human red blood cells (high K, low Na). The studies reported here indicate this effect of propranolol is specific for K and does not represent a nonspecific permeability increase for intracellular cations to leave the cell. Amphotericin-treated human RBC's (high Na, low K) and dog RBC's (high Na, low K) both gain K and increase in size when incubated in a K-medium containing propranolol and calcium. No effect was noted when cat RBC's (high Na, low K) were similarly treated. Propranolol, independent of added calcium, also inhibited the normally increased Na efflux observed when dog RBC's are suspended in K-medium. These species differences in response to propranolol thus may serve as a focus for elucidating the mechanism by which this drug alters normal membrane physiology. The unique drug effect on Na permeability of canine erythrocytes also may be a useful probe for the study of dog RBC volume regulation.  相似文献   

14.
Recent studies have shown that the covalent attachment of poly(ethylene glycol), abbreviated as PEG, to the surface of human red blood cells (RBC) leads to masking of membrane antigenic sites and inhibition of RBC aggregation. The effects of PEG coating on the regions near the RBC glycocalyx were thus explored using cell micro-electrophoresis. Both linear (3.35, 18.5, 35.0) and an 8-arm 35.9 kDa reactive PEG were used; in one series, thick cross-linked coats were obtained using a branched PEG amine as a cross-linker. The results indicate marked decreases of RBC mobility (up to 90%) which were affected by polymer molecular mass and geometry. Since PEG is neutral and its covalent attachment is predominantly to primary amine groups, such decreases of mobility most likely reflect structural changes near and within the RBC glycocalyx rather than decreased surface charge density. Experimental data were analyzed using a theoretical approach which allows calculation of the thickness and friction of the polymer layers: (1) for linear PEGs, thickness increased and friction decreased with polymer mass; (2) compared to linear PEGs of similar molecular mass, thickness was less and friction was greater for the branched PEG; (3) cross-linked PEG coatings were more than 50 nm thick and were insensitive to changes of ionic strength. These observations are consistent with the aggregation behavior of PEG-coated RBC and indicate the usefulness of micro-electrophoresis methods for studies of covalently-attached polymers: the resulting calculated thickness and friction factors should be of value in achieving desired cellular surface characteristics or levels of cell-cell interaction.  相似文献   

15.
The site and nature of change in resistance to blood flow in canine left lung lobe preparation after changes in blood viscosity were assessed by using the arterial and venous occlusion (AVO) technique and the vascular pressure-flow relationship. Blood viscosity was changed by erythrocyte (RBC) shrinkage and swelling with hypertonic and hypotonic NaCl solutions and by RBC membrane rigidification with heat treatment (49 degrees C for 1 h). The results show that although all three methods of changing blood viscosity increased the pulmonary vascular resistance (PVR) by 15-50%, the site and nature of the change in PVR were different in each case. The AVO data showed that the increase in PVR with heat treatment of RBC's was due entirely (100%) to increased resistance of the middle microvascular segment, whereas deviation from normal osmolarity potentiated the resistance in arterial, middle, and venous segments. By examining the effect of osmolarity in plasma-perfused lobes, it was possible to separate the increase in PVR due to changes in RBC deformability from those due to other factors. The increase in arterial and venous resistances with hypertonic solution was attributed in part (approximately 50%) to factors other than RBC's; however, the increase in middle resistance was entirely due to RBC crenation. The increase in arterial and venous resistances with hypotonic solutions was small and was apparently caused by factors other than RBC swelling, whereas the increase in middle resistance was partially (approximately 50%) due to RBC swelling and partially to other factors (e.g., endothelial cell hydration).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Synthetic 20-mer long non-overlapped peptides, from STEVOR protein, were tested in RBC binding assays for identifying STEVOR protein regions having high RBC binding activity and evaluating whether these regions inhibit Plasmodium falciparum in vitro invasion. Affinity constants, binding site number per cell and Hill coefficients were determined by saturation assay with high activity binding peptides (HABPs). HABP binding assays using RBCs previously treated with enzymes were carried out to study the nature of the receptor. The molecular weight of RBC surface proteins interacting with HABPs was determined by cross-linking assays and SDS-PAGE analysis. RBC binding assays revealed that peptides 30561 (41MKSRRLAEIQLPKCPHYNND60), 30562 (61PELKKIIDKLNEERIKKYIE80) and 30567 (161ASCCKVHDNYLDNLKKGCFG180) bound saturably and with high binding activity, presenting nanomolar affinity constants. HABP binding activity to RBCs previously treated with neuraminidase and trypsin decreased, suggesting that these peptides bound to RBC surface proteins and that such binding could be sialic acid dependent. Cross-linking and SDS-PAGE assays showed that the three HABPs specifically bound to 30 and 40 kDa molecular weight RBC membrane proteins. Peptides 30561, 30562 and 30567 inhibited P. falciparum in vitro invasion of red blood cells in a concentration-dependent way. Goat sera having STEVOR protein polymeric peptides antibodies inhibit parasite in vitro invasion depending on concentration. Three peptides localized in STEVOR N-terminal and central regions had high, saturable, binding activity to 30 and 40 kDa RBC membrane proteins. These peptides inhibited the parasite's in vitro invasion, suggesting that STEVOR protein regions are involved in P. falciparum invasion processes during intra-erythrocyte stage.  相似文献   

17.
In order to clarify the mechanism of dextran-induced aggregation, the effect of the ionic strength (I) on the minimal shear stress (tau(c)) required to rupture RBC doublets was studied for suspensions with the external media containing 76 and 298 kDa dextrans. At low and high ionic strengths, tau(c) increases with increasing I, whereas at intermediate I values, tau(c) versus I dependencies reveal a plateau step. The non-monotonous shape of these curves disagrees with the depletion model of RBC aggregation and is consistent with the predictions of the bridging mechanism. Literature reports point out that elastic behavior of dextran molecules in low and high I regions is fairly typical of Hookean springs and hence predict an increase in tau(c) with increasing I. A plateau step is accounted for by the enthalpic component of the dextran elasticity due to the shear-induced chair-boat transition of the dextran's glucopyranose rings. A longer plateau step for suspensions with a higher molecular weight dextran is explained by a larger contribution of the enthalpic component to the dextran elasticity. Thus, the results reported in this study provide evidence that RBC aggregation is caused by the formation of dextran bridges between the cells.  相似文献   

18.
T Maeda  A Asano  K Oki  Y Okada  S Onishi 《Biochemistry》1975,14(17):3736-3741
Fusion of red blood cells (RBC) induced by hemagglutinating virus of Japan (HVJ) has been studied using a phosphatidylcholine spin label. The spin label was readily incorporated and diffused into the lipid bilayer portion of the viral envelope. The exchange broadening in the electron spin resonance (ESR) spectrum of densely labeled virus disappeared rapidly when the virus was mixed with RBC at 37 degrees. The spectrum gradually approached that of the host cell spin labeled with the phosphatidylcholine label. The results directly indicate transfer and intermixing of phospholipid molecules between the viral envelope and RBC membrane. The transfer reaction was strongly dependent on temperature. No transfer was observed at lower temperatures where the virus adsorbed to the cell and caused aggregation but no hemolysis and fusion. The transfer rate remained negligibly small until 19 degrees and increased rapidly between 25 and 30 degrees. The virus-induced hemolysis showed similar temperature dependence. The transfer rate was greatly reduced under inhibitory conditions of fusion: glutaraldehyde treatment of RBC, trypsin treatment of HVJ, or the presence of concanavalin A. Only slight transfer was observed from fusion-inactive influenza virus to RBC. The transfer was greatly enhanced by the help of HVJ. The close parallelism suggests that the transfer and intermixing are necessary steps to the cell fusion. The transfer rate was dependent on fluidity of the host cell membrane and independent of the viral dose. The virus-induced transfer of phospholipid molecules between RBC's was also detected by the spin label. Its temperature dependence was quite similar to that for the virus-to-cell transfer. The intercellular transfer was nearly proportional to the viral dose.  相似文献   

19.
T S Hakim  A S Macek 《Biorheology》1988,25(6):857-868
The contribution of erythrocyte deformability to the pulmonary vascular resistance during hypoxia in different animal species has not been examined. We hypothesized that the increase in pulmonary vascular resistance during hypoxia was partially due to erythrocytes (RBC's) becoming less deformable during hypoxia, and therefore their transit in the capillaries becomes restricted. To test this, we measured an index of deformability of RBC's from six animal species (dog, pig, cat, rabbit, hamster, rat) during normoxic and hypoxic condition, and compared the changes in deformability with the pulmonary hypoxic pressor response (HPR) which has been reported in the same species. Deformability was indexed as the resistance that a Hemafil polycarbonate membrane (Nucleopore filter, 4.7 micron pores) offers to a 10% suspension of RBC's. The RBC suspension was either normoxic (PO2 = 150 torr) or hypoxic (PO2 = 50 torr). We found that hypoxia decreased RBC deformability; the largest decrease occurred in rat RBC's, a small but significant decrease was observed in the RBC's of cats, rabbits and hamsters, but no change was detected in RBC's of dogs or pigs. In general, such changes in deformability do not correlate well with the HPR in intact or in isolated lungs, for example the pig, had the largest HPR but the smallest change in RBC deformability. In some species, however, there was a positive correlation between RBC deformability and HPR, for example rats, rabbits and cats are usually better responders than dogs and hamsters, similarly the deformability of RBC's in rats, rabbits and cats were also more influenced by hypoxia than RBC's from dogs. The limiting factors in this relationship are the artificial conditions which were used to measure deformability and HPR, both may be different than in the intact conditions. Nevertheless the present data show that erythrocytes of some species can become less flexible during hypoxia, and hence may impede the transit in the capillaries. Therefore we propose that the hypoxic pressor response in the pulmonary vasculature may be partly due to smooth muscle contraction (vasoconstriction) and partly due to a decrease in erythrocyte deformability (capillary obstruction). Both components are likely to be species dependent.  相似文献   

20.
Impact of Nutrient Composition on a Degradative Biofilm Community   总被引:4,自引:1,他引:3       下载免费PDF全文
A microbial community was cultivated in flow cells with 2,4,6-trichlorobenzoic acid (2,4,6-TCB) as sole carbon and energy source and was examined with scanning confocal laser microscopy and fluorescent molecular probes. The biofilm community which developed under these conditions exhibited a characteristic architecture, including a basal cell layer and conspicuous mounds of bacterial cells and polymer (approximately 20 to 30 (mu)m high and 25 to 40 (mu)m in diameter) occurring at 20- to 200-(mu)m intervals. When biofilms grown on 2,4,6-TCB were shifted to a labile, nonchlorinated carbon source (Trypticase soy broth), the biofilms underwent an architectural change which included the loss of mound structures and the formation of a more homogeneous biofilm. Neutrally charged fluorescent dextrans, which upon hydration become cationic, were observed to bind to mounds, as well as to the basal cell layer, in 14-day biofilms. In contrast, polyanionic dextrans bound only to the basal cell layer, indicating that this material incorporated sites with both positive and negative charge. The results from this study indicate that nutrient composition has a significant impact on both the architecture and the physicochemistry of degradative biofilm communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号