首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural peptide agonists of corticotrophin-releasing factor (CRF) receptors bind to the receptor by a two-site mechanism as follows: the carboxyl end of the ligand binds the N-terminal extracellular domain (ECD) of the receptor and the amino portion of the ligand binds the extracellular face of the seven transmembrane region. Recently, peptide antagonists homologous to the 12 C-terminal residues of CRF have been derived, which bind the CRF(1) receptor through an interaction with the ECD. Here we characterized the binding of a minimal 12-residue peptide antagonist while bound to the isolated ECD of the CRF(1) receptor. We have expressed and purified soluble and properly folded ECD independent from the seven-transmembrane region as a thioredoxin fusion protein in Escherichia coli. A model of the peptide antagonist, cyclic corticotrophin-releasing factor residues 30-41 (cCRF(30-41)), was calculated while bound to the recombinant ECD using transferred nuclear Overhauser effect spectroscopy. Although the peptide is unstructured in solution, it adopts an alpha-helical conformation when bound to the ECD. Residues of cCRF(30-41) comprising the binding interface with the ECD were mapped using saturation transfer difference NMR. Two hydrophobic residues (Met(38) and Ile(41)) as well as two amide groups (Asn(34) and the C-terminal amide) on one face of the helix defined the binding epitope of the antagonist. This epitope may be used as a starting point for development of non-peptide antagonists targeting the ECD of this receptor.  相似文献   

2.
Dipeptidyl peptidase IV (DP-IV/CD26), fibroblast activation protein (FAP), DP-like 1 (DPL1), DP8, DP9, and DPL2 comprise the CD26 gene family. CD26/DP-IV has roles in liver disease, T cell costimulation, chemokine biology, type II diabetes, and tumor biology. DPIV substrates include the glucagonlike peptides, neuropeptide Y, and the chemokines CCL3, CCL5, CCL11, CCL22, and CXCL12. We have proposed that the extracellular region of CD26 is analogous to prolyl oligopeptidase in consisting of an alpha/beta hydrolase domain contributed by both N- and C-terminal portions of the polypeptide and a seven-blade beta-propeller domain. Replacing the C-terminal portion of the predicted alpha/beta hydrolase domain of CD26 (residues 501-766) with the homologous portion of DP8 or DP9 produced intact proteins. However, these chimeric proteins lacked dimerization and peptidase activity, suggesting that CD26 dimerization requires the C-terminal portion of the alpha/beta hydrolase domain. Deleting some N-terminal residues of the alpha/beta hydrolase domain of CD26 ablated peptidase activity and greatly diminished cell surface expression. Together with previous data that CD26 peptidase activity requires the C-terminal 20 residues, this suggests that peptidase activity requires the entire alpha/beta hydrolase domain. The catalytic triad of DP8 was shown to be Ser(739)-Asp (817)-His(849). Glu(259) of DP8, a residue distant from the catalytic triad yet greatly conserved in the CD26 gene family, was shown to be required for peptidase activity. These data concord with our predicted CD26 structure, indicate that biosynthesis of a functional fragment of CD26 is difficult, and confirm the functional homology of DP8 with CD26.  相似文献   

3.
C C Li  K V Shah  A Seth    R V Gilden 《Journal of virology》1987,61(9):2684-2690
Genital warts (condylomata acuminata) are among the most frequent sexually transmitted infections. Human papillomavirus type 6 (HPV-6), which is etiologically related to a majority of these lesions, has not been propagated in tissue culture. We generated two forms of HPV-6 viral antigens: a chemically synthesized oligopeptide (referred to as the C-terminal synthetic peptide) corresponding to residues 482 to 495 of the 500-amino-acid-long L1 open reading frame (ORF), and a bacterially expressed 54-kilodalton (kDa) fusion protein containing the N-terminal 13 amino acids encoded by the lambda bacteriophage cII gene followed by one vector-insert junctional residue and 462 amino acids of the L1 ORF sequence (residues 39 to 500). The cII-L1 fusion protein was specifically recognized by an antipeptide serum directed against the N-terminal 13 amino acids derived from the cII gene, an antiserum raised against the C-terminal synthetic peptide, and a genus-specific serum prepared by immunization with disrupted viral capsids. The 54-kDa fusion protein was purified, and the sequence of its first 36 amino acids was determined and found to be as predicted by the DNA sequence. Both the genus-specific anticapsid serum and the antiserum raised against the fusion protein identified authentic L1 ORF proteins in HPV-1-induced (58 kDa) and HPV-6/11-induced (56 kDa) papillomas. The synthetic peptide antiserum recognized the 56- to 58-kDa protein in HPV-6-induced warts, but not in HPV-1- or HPV-11-infected specimens. Using the fusion protein as antigen in immunoassays, we were able to detect the corresponding antibodies in human sera.  相似文献   

4.
The structural role of the unique myosin-binding motif (m-domain) of cardiac myosin-binding protein-C remains unclear. Functionally, the m-domain is thought to directly interact with myosin, whereas phosphorylation of the m-domain has been shown to modulate interactions between myosin and actin. Here we utilized NMR to analyze the structure and dynamics of the m-domain in solution. Our studies reveal that the m-domain is composed of two subdomains, a largely disordered N-terminal portion containing three known phosphorylation sites and a more ordered and folded C-terminal portion. Chemical shift analyses, d(NN)(i, i + 1) NOEs, and (15)N{(1)H} heteronuclear NOE values show that the C-terminal subdomain (residues 315-351) is structured with three well defined helices spanning residues 317-322, 327-335, and 341-348. The tertiary structure was calculated with CS-Rosetta using complete (13)C(α), (13)C(β), (13)C', (15)N, (1)H(α), and (1)H(N) chemical shifts. An ensemble of 20 acceptable structures was selected to represent the C-terminal subdomain that exhibits a novel three-helix bundle fold. The solvent-exposed face of the third helix was found to contain the basic actin-binding motif LK(R/K)XK. In contrast, (15)N{(1)H} heteronuclear NOE values for the N-terminal subdomain are consistent with a more conformationally flexible region. Secondary structure propensity scores indicate two transient helices spanning residues 265-268 and 293-295. The presence of both transient helices is supported by weak sequential d(NN)(i, i + 1) NOEs. Thus, the m-domain consists of an N-terminal subdomain that is flexible and largely disordered and a C-terminal subdomain having a three-helix bundle fold, potentially providing an actin-binding platform.  相似文献   

5.
H I Magazine  H M Johnson 《Biochemistry》1991,30(23):5784-5789
A receptor binding region of mouse interferon gamma (IFN gamma) has previously been localized to the N-terminal 39 amino acids of the molecule by use of synthetic peptides and monoclonal antibodies. In this report, a detailed analysis of the synthetic peptide corresponding to this region, IFN gamma (1-39), is presented. Circular dichroism (CD) spectroscopy indicated that the peptide has stable secondary structure under aqueous conditions and adopts a combination of alpha-helical and random structure. A peptide lacking two N-terminal amino acids, IFN gamma (3-39), had similar secondary structure and equivalent ability to compete for receptor binding, while peptides lacking four or more N-terminal residues had reduced alpha-helical structure and did not inhibit 125I-IFN gamma binding. Substitution of proline, a helix-destabilizing amino acid, for leucine (residue 8) of a predicted amphipathic alpha-helix (residues 3-12), IFN gamma (1-39) [Pro]8, resulted in a substantial reduction in the helical content of the peptide, supporting the presence of helical structure in this region. However, destabilization of the helix did not reduce the competitive ability of the peptide. A peptide lacking eight C-terminal residues, IFN gamma (1-31), did not block 125I-IFN gamma binding and had no detectable alpha-helical structure, suggesting a requirement of the predicted second alpha-helix (residues 20-34) for receptor interaction and helix stabilization. Substitution of phenylalanine for tyrosine at position 14, IFN gamma (1-39) [Phe]14, a central location of a predicted omega-loop structure, did not affect the secondary structure associated with the region yet resulted in a 30-fold increase in receptor competition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
To facilitate structural studies of the ligand binding region from the nicotinic acetylcholine receptor (nAChR), we have developed methods for the high-level expression and purification of an important functional portion of the N-terminal extracellular domain (ECD) of the alpha-subunit. Two soluble receptor fragments comprising residues 143-210 of the Torpedo californica alpha-subunit were expressed in E. coli: alphaT68His6, which contains a histidine tag, and alphaT68M1, which includes the first transmembrane region, M1, of the alpha-subunit. Both proteins demonstrate saturable, high-affinity alpha-bungarotoxin (Bgtx) binding with an apparent equilibrium KD (3 nM) that is comparable to the affinities reported for preparations comprising the entire alpha-subunit ECD. These results demonstrate that the ECD determinants required for Bgtx recognition of the alpha-subunit are entirely specified by residues 143-210. The binding of small ligands was demonstrated in competition assays with 125I-Bgtx yielding KI values of 58 and 105 microM for d-tubocurarine and nicotine, respectively. Circular dichroism (CD) analysis of monomeric alphaT68His6 protein revealed considerable secondary structure. Furthermore, a cooperative, two-state folding transition was observed upon urea denaturation. To circumvent concentration-dependent aggregation of the alphaT68His6 protein at the millimolar concentrations needed for NMR study, we utilized the M1 transmembrane domain to anchor the recombinant receptor fragment onto membrane-mimicking micelles. Monodispersed preparations of alphaT68M1 in dodecylphosphocholine micelles demonstrate high-affinity Bgtx binding and considerable secondary structure by CD. The structural features revealed in the CD profile appear to undergo a cooperative, two-state folding transition upon thermal denaturation. Initial NMR studies suggest that micellar preparations of the alphaT68M1 fragment are amenable to further high-resolution heteronuclear NMR analysis.  相似文献   

7.
The structure of a synthetic peptide comprising the 28 amino-terminal residues of actin has been examined by 1H-NMR and CD spectroscopy. The peptide is largely unstructured and flexible in solution but becomes increasingly structured at higher trifluoroethanol (TFE) concentrations. As judged by CD with the use of two additional peptides (actin 1-20 and actin 18-28), TFE induces formation of up to 48% helical content within residues 1-20, while residues 21-28 exhibit no helical propensity. Similar results were obtained by using NMR-derived distance information in restrained molecular dynamics calculations. The calculated structure of actin 1-28 peptide in 80% TFE is well defined for the first 23 residues with a backbone root mean square deviation of 0.5 A. Two helices are formed from residues 4-13 and 16-20, and a beta-turn is formed from residues 13-16. The N-terminal residues 1-3 exhibit increased flexibility and a helix-like conformation while the C-terminal residues 21-28 show no regular secondary structure. These results are compared with the predicted secondary structure and the structure of the corresponding sequence in the crystal structure of actin [Kabsch et al. (1990) Nature 347, 37-44]. The significance of the TFE-induced peptide structure is discussed.  相似文献   

8.
We have investigated the molecular basis of elastic fiber formation on fibrillin microfibrils. Binding assays revealed high affinity calcium-independent binding of two overlapping fibrillin-1 fragments (encoded by central exons 18-25 and 24-30) to tropoelastin, which, in microfibrils, map to an exposed "arms" feature adjacent to the beads. A further binding site within an adjacent fragment (encoded by exons 9-17) was within an eight-cysteine motif designated TB2 (encoded by exons 16 and 17). Binding to TB2 was ablated by the presence of N-terminal domains (encoded by exons 1-8) and reduced after deleting the proline-rich region. A novel transglutaminase cross-link between tropoelastin and fibrillin-1 fragment (encoded by exons 9-17) was localized by mass spectrometry to a sequence encoded by exon 17. The high affinity binding and cross-linking of tropoelastin to a central fibrillin-1 sequence confirm that this association is fundamental to elastic fiber formation. Microfibril-associated glycoprotein-1 showed calcium-dependent binding of moderate affinity to fibrillin-1 N-terminal fragment (encoded by exons 1-8), which localize to the beads. Microfibril-associated glycoprotein-1 thus contributes to microfibril organization but may also form secondary interactions with adjacent microfibril-bound tropoelastin.  相似文献   

9.
Although use of multiple alternative first exons generates unique noncoding 5'-ends for gamma-glutamyltransferase (GGT) cDNAs in several species, we show here that alternative splicing events also alter coding exons in mouse GGT to produce at least four protein isoforms. GGTDelta1 introduces CAG four bases upstream of the primary ATG codon and encodes an active GGT heterodimeric ectoenzyme identical to constitutive GGT cDNA but translational efficiency is reduced 2-fold. GGTDelta2-5 deletes the last eight nucleotides of exon 2 through most of exon 5 in-frame, selectively eliminating residues 96-231 from the amphipathic N-terminal subunit, including four N-glycan consensus sites, while leaving the C-terminal hydrophilic subunit intact. GGTDelta7 introduces 22 bases from intron 7 causing a frameshift and a premature stop codon so a truncated polypeptide is encoded terminating with 14 novel residues but retaining the first 339 residues of the native GGT protein. GGTDelta8-9 deletes the terminal four nucleotides of exon 8 plus all of exon 9 and inserts 24 bases from intron 9 in-frame so the C-terminal subunit of the encoded polypeptide loses residues 401-444 but gains eight internal hydrophobic residues. In contrast to the product of GGTDelta1, those derived from GGTDelta2-5, Delta7, Delta8-9 all lack transferase activity and persist as single-chain glycoproteins retained largely in the endoplasmic reticulum as determined by immunofluorescence microscopy and constitutive endoglycosidase H sensitivity in metabolically labeled cells. The developmental-stage plus tissue-specific regulation of the alternative splicing events at GGTDelta7 and GGTDelta8-9 implies unique roles for these GGT protein isoforms. The ability of the GGTDelta1 and GGTDelta7 to mediate the induction of C/EBP homologous protein-10, CHOP-10, and immunoglobulin heavy chain binding protein, BiP, implicates a specific role for these two GGT protein isoforms in the endoplasmic reticulum stress response.  相似文献   

10.
Tropomyosin is a 284 residue dimeric coiled-coil protein that interacts in a head-to-tail manner to form linear filaments at low ionic strengths. Polymerization is related to tropomyosin's ability to bind actin, and both properties depend on intact N- and C-termini as well as alpha-amino acetylation of the N-terminus of the muscle protein. Nalpha-acetylation can be mimicked by an N-terminal Ala-Ser fusion in recombinant tropomyosin (ASTm) produced in Escherichia coli. Here we show that a recombinant tropomyosin fragment, corresponding to the protein's first 260 residues plus an Ala-Ser fusion [ASTm(1-260)], polymerizes to a much greater extent than the corresponding full-length recombinant protein, despite the absence of the C-terminal 24 amino acids. This polymerization is sensitive to ionic strength and is greatly reduced by the removal of the N-terminal Ala-Ser fusion [nfTm(1-260)]. CD studies show that nonpolymerizable tropomyosin fragments, which terminate at position 260 [Tm(167-260) and Tm(143-260)], as well as Tm(220-284), are able to interact with ASTm(1-142), a nonpolymerizable N-terminal fragment, and that the head-to-tail interactions observed for these fragment pairs are accompanied by a significant degree of folding of the C-terminal tropomyosin fragment. These results suggest that the new C-terminus, created by the deletion, polymerizes in a manner similar to the full-length protein. Head-to-tail binding for fragments terminating at position 260 may be explained by the presence of a greater concentration of negatively charged residues, while, at the same time, maintaining a conserved pattern of charged and hydrophobic residues found in polymerizable tropomyosins from a variety of sources.  相似文献   

11.
Streptococcus equisimilis streptokinase (SK) is a bacterial protein of unknown tertiary structure and domain organization that is used extensively to treat acute myocardial infarction following coronary thrombosis. Six fragments of SK were generated by limited proteolysis with chymotrypsin and purified. NMR and CD experiments have shown that the secondary and tertiary structure present in the native molecule is preserved within all fragments, except the N-terminal fragment SK7. NMR spectra demonstrate the presence in SK of three structurally autonomous domains and a less structured C-terminal "tail." Cleavage within the N-terminal domain generates an N-terminal fragment, SK7, which remains noncovalently associated with the remainder of the molecule; in isolation, SK7 adopts an unfolded conformation. The abilities of these fragments to induce active site formation within human plasminogen upon formation of their heterodimeric complex were assayed. The lowest mass SK fragment exhibiting Plg-dependent activator activity was shown to be SK27 (mass 27,000, residues 147-380), which contains both central and C-terminal domains, although this activity was reduced approximately 6,000-fold relative to that of full-length SK. The activity of a 36,000 mass fragment, SK36 (residues 64-380), which differs from SK27 in possessing a portion of the N-terminal domain, was reduced to 0.1-1.0% of that of SK. Other fragments (masses 7,000, 11,000, 16,000, 17,000, 25,000, and 26,000), representing either single domains or single domains extended by portions of other domains, were inactive. However, SK7 (residues 1-63), at a 100-fold molar excess concentration, greatly potentiated the activities of SK27 and SK36, by up to 50- and > 130-fold, respectively. These findings demonstrate that all of SK's three domains are essential for native-like SK activity. The central and C-terminal domains mediate plasminogen-binding and active site-generating functions, whereas the N-terminal domain mediates an activity-potentiating function.  相似文献   

12.
Heat shock protein 70 (HSP70) is a member of a highly conserved superfamily of intracellular chaperones called stress proteins that can activate innate and adaptive immune responses. We evaluated the effect of a fusion DNA vaccine that encoded mycobacterial HSP70 and MPT51, a major secreted protein of Mycobacterium tuberculosis. Spleen cells from mice immunized with fusion DNA of full-length HSP70 and MPT51 produced a higher amount of interferon-γ (IFN-γ) in response to the CD4+, but not the CD8+ T-cell epitope peptide on MPT51 than those from mice immunized with MPT51 DNA. Furthermore, because HSP70 comprises the N-terminal ATPase domain and the C-terminal peptide-binding domain, we attempted to identify the domain responsible for its enhancing effect. The fusion DNA vaccine that encoded the C-terminal domain of HSP70 and MPT51 induced a higher MPT51-specific IFN-γ production by CD4+ T cells than the vaccine that encoded MPT51 alone, whereas that with the N-terminal domain did not. Similar results were obtained by immunization with the fusion proteins. These results suggest that the DNA vaccine that encodes a chimeric antigen molecule fused with mycobacterial HSP70, especially with its C-terminal domain, can induce a stronger antigen-specific T-helper cell type 1 response than antigen DNA alone.  相似文献   

13.
Regulation of actin filament dynamics underlies many cellular functions. Tropomodulin together with tropomyosin can cap the pointed, slowly polymerizing, filament end, inhibiting addition or loss of actin monomers. Tropomodulin has an unstructured N-terminal region that binds tropomyosin and a folded C-terminal domain with six leucine-rich repeats. Of tropomodulin 1's 359 amino acids, an N-terminal fragment (Tmod1(1)(-)(92)) suffices for in vitro function, even though the C-terminal domain can weakly cap filaments independent of tropomyosin. Except for one short alpha-helix with coiled coil propensity (residues 24-35), the Tmod1(1)(-)(92) solution structure shows that the fragment is disordered and highly flexible. On the basis of the solution structure and predicted secondary structure, we have introduced a series of mutations to determine the structural requirements for tropomyosin binding (using native gels and CD) and filament capping (by measuring actin polymerization using pyrene fluorescence). Tmod1(1)(-)(92) fragments with mutations of an interface hydrophobic residue, L27G and L27E, designed to destroy the alpha-helix or coiled coil propensity, lost binding ability to tropomyosin but retained partial capping function in the presence of tropomyosin. Replacement of a flexible region with alpha-helical residues (residues 59-61 mutated to Ala) had no effect on tropomyosin binding but inhibited the capping function. A mutation in a region predicted to be an amphipathic helix (residues 65-75), L71D, destroyed the capping function. The results suggest that molecular flexibility and binding to actin via an amphipathic helix are both required for tropomyosin-dependent capping of the pointed end of the actin filament.  相似文献   

14.
The RimM protein has been implicated in the maturation of the 30S ribosomal subunit. It binds to ribosomal protein S19, located in the head domain of the 30S subunit. Multiple sequence alignments predicted that RimM possesses two domains in its N- and C-terminal regions. In the present study, we have produced Thermus thermophilus RimM in both the full-length form (162 residues) and its N-terminal fragment, spanning residues 1 to 85, as soluble proteins in Escherichia coli and have performed structural analyses by nuclear magnetic resonance spectroscopy. Residues 1 to 80 of the RimM protein fold into a single structural domain adopting a six-stranded beta-barrel fold. On the other hand, the C-terminal region of RimM (residues 81 to 162) is partly folded in solution. Analyses of 1H-15N heteronuclear single quantum correlation spectra revealed that a wide range of residues in the C-terminal region, as well as the residues in the vicinity of a hydrophobic patch in the N-terminal domain, were dramatically affected upon complex formation with ribosomal protein S19.  相似文献   

15.
The three-dimensional structures in dodecylphosphocholine (DPC) micelles and in trifluoroethanol (TFE) of the pediocin-like antimicrobial peptide sakacin P and an engineered variant of sakacin P (termed sakP[N24C+44C]) have been determined by use of nuclear magnetic resonance spectroscopy. SakP[N24C+44C] has an inserted non-native activity- and structure-stabilizing C-terminal disulfide bridge that ties the C-terminus to the middle part of the peptide. In the presence of DPC, the cationic N-terminal region (residues 1-17) of both peptides has an S-shaped conformation that is reminiscent of a three-stranded antiparallel beta-sheet and that is more pronounced when the peptide was dissolved in TFE instead of DPC. The four positively charged residues located in the N-terminal part are found pointing to the same direction. For both peptides, the N-terminal region is followed by a well-defined central amphiphilic alpha-helix (residues 18-33), and this in turn is followed by the C-terminal tail (residues 34-43 for sakacin P and 34-44 for sakP[N24C+44C]) that lacks any apparent common secondary structural motif. In the presence of DPC, the C-terminal tails in both peptides fold back onto the central alpha-helix, thereby creating a hairpin-like structure in the C-terminal halves. The lack of long-range NOEs between the beta-sheet Nu-terminal region and the hairpin-like C-terminal half indicates that there is a flexible hinge between these regions. We discuss which implications such a structural arrangement has on the interaction with the target cell membrane.  相似文献   

16.
L Jermutus  V Guez  H Bedouelle 《Biochimie》1999,81(3):235-244
The C-terminal domain (residues 320-419) of tyrosyl-tRNA synthetase (TyrRS) from Bacillus stearothermophilus is disordered in the crystal structure and involved in the binding of the anticodon arm of tRNA(Tyr). The sequences of 11 TyrRSs of prokaryotic or mitochondrial origins were aligned and the alignment showed the existence of conserved residues in the sequences of the C-terminal domains. A consensus could be deduced from the application of five programs of secondary structure prediction to the 11 sequences of the query set. These results suggested that the sequences of the C-terminal domains determined a precise and conserved secondary structure. They predicted that the C-terminal domain would have a mixed fold (alpha/beta or alpha+beta), with the alpha-helices in the first half of the sequence and the beta-strands mainly in its second half. Several programs of fold recognition from sequence alone, by threading onto known structures, were applied but none of them identified a type of fold that would be common to the different sequences of the query set. Therefore, the fold of the C-terminal, anticodon binding domain might be novel.  相似文献   

17.
The peptide binding C-terminal portion of heat shock protein (HSP)70 (aa 359-610) stimulates human monocytes to produce IL-12, TNF-alpha, NO, and C-C chemokines. The N-terminal, ATPase portion (HSP70(1-358)) failed to stimulate any of these cytokines or chemokines. Both native and the truncated HSP70(359-610) stimulation of chemokine production is mediated by the CD40 costimulatory molecule. Maturation of dendritic cells was induced by stimulation with native HSP70, was not seen with the N-terminal HSP70(1-358), but was enhanced with HSP70(359-610), as demonstrated by up-regulation of CD83, CCR7, CD86, CD80, and HLA class II. In vivo studies in macaques showed that immunization with HSP70(359-610) enhances the production of IL-12 and RANTES. Immunization with peptide-bound HSP70(359-610) in mice induced higher serum IgG2a and IgG3 Abs than the native HSP70-bound peptide. This study suggests that the C-terminal, peptide-binding portion of HSP70 is responsible for stimulating Th1-polarizing cytokines, C-C chemokines, and an adjuvant function.  相似文献   

18.
The genome of Drosophila melanogaster encodes several proteins that are predicted to contain Ca(2+)-dependent, C-type carbohydrate-recognition domains. The CG2958 gene encodes a protein containing 359 amino acid residues. Analysis of the CG2958 sequence suggests that it consists of an N-terminal domain found in other Drosophila proteins, a middle segment that is unique, and a C-terminal C-type carbohydrate-recognition domain. Expression studies show that the full-length protein is a tetramer formed by noncovalent association of disulfide-linked dimers that are linked through cysteine residues in the N-terminal domain. The expressed protein binds to immobilized yeast invertase through the C-terminal carbohydrate-recognition domain. Competition binding studies using monosaccharides demonstrate that CG2958 interacts specifically with fucose and mannose. Fucose binds approximately 5-fold better than mannose. Blotting studies reveal that the best glycoprotein ligands are those that contain N-linked glycans bearing alpha1,3-linked fucose residues. Binding is enhanced by the additional presence of alpha1,6-linked fucose. It has previously been proposed that labeling of the Drosophila neural system by anti-horseradish peroxidase antibodies is a result of the presence of difucosylated N-linked glycans. CG2958 is a potential endogenous receptor for such neural-specific carbohydrate epitopes.  相似文献   

19.
The pre-hairpin intermediate of gp41 from the human immunodeficiency virus (HIV) is the target for two classes of fusion inhibitors that bind to the C-terminal region or the trimeric coiled-coil of N-terminal helices, thereby preventing formation of the fusogenic trimer of hairpins. Using rational design, two 36-residue peptides, N36(Mut(e,g)) and N36(Mut(a,d)), were derived from the parent N36 peptide comprising the N-terminal helix of the gp41 ectodomain (residues 546-581 of HIV-1 envelope), characterized by analytical ultracentrifugation and CD, and assessed for their ability to inhibit HIV fusion using a quantitative vaccinia virus-based fusion assay. N36(Mut(e,g)) contains nine amino acid substitutions designed to disrupt interactions with the C-terminal region of gp41 while preserving contacts governing the formation of the trimeric coiled-coil. N36(Mut(a,d)) contains nine substitutions designed to block formation of the trimeric coiled-coil but retains residues that interact with the C-terminal region of gp41. N36(Mut(a,d)) is monomeric, is largely random coil, does not interact with the C34 peptide derived from the C-terminal region of gp41 (residues 628-661), and does not inhibit fusion. The trimeric coiled-coil structure is therefore a prerequisite for interaction with the C-terminal region of gp41. N36(Mut(e,g)) forms a monodisperse, helical trimer in solution, does not interact with C34, and yet inhibits fusion about 50-fold more effectively than the parent N36 peptide (IC(50) approximately 308 nm versus approximately 16 microm). These results indicate that N36(Mut(e,g)) acts by disrupting the homotrimeric coiled-coil of N-terminal helices in the pre-hairpin intermediate to form heterotrimers. Thus N36(Mut(e,g)) represents a novel third class of gp41-targeted HIV fusion inhibitor. A quantitative model describing the interaction of N36(Mut(e,g)) with the pre-hairpin intermediate is presented.  相似文献   

20.
A protein modification method has been developed for the production of human big endothelin (ET)-1. Production of a large quantity of big ET-1 by the method described here is expected to facilitate future experiments such as X-ray crystallography and nuclear magnetic resonance studies, aimed at understanding the tertiary structure of big ET-1 and its dynamics. The plasmid pETB-50 used for the synthesis carries the gene for a fusion protein consisting of 34-amino acid (aa) residues of an N-terminal portion of -galactosidase and the 38-aa residues of big ET-1. The fusion protein ETB-50P contains an arginine residue in the big ET-1 portion at its second C-terminal site and three lysine residues including the C-terminal site in the -galactosidase portion, all of which are susceptible to trypsin. Tryptic digestion of the fusion protein quantitatively produced big ET-1 (1–37), which is depleted in the C-terminal serine. However, a treatment of the fusion protein with 1,2-cyclohexanedione prior to tryptic digestion gave full-length big ET-1 with N7,-N8-(1,2-dihydroxycyclohex-1,2-ylene)-arginine. This modification was reversed to the intact arginine residue when the modified big ET-1 was incubated in 0.5 M TRIS-HCI buffer, pH 8.0. Consequently, a combination of such a reversible protein modification and tryptic digestion gave 1.74 mg of recombinant big ET-1 from 2.01 of culture broth. The procedure described here may be applied to produce other arginine-containing peptides from fusion proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号