首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is an overlap of carrier-mediated L-amino acid transport and apparent simple diffusion when measured in intestinal brush border membrane vesicles. Using L-threonine and L-glutamine as representative amino acids, this study was undertaken to estimate apparent simple diffusion of L-amino acids and to establish the effective dosage of HgCl2 for completely blocking carrier-mediated L-amino acid transport in porcine jejunal enterocyte brush border membrane vesicles. Jejunal mucosa was scraped from three pigs weighing 26 kg. Enterocyte brush border membrane vesicles, with an average enrichment of 24-fold in sucrase specific activity, were prepared by Mg2+-precipitation and differential centrifugation. In vitro uptake was measured by the fast filtration manual procedure. HgCl2 blocked the carrier-mediated initial transport of L-threonine and L-glutamine under Na+-gradient condition in a dose-dependent manner. At the minimal concentration of 0.165 micromol HgCl2 mg(-1) protein, carrier-mediated L-threonine and L-glutamine transport was completely inhibited. The apparent L-threonine and L-glutamine diffusion was estimated to be 8.6+/-0.7 and 12.4+/-1.0% of the total uptake at the substrate concentrations of 5 microM (L-threonine) and 50 microM (L-glutamine). Therefore, the treatment of porcine brush border membrane vesicles with a minimum of 0.165 micromol HgCl2 mg(-1) protein completely blocks carrier-mediated L-amino acid transport and enables the direct estimation of apparent L-amino acid diffusion in enterocyte brush border membrane vesicles.  相似文献   

2.
The uptake of radiolabeled p-hydroxybenzylglucosinolate (p-OHBG) by protoplasts isolated from leaves of Brassica napus was detected using silicone oil filtration technique. The uptake was pH-dependent with higher uptake rates at acidic pH. Imposition of a pH gradient (internal alkaline) across the plasma membrane resulted in a rapid uptake of p-OHBG, which was inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone, indicating that the uptake is dependent on a proton motive force. Dissipation of the internal positive membrane potential generated a small influx as compared with that seen for pH gradient (DeltapH). Kinetic studies demonstrated the presence of two uptake systems, a saturable and a linear component. The saturable kinetics indicated carrier-mediated translocation with a K(m) of 1.0 mm and a V(max) of 28.7 nmol/microl/h. The linear component had very low substrate affinity. The carrier-mediated transport had a temperature coefficient (Q(10)) of 1.8 +/- 0.2 in the temperature range from 4-30 degrees C. The uptake was against a concentration gradient and was sensitive to protonophores, uncouplers, H(+)-ATPase inhibitors, and the sulfhydryl group modifier p-chloromercuriphenylsulfonic acid. The carrier-mediated uptake system had high specificity for glucosinolates because glucosinolate degradation products, amino acids, sugars, or glutathione conjugates did not compete for p-OHBG uptake. Glucosinolates with different side chains were equally good competitors of p-OHBG uptake, which indicates that the uptake system has low specificity for the glucosinolate side chains. Our data provide the first evidence of an active transport of glucosinolates by a proton-coupled symporter in the plasma membrane of rape leaves.  相似文献   

3.
Transport of 5-hydroxytryptamine by dense granules from porcine platelets   总被引:1,自引:0,他引:1  
A method is described for the isolation of a homogeneous preparation of dense granules from procine platelets. The purified dense granule fraction contained approximately 400 nmol of 5-hydroxytryptamine/mg of protein and appeared to be homogeneous when examined by electron microscopy. Isolated dense granules transport exogenously added 5-hydroxytryptamine via two mechanisms: 1) a carrier-mediated process predominating at low substrate concentrations and 2) a diffusion-controlled process predominating at high substrate concentrations. Temperature studies revealed an apparent energy of activation of 14.9 kcal/mol for the carrier-mediated transport. Kinetic data yielded a Km of 3.3 micron and a Vmax of 0.79 nmol/min/mg of protein for the mediated transport process. Steady state uptake was sensitive to changes in medium osmotic pressure and a decline in uptake below 300 mosM was correlated with release of endogenous 5-hydroxytryptamine. The transport was inhibited by a number of structural analogs of 5-hydroxytryptamine. These results demonstrate the existence of a carrier-mediated transport system for 5-hydroxytryptamine in the membranes of the platelet dense granules.  相似文献   

4.
1. D-glucose transport across the intestinal brush-border membrane of the cat, a carnivorous animal, was investigated using isolated brush-border membrane vesicles (BBMV). Kinetic experiments were performed under zero-trans conditions (initial [Na+]in and [Gluc]in = O) with the transmembrane electrical potential difference clamped to zero. 2. D-glucose uptake by the BBMV was strongly stimulated by an inwardly directed Na+-gradient. Uptake under Na+-free conditions seemed to occur by simple diffusion. 3. The apparent kinetic constants (Vmax, Km) of Na+-dependent D-glucose transport were computed by forcing initial uptake rates at 0.002-10.0 mmol/l D-glucose to either a Michaelis-Menten type equation with a single or with two carrier-mediated components. 4. Best fit of the experimental data was obtained with the two-component model indicating the existence of two Na+-dependent carrier-mediated mechanisms. System 1 and system 2 differ with respect to the transport velocity as well as the substrate affinity constants with Vmax being 2.5-fold and Km being 5-fold higher for system 1 compared with system 2.  相似文献   

5.
Primary cultures of mononucleated myoblasts from 12-day-old chick embryos have a twofold higher rate of α-aminoisobutyric acid (AIB) transport before fusion occurs to form multinucleated myotubes. Several lines of evidence indicate that the uptake of AIB observed in both myoblasts and myotubes is primarily carrier-mediated by a membrane transport system. Increasing the temperature from 24 to 37°C results in a threefold increase in the rate of AIB uptake; both methionine and glycine inhibit AIB uptake by more than 85%; and 2,4-dinitrophenol inhibits AIB uptake by approximately 50%. In addition, the energies of activation (14.5 and 14.0 kcal/mole for myoblasts and myotubes, respectively) are characteristic of carrier-mediated transport. Resolution of AIB uptake into a saturable, carrier-mediated component and a nonsaturable, diffusion component shows that at concentrations of AIB≤1.5 mM over 97% of total AIB uptake is carriermediated in both myoblasts and myotubes. Kinetic analysis of carrier-mediated AIB uptake indicates that myoblasts and myotube membrane carriers have the same affinity for AIB (Km values = 1.73 and 1.31 mM, respectively). However, the Vmax for myoblasts is 23.7 nmole/mg/min while myotubes have a Vmax of 12.6 nmole/mg/min. The twofold difference in Vmax is shown to be due to a twofold difference in the quantity of membrane transport sites per milligram of protein.  相似文献   

6.
AMINO ACID TRANSPORT IN PERIPHERAL NERVE: SPECIFICITY OF UPTAKE   总被引:3,自引:1,他引:2  
Amino acid uptake has been studied in desheathed frog sciatic nerve. Results indicate that at least two types of processes are involved: a non-saturable process, possibly simple diffusion, and a saturable, carrier-mediated process. There appear to be several carrier-mediated transport mechanisms, which can be separated on the basis of their substrate specificity as follows: small neutral, large neutral, β-alanine, acidic, basic, aromatic and heterocyclic, and proline. The specificity of some of the mechanisms is incomplete and these can transport certain amino acids from other groups to a limited extent. The percentage of total uptake by a saturable process is highly variable. Basic, acidic, and those amino acids containing aromatic or heterocyclic ring structures are taken up primarily by a saturable process; small and large neutral amino acids and proline are taken up primarily by a non-saturable process.  相似文献   

7.
Evidence for carrier-mediated transport of monosaccharides in the Ehrlich ascites tumor cells was provided through kinetic analysis of data obtained by: (a) studying sugar uptake by dilute cell suspensions with an optical densimetric apparatus, (b) studying sugar uptake by thicker cell suspensions by means of direct chemical analytical methods using packed cell plugs, (c) observing the effects of a competitive inhibitor upon sugar uptake with the chemical analytical method, and (d) measurement of tracer uptake of a high affinity sugar in thick cell suspensions in the absence of net movement. Quantitative application of the data obtained with the above experimental procedures to theoretical model systems derived for both carrier-mediated transport and simple passive diffusion indicated that the results were consonant with predictions for the carrier-mediated transport model, but could not be explained on the basis of uncomplicated diffusion.  相似文献   

8.
It is well established that 3-hydroxybutyrate can serve as an energy source for the brain. Since substrate utilization may be regulated in part by transport across the cellular membrane, we investigated the uptake of 3-hydroxybutyrate by primary cultures of rat brain astrocytes. Measurement of the net uptake indicated a saturable system and a Lineweaver-Burke type plot was consistent with a single carrier-mediated mechanism with a Km of 6.03 mM and a Vmax of 32.7 nmol/30 seconds/mg protein. The rate of uptake at pH 6.2 was more than ten times the rate at pH 8.2, with the rate at pH 7.4 being intermediate between these values, suggesting the possibility of cotransport with H+ or exchange with OH (antiport). Mersalyl had only a slight effect on the transport of 3-hydroxybutyrate, suggesting that sulfhydryl groups are not involved in the transport of this monocarboxylic acid. Phenylpyruvate and -ketoisocaproate also attenuated the transport, but lactate had only a marginal effect. These results suggest that the utilization of 3-hydroxybutyrate as an energy source by astrocytes is regulated in part by carrier-mediated transport and that the uptake system is different from the lactate transport system.These data were presented in part at the FASEB Meeting, April, 1990  相似文献   

9.
The transport of 2-oxoisocaproate into isolated hepatocytes and liver mitochondria of rat was studied using [U-14C]2-oxoisocaproate and the silicone oil filtration procedure. 2-Oxoisocaproate uptake by hepatocytes was composed of: rapid adsorption, unmediated diffusion and carrier-mediated transport. The carrier-mediated transport was strongly inhibited by 4,4'-diisothiocyano-2,2'-stilbenedisulphonic acid and p-chloromercuribenzoate, was less sensitive to alpha-cyano-4-hydroxycinnamate and insensitive to p-chloromercuriphenylsulphonate. Other 2-oxo acids: pyruvate, 2-oxoisovalerate and 2-oxo-3-methylvalerate, were also inhibitory. The kinetic parameters of the carrier-mediated transport were Km 30.6 mM and Vmax 23.4 nmol/min per mg wet wt, at 37 degrees C. It is concluded that at its low, physiological, concentration, 2-oxoisocaproate penetrates the hepatocyte membrane mainly by unmediated diffusion. The uptake of 2-oxoisocaproate by isolated liver mitochondria was partly inhibited by alpha-cyano-4-hydroxycinnamate, the inhibitor of mitochondrial monocarboxylate carrier. The remaining uptake was linearly dependent on 2-oxoisocaproate concentration and represented unmediated diffusion. The carrier-mediated transport exhibited the following kinetic parameters: Km 0.47 mM, Vmax 1.0 nmol/min per mg protein at 6 degrees C; and Km 0.075 mM and Vmax about 8 nmol/min per mg protein at 37 degrees C.  相似文献   

10.
Kinetics and Block of Dopamine Uptake in Synaptosomes from Rat Caudate Nucleus   总被引:14,自引:10,他引:4  
The dopamine (DA) uptake system in mammalian nerve terminals was studied by measuring the unidirectional influx of tritiated DA into synaptosomes prepared from rat caudate nucleus. Two distinct time-dependent components of DA uptake were observed. The principal component was saturable with respect to DA concentration, required both external Na and Cl, and was competitively blocked by micromolar concentrations of the psychotropic agents cocaine, benztropine, nomifensine, amphetamine, and methamphetamine. This principal component of uptake has the properties expected for a carrier-mediated transport system. The second component, which accounted for about 10-30% of the DA uptake at 2 microM DA, was not saturable, and was independent of external Na, Cl, and blockers of the carrier-mediated system. The saturable, Na-dependent component had an apparent Km(DA) of about 0.5 microM. The dependence of DA uptake on external Na was sigmoid [Hill coefficient = 2; Ka(Na) = 45 mM] whereas the dependence on Cl was best described by a rectangular hyperbola [Ka(Cl) = 15 mM]. Depolarizing conditions (elevated external K) reduced the rate of DA influx. The data are consistent with a carrier-mediated DA transport mechanism in which each DA molecule entering the nerve terminal via the carrier is accompanied by two or more Na ions and one Cl ion in a rheogenic process carrying one or more net positive charges into the cell. Net, concentrative accumulation of DA inside nerve terminals may be accomplished by utilizing the Na electrochemical gradient to drive DA against its electrochemical gradient via this carrier system.  相似文献   

11.
ABSTRACT. The kinetics of radiolabeled fatty acid uptake by the ciliate Paramecium tetraurelia was examined on a homologous series of saturated, straight chain fatty acids of even carbon numbers. Uptake rates increased with chain length from acetate to palmitate. Saturation kinetics was demonstrated for most fatty acids examined, thus ruling out simple diffusion as the major mechanism for fatty acid transport and implicating carrier-mediated, facilitated transport as the major mechanism. Data from most competitive inhibition experiments were too scattered to determine the number of transporter systems present. Cholesterol uptake also exhibited saturation kinetics and hence other sterols, which can satisfy this nutritional requirement, may also be transported by a carrier-mediated mechanism. the uptake of the essential fatty acid oleate was faster than those observed for the saturated acids and could not be explained by only one transport mechanism. Therefore, fatty acid transport also occurs via other kinetically significant routes.  相似文献   

12.
The uptake of p-amino[3H]hippurate by isolated perfused rat kidney was studied to characterize the mechanism which was responsible for organic anion transport process. A rapid injection multiple indicator dilution technique and the distributed two-compartment model of Sawada et al. (Computer Methods Programs Biomed., 20 (1985) 51) were employed. Some characteristics of a carrier-mediated transport from the antiluminal space to the intracellular space for p-aminohippurate at the basolateral side were demonstrated: the uptake was stimulated by the countertransport effect and showed Na+ dependency. These findings are consistent with p-amino[3H]hippurate's being taken up into the isolated rat basolateral membrane vesicle by Na+-dependent carrier-mediated transport (J. Pharmacol. Exp. Ther. 227 (1983) 122). It is suggested that the multiple indicator dilution technique is a sensitive new method to study the mechanisms of renal tubular transport in the living kidney as an organ.  相似文献   

13.
Auxin transport: a field in flux   总被引:9,自引:0,他引:9  
Polar auxin transport is crucial for plant growth and development. Auxin moves between plant cells through a combination of membrane diffusion and carrier-mediated transport. Several classes of membrane proteins that facilitate auxin uptake and efflux have recently been identified in Arabidopsis. The relative contribution to auxin transport made by the different facilitators and by membrane diffusion is unclear. In this Opinion article, we assess the significance of auxin diffusion versus carrier-mediated transport and then discuss the physiological importance of the transport facilitators within the context of the multiple trans-cellular auxin fluxes recently described in the Arabidopsis root apex.  相似文献   

14.
We present here a differentiation by kinetic methods of the tandem processes of transport and metabolic during uptake of cytosine-beta-D-arabinoside by intact rat fibroblasts. Transport across the cell membrane occurs by a carrier-mediated mechanism displaying a Km of approximately 500 microM and a V of approximately pmol x min-1 x (10(6) cells)-1. The subsequent metabolic trapping (phosphorylation) has a Km of approximately 15 microM and V of approximately 0.25 pmol x min-1 x (10(6) cells)-1. In this system, transport is rate-limiting for the first phase of the uptake process whereas phosphorylation becomes rate-limiting when internal concentration of radioactive labeled substrate exceeds that in the extracellular medium. The duration of the first phase depends on the substrate concentration.  相似文献   

15.
Folate Transport by Prawn Hepatopancreas Brush-Border Membrane Vesicles   总被引:1,自引:0,他引:1  
The transport system of folic acid (Pte-Glu) by brush-border membrane vesicles (BBMV) isolated from prawn (Penaeus japonicm) hepatopancreas, was studied by measuring the uptake of Pte-Glu. This uptake was found to have two components, intravesicular transport and membrane binding. Membrane binding was not affected by the presence of a transmembrane pH-gradient at a short incubation period. However, a transmembrane pH-gradient increased membrane binding at 60 min. The transport of Pte-Glu appeared to be carrier-mediated, was stimulated by an inwardly proton gradient (pH 5.5 outside, 7.4 inside) and was unaffected by a sodium-gradient. The relationship between pH gradient-driven Pte-Glu uptake and medium Pte-Glu concentration followed saturating Michaelis–Menten kinetics. Eadie–Hofstee representation of the pH gradient-driven Pte-Glu uptake indicated a single transport system with a Km of 0.37 M and Vmax of 1.06 pmol/mg protein/15 s. These findings indicate that BBMV isolated from prawn hepatopancreas possesses a Pte-Glu transport system similar to that described in mammalian intestine.  相似文献   

16.
Toward a molecular understanding of zinc metabolism   总被引:2,自引:0,他引:2  
The absorption of zinc is increased when the dietary zinc supply is low. This is caused by increased intestinal transport and reduced secretion of endogenous zinc into the intestine. Kinetic analysis of zinc transport, based on data from either the isolated perfused intestine or brush border membrane vesicles, demonstrates uptake velocity is increased homeostatically by a carrier-mediated phase of transport in response to low dietary zinc. Zinc within intestinal cells binds to high molecular weight proteins and metallothionein. Expression of the metallothionein gene is altered by zinc status and the protein appears to have a function in intestinal cells. Zinc transport across the basolateral membrane is also carrier-mediated and may be ATP-driven. Newly absorbed zinc is transported via albumin, first to the liver and then is redistributed to other tissues, particularly muscle and bone which provide the greatest reserves. Plasma zinc levels remain relatively constant except during periods of dietary zinc depletion and acute responses to stress, infection or inflammation where they are depressed. Experiments with intact rats and isolated rat liver parenchymal cells have shown that hepatic zinc turnover is rapid. Stimulation of liver cells by glucocorticoids, glucagon, epinephrine, cAMP or interleukin-1-like factors alters uptake/exchange kinetics such that there is a net accumulation of cellular zinc. Metallothionein gene expression is enhanced by these hormonal signals, and a considerable portion of the newly accumulated zinc is accounted for as that associated with this zinc-binding protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Glucocorticoid uptake by isolated placental membrane vesicles has been studied in an attempt to identify a membrane-mediated carrier mechanism. A preliminary communication from this laboratory has reported that uptake of the glucocorticoid corticosterone by these vesicles was a time-dependent, saturable, osmotically sensitive process (Fant, M.E., Harbison, R.D. and Harrison, R.W. (1979) J. Biol. Chem. 254, 6218-6221), but did not conclusively demonstrate a carrier mechanism. Further studies of labeled corticosterone uptake by placental vesicles are described herein which indicate that steroid uptake by these vesicles is a carrier-mediated process. We found that corticosterone uptake was temperature-sensitive, and an apparent phase-transition effect on the rate of uptake was seen to occur at approximately 16 degrees C. Treatment of the vesicles with phospholipase A2 and the sulfhydryl group attacker, p-chloromercuriphenylsulfonate, inhibited corticosterone uptake. In contrast to our previous findings in intact cells, neuraminidase treatment of membranes did not inhibit steroid uptake, perhaps indicating a species variation. Lastly, it was possible to show that corticosterone movement across the membrane exhibited countertransport, a phenomenon common only to carrier-mediated transport mechanisms. These studies show that placental vesicles accumulate corticosterone by a carrier-mediated mechanism.  相似文献   

18.
It has been well established that human intestinal and liver epithelial cells transport biotin via an Na+-dependent carrier-mediated mechanism. The sodium-dependent multivitamin transport (SMVT), a biotin transporter, is expressed in both cell types. However, the relative contribution of SMVT toward total carrier-mediated uptake of physiological (nanomolar) concentrations of biotin by these cells is not clear. Addressing this issue is important, especially in light of the recent identification of a second human high-affinity biotin uptake mechanism that operates at the nanomolar range. Hence, we employed a physiological approach of characterizing biotin uptake by human-derived intestinal Caco-2 and HepG2 cells at the nanomolar concentration range. We also employed a molecular biology approach of selectively silencing the endogenous SMVT of these cells with specific small interfering RNAs (siRNAs), then examining carrier-mediated biotin uptake. The results showed that in both Caco-2 and HepG2 cells, the initial rate of biotin uptake as a function of concentration over the range of 0.1 to 50 nM to be linear. Furthermore, we found that the addition of 100 nM unlabeled biotin, desthiobiotin, or pantothenic acid to the incubation medium had no effect on the uptake of 2.6 nM [3H]biotin. Pretreatment of Caco-2 and HepG2 cells with SMVT specific siRNAs substantially reduced SMVT mRNA and protein levels. In addition, carrier-mediated [3H]biotin (2.6 nM) uptake by Caco-2 and HepG2 cells was severely (P 0.01) inhibited by the siRNAs pretreatment. These results demonstrate that the recently described human high-affinity biotin uptake system is not functional in intestinal and liver epithelial cells. In addition, the results provide strong evidence that SMVT is the major (if not the only) biotin uptake system that operates in these cells.  相似文献   

19.
Thiamin is essential for normal function of pancreatic acinar cells, and its deficiency leads to a reduction in pancreatic digestive enzymes. We have recently shown that thiamin uptake by rat pancreatic acinar cells is carrier-mediated and that both thiamin transporter (THTR)-1 and THTR-2 are expressed in these cells; little, however, is known about the relative contribution of these transporters toward total carrier-mediated thiamin uptake by these cells. We addressed this issue using a gene-specific silencing approach (siRNA) in mouse-derived pancreatic acinar 266-6 cells and Slc19a2 and Slc19a3 knockout mouse models. First we established that thiamin uptake by mouse pancreatic acinar cells is via a carrier-mediated process. We also established that these cells as well as native human pancreas express THTR-1 and THTR-2, with expression of the former (and activity of its promoter) being significantly higher than that of the latter. Using gene-specific siRNA against mouse THTR-1 and THTR-2, we observed a significant inhibition in carrier-mediated thiamin uptake by 266-6 cells in both cases. Similarly, thiamin uptake by freshly isolated primary pancreatic acinar cells of the Slc19a2 and Slc19a3 knockout mice was significantly lower than uptake by acinar cells of the respective littermates; the degree of inhibition observed in the former knockout model was greater than that of the latter. These findings demonstrate, for the first time, that both mTHTR-1 and mTHTR-2 are involved in carrier-mediated thiamin uptake by pancreatic acinar cells.  相似文献   

20.
3,5,3'-triiodo-L-thyronine is taken up by isolated rat adipocytes under physiological conditions by a saturable sigmoidal process, while L-thyroxine uptake follows Michaelian kinetics. Comparative studies performed with intact adipocytes and derived liposomes suggest that thyroid hormones are taken up into cells via carrier-mediated transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号