首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
绿色荧光蛋白的特性及其在信号转导中的应用   总被引:3,自引:0,他引:3  
细胞和分子生物学的最终目标是 ,明确细胞内的各种事件是如何发生的 ,明了细胞内复杂的动态变化的生化机制。绿色荧光蛋白 (greenfluorescentprotein ,GFP)自从克隆、表达之后 ,以其良好的物理特性及荧光特性而成为良好的报告基因和荧光标记分子 ,并在探索生命现象过程中得到了非常广泛的应用。GFP作为报告基因 ,可用在活细胞中直接观察蛋白质向细胞器 ,如细胞核、内质网中运动 ;作为荧光标记分子 ,GFP既具有敏感的标记检测率 ,又没有放射性的危害 ;最近又发现GFP是一个良好的细胞间信号传递的动态标记…  相似文献   

2.
基于GFP的FRET应用   总被引:1,自引:0,他引:1  
绿色荧光蛋白(GFP)是一种活性荧光标记,已被用来研究基因表达、分子定位,蛋白质折叠和转运;荧光共振能量转移(FRET)是一种无损伤的光学检测方法,能检测到小于纳米的距离变化。将GFP的活性定位标记功能与FRET的高分辨率相结合。为活体研究生物分子的功能和命运开创了新的篇章。作者在介绍GFP和FRET原理的基础上,综述了基于GFP的FRET在蛋白酶活性,蛋白质间相互作用 构象改变研究中的应用。  相似文献   

3.
生物学中荧光共振能量转移的研究应用进展   总被引:5,自引:0,他引:5  
荧光共振能量转移(FRET)可用于对生物大分子之间的距离进行定性、定量检测,所采用的材料、方法在近年都有了很大的发展,在核酸、蛋白质、细胞器结构功能检测、免疫测定、配体-受体相互作用测定等方面都有巧妙而有效的应用,应用前景十分广阔。  相似文献   

4.
绿色荧光蛋白(GFP)在真菌研究中的应用   总被引:5,自引:0,他引:5  
绿色荧光蛋白(gteen fluorescent protein,GFP)来源于海洋生物水母(Aequorea victoria),由于其具有荧光性质稳定、直观、操作方便和不需添加外源底物就可以在活细胞中直接检测等无可比拟的优点,以GFP为报告基因已经被广泛地应用于真菌的分子生物学研究中。GFP基因通过随机插入真菌基因组的方法,已经被成功地用来研究真菌的生态、生防菌对病原菌的侵染模式及病原菌与其寄主的关系等;GFP基因通过与目标基因融合的方法,则被广泛地用于真菌的基因转录规则、蛋白质及细胞器定位、细胞亚结构和蛋白质功能等研究。  相似文献   

5.
绿色荧光蛋白在植物细胞生物学中的应用   总被引:3,自引:0,他引:3  
克隆于海洋动物水母 (Aequoreavictori a)的绿色荧光蛋白 (greenfluorescentprotein ,GFP)作为一种新型的非酶性报告基因具有检测简便 ,结果真实可靠 ,不需要任何外源底物或辅助因子的特点 ,自出现以来它已引起人们的广泛兴趣 ,目前已经应用于烟草、柑橘、拟南芥、玉米、水稻、大豆、苜蓿等多种植物材料的研究中。GFP含有特殊的六肽生色团结构 ,用蓝紫光激发即能发出肉眼清晰可见的绿色荧光 ,而无需任何底物或辅助因子。GFP能与多种不同蛋白质的N端或C端融合而保持与天然蛋白质相似的荧…  相似文献   

6.
绿色荧光蛋白(green fluorescent protein,GFP)及其突变体作为报告基因,已被广泛应用于基因表达调控、蛋白质空间定位、生物分子之间相互作用、转基因动物以及药物药效评价和作用机理研究等方面,极大地推动了现代生物学的发展.随着光电信息技术的不断进步,基于荧光报告基因的光学分子成像技术将在细胞、细胞网络、组织、器官和个体等不同层次实现分子与细胞事件的实时可视化,从而在重大疾病的早期诊断和药物研发中发挥重要作用.  相似文献   

7.
FRET技术及其在蛋白质-蛋白质分子相互作用研究中的应用   总被引:8,自引:2,他引:8  
简要综述了FRET方法在活细胞生理条件下研究蛋白质-蛋白质间相互作用方面的最新进展.蛋白质-蛋白质间相互作用在整个细胞生命过程中占有重要地位,由于细胞内各种组分极其复杂,因此一些传统研究蛋白质-蛋白质间相互作用的方法,例如酵母双杂交、免疫沉淀等可能会丢失某些重要的信息,无法正确地反映在当时活细胞生理条件下蛋白质-蛋白质间相互作用的动态变化过程.荧光共振能量转移(fluorescence resonance energy transfer, FRET)是近来发展的一项新技术,此项技术的应用,为在活细胞生理条件下对蛋白质-蛋白质间相互作用进行实时的动态研究,提供一个非常便利的条件.  相似文献   

8.
荧光共振能量转移(fluorescenceresonanceenergytransfer,FRET),是指能量从一种受激发的荧光基团(fluorophore)以非辐射的方式转移到另一种荧光基团的物理现象.FRET的能量转移效率是两个荧光基团间距离的函数,并对此距离十分敏感,它的有效响应距离一般在1~10nm之间,因而可被用于测定原子间及分子间的距离.这一特点使FRET技术在大分子构象变化、大分子之间相互作用、细胞信号通路等研究中发挥重要作用,成为生物医学研究中的重要方法.但细胞内的生物学过程常常涉及多于两个的大分子间相互作用,二色荧光基团的FRET技术不能满足这种生物学研究的需求.最近,两个研究小组在这方面取得突破,建立了分别基于共聚焦显微镜和流式细胞仪的三色荧光级联FRET技术.这一技术的出现将会极大地促进生物学及相关研究领域的发展.  相似文献   

9.
绿色荧光蛋白及其在植物研究中的应用   总被引:10,自引:1,他引:10  
绿色荧光蛋白(GFP)是海洋生物水母(Aequoreavictoria)体内的一种发光蛋白,分子量27kD,由238个氨基酸组成。该蛋白65~67位SerTyrGly三种氨基酸环化加氧形成特殊的生色团结构。野生型GFP发光较弱,而且gfpcDNA含有隐蔽型剪切位点,而加工改造的GFP在植物中能够正常表达并且加强了荧光信号。GFP作为新的报告基因和遗传标记被广泛应用于植物研究之中。  相似文献   

10.
绿色荧光蛋白(GFP)是海洋生物水母(Aequorea victoria)体内的一种发光蛋白,分子量27kD,由238个氨基酸组成。该蛋白65~67位Ser-Tyr-Gly三种氨基酸环化加氧形成特殊的生色团结构。野生型GFP发光较弱,而且gfp-cDNA含有隐蔽型剪切位点,而加工改造的GFP在植物中能够正常表达并且加强了荧光信号。GFP作为新的报告基因和遗传标记被广泛应用于植物研究之中。  相似文献   

11.
Because of its unusual spectroscopic properties, green fluorescent protein (GFP) has become a useful tool in molecular genetics, biochemistry and cell biology. Here, we computationally characterize the behavior of two GFP constructs, designed as bioprobes for enzymatic triggering using intramolecular fluorescence resonance energy transfer (FRET). These constructs differ in the location of an intramolecular FRET partner, an attached chemical chromophore (either near an N-terminal or C-terminal site). We apply the temperature replica exchange molecular dynamics method to the two flexible constructs in conjunction with a generalized Born implicit solvent model. The calculated rate of FRET was derived from the interchromophore distance, R, and orientational factor, kappa(2). In agreement with experiment, the construct with the C-terminally attached dye was predicted to have higher energy transfer rate than observed for the N-terminal construct. The molecular basis for this observation is discussed. In addition, we find that the orientational factor, kappa(2), deviates from the commonly assumed value, the implications of which are also considered.  相似文献   

12.
Li IT  Pham E  Truong K 《Biotechnology letters》2006,28(24):1971-1982
Genetically-coded, fluorescence resonance energy transfer (FRET) biosensors are widely used to study molecular events from single cells to whole organisms. They are unique among biosensors because of their spontaneous fluorescence and targeting specificity to both organelles and tissues. In this review, we discuss the theoretical basis of FRET with a focus on key parameters responsible for designing FRET biosensors that have the highest sensitivity. Next, we discuss recent applications that are grouped into four common biosensor design patterns—intermolecular FRET, intramolecular FRET, FRET from substrate cleavage and FRET using multiple colour fluorescent proteins. Lastly, we discuss recent progress in creating fluorescent proteins suitable for FRET purposes. Together these advances in the development of FRET biosensors are beginning to unravel the interconnected and intricate signalling processes as they are occurring in living cells and organisms.  相似文献   

13.
The interaction of the cell surface proteins plays a key role in the process of transmembrane signaling. Receptor clustering and changes in their conformation are often essential factors in the final outcome of ligand receptor interactions. Fluorescence resonance energy transfer (FRET) is an excellent tool for determining distance relationships and supramolecular organization of cell surface molecules. This paper reviews the theoretical background of fluorescence resonance energy transfer, its flow cytometric and microscopic applications (including the intensity based and photobleaching versions), and provides a critical evaluation of the methods as well. In order to illustrate the applicability of the method, we summarize a few biological results: clustering of lectin receptors, cell surface distribution of hematopoietic cluster of differentiation (CD) molecules, and that of the receptor tyrosine kinases, conformational changes of Major Histocompatibility Complex (MHC) I molecules upon membrane potential change and ligand binding.  相似文献   

14.
15.
An in vivo protease assay suitable for analysis by fluorescence resonance energy transfer (FRET) was developed on the basis of a novel FRET pair. The specifically designed fusion substrate consists of green fluorescent protein 2 (GFP2)-peptide-red fluorescent protein 2 (DsRed2), with a cleavage motif for the enterovirus 2A protease (2Apro) embedded within the peptide region. FRET can be readily visualized in real-time from cells expressing the fusion substrate until a proteolytic cleavage by 2Apro from the input virus. The level of FRET decay is a function of the amount and infection duration of the inoculated virus as measured by a fluorometer assay. The FRET biosensor also responded well to other related enteroviruses but not to a phylogenetically distant virus. Western blot analysis confirmed the physical cleavage of the fusion substrate upon the infections. The study provides proof of principle for applying the FRET technology to diagnostics, screening procedures, and cell biological research.  相似文献   

16.
Our previous article described a fluorescence-based assay for monitoring the proteolytic activity of botulinum neurotoxin types A and E (BoNT/A and BoNT/E). As detailed in that article, the assay is based on depolarization due to Förster resonance energy transfer between blue fluorescent protein (BFP) and green fluorescent protein (GFP) moieties linked via residues 134–206 of SNAP-25 (synaptosome-associated protein of 25 kDa), the protein substrate for BoNT/A and BoNT/E. Before cleavage of this recombinant substrate, the polarization observed for the GFP emission, excited near the absorption maximum of the BFP, is very low due to depolarization following energy transfer from BFP to GFP. After substrate cleavage and diffusion of the fluorescent proteins beyond the energy transfer distance, the polarization is high due to observation of the emission only from directly excited GFP. This change in fluorescence polarization allows an assay, termed DARET (depolarization after resonance energy transfer), that is robust and sensitive. In this article, we characterize the spectroscopic parameters of the system before and after substrate cleavage, including excitation and emission spectra, polarizations, and lifetimes.  相似文献   

17.
Spliceosomal small nuclear ribonucleoprotein particles (snRNPs) are required for pre-mRNA splicing throughout the nucleoplasm, yet snRNPs also concentrate in Cajal bodies (CBs). To address a proposed role of CBs in snRNP assembly, we have used fluorescence resonance energy transfer (FRET) microscopy to investigate the subnuclear distribution of specific snRNP intermediates. Two distinct complexes containing the protein SART3 (p110), required for U4/U6 snRNP assembly, were localized: SART3.U6 snRNP and SART3.U4/U6 snRNP. These complexes segregated to different nuclear compartments, with SART3.U6 snRNPs exclusively in the nucleoplasm and SART3.U4/U6 snRNPs preferentially in CBs. Mutant cells lacking the CB-specific protein coilin and consequently lacking CBs exhibited increased nucleoplasmic levels of SART3.U4/U6 snRNP complexes. Reconstitution of CBs in these cells by expression of exogenous coilin restored accumulation of SART3.U4/U6 snRNP in CBs. Thus, while some U4/U6 snRNP assembly can occur in the nucleoplasm, these data provide evidence that SART3.U6 snRNPs form in the nucleoplasm and translocate to CBs where U4/U6 snRNP assembly occurs.  相似文献   

18.
19.
This report describes the development, optimization, and implementation of a miniaturized cell-based assay for the identification of small-molecule insulin mimetics and potentiators. Cell-based assays are attractive formats for compound screening because they present the molecular targets in their cellular environment. A fluorescence resonance energy transfer (FRET) cell-based assay that measures the insulin-dependent colocalization of Akt2 fused with either cyan fluorescent protein or yellow fluorescent protein to the cellular membrane was developed. This ratiometric FRET assay was miniaturized into a robust, yet sensitive 3456-well nanoplate assay with Z' factors of approximately 0.6 despite a very small assay window (less than twofold full activation with insulin). The FRET assay was used for primary screening of a large compound collection for insulin-receptor agonists and potentiators. To prioritize compounds for further development, primary hits were tested in two additional assays, a biochemical time-resolved fluorescence resonance energy transfer assay to measure insulin-receptor phosphorylation and a translocation-based imaging assay. Results from the three assays were combined to yield 11 compounds as potential leads for the development of insulin mimetics or potentiators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号