首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The self-assembly process of tobacco mosaic virus protein (TMVP) was observed by rapid temperature-jump time-resolved solution X-ray small-angle scattering using synchrotron radiation. The temperature-jump device used for the X-ray measurements is rapid enough to cope with even the fastest-assembling process of TMVP, and accumulates data of reasonable signal-to-noise ratios with a minimum total counting time of 7.5 seconds. The measurements suggested that the 20 S disk of TMVP polymerized to stacked disks (short rods). The time to complete stacking varied from approximately 25 seconds to approximately 1200 seconds, depending on the solution condition and magnitude of the temperature gap. Higher protein concentration, ionic strength and temperature favoured faster association. The results were analysed in terms of a set of kinetic equations that describe the two-stage aggregation of TMVP with an equilibrium constant K1, and two rate constants k+2 and k-2 for association and dissociation of disks, respectively. The consistency of the analysis suggests that the TMVP assembly proceeds in two steps of: (1) the aggregation of A-proteins into double-layered disks; and (2) the stacking of double-layered disks. The kinetic analysis indicated that the stacking belongs to the lowest range of protein-protein interaction system.  相似文献   

2.
Assembly of tobacco mosaic virus.   总被引:2,自引:0,他引:2  
The assembly of tobacco mosaic virus requires the presence of a particular protein aggregate, the disk. During the nucleation, a specific region of the RNA interacts with a single disk, to bring about a necessarily cooperative transition from the paired two-layer structure to a short segment of nucleo-protein helix. There is a high selectivity for this region of the TMV RNA, because of the many nucleotides bound at once, and other nucleotide sequences appear only to bind by a different mechanism. Elongation of the nucleated rods can continue with either further disks or the less aggregated 'A-protein' as the protein source, but the continued cooperativity inherent with disks would have some advantages. The rates of the two processes have been separately determined and growth is faster when disks are still present. New experiments show that the breakdown of disks to yield A-protein is relatively slow and it is concluded that virus growth from disks could not proceed through a prior breakdown in solution, but must involve the direct interaction of the disk with the growing nucleoprotein rod. The detailed mechanism of disk addition is not understood but it may involve a directed breakdown, since there is also evidence for the existence of a non-equilibrium form of A-protein which has aggregation kinetics distinct from those of equilibrium A-protein. Some implications for the general assembly pathways of viruses both of the specificity and of the assembly/disassembly cycle during the viral infection are considered.  相似文献   

3.
The size and shape of A-protein of tobacco mosaic virus coat protein (TMVP) and cucumber green mottle mosaic virus coat protein (CGMMVP) were evaluated by means of small-angle X-ray scattering (SAXS) using a synchrotron radiation source, complemeted by electron microscopic observations. The results imply that TMV and CGMMV A-proteins are composed of three and two subunits, respectively, stacked in the shape of an isosceles triangular prism at lower ionic strength. Considering the difference of the A-protein structure at higher and lower ionic strength, the globular core structure was proposed as a subunit which might be modeled as a thin isosceles triangular prism composed of four globular cores joined by rather flexible segments. These cores correspond probably to four helical regions in a subunit, and rearrange their relative positions according to the external conditions. A slight rearrangement of core positions in a subunit may result in the formation of A-proteins of various shapes.  相似文献   

4.
Previous studies of the coat protein of tobacco mosaic virus (TMVP) have shown that TMVP presumably exists as linear stacks of two-ring cylindrical disks in the 0.7 M ionic strength buffer used for crystallizing the disks for X-ray diffraction studies [Raghavendra, K., Adams, M.L., & Schuster, T.M. (1985) Biochemistry 24, 3298-3304]. The spectroscopic and sedimentation studies of solutions of TMVP under these crystallizing conditions have demonstrated a long-term metastability of these disk aggregates when they are placed in 0.1 M ionic strength buffers, as are used for reconstituting tobacco mosaic virus from TMVP and viral RNA. The present work describes an electron microscopic study of TMVP disk aggregates under the same solution conditions employed in the previous spectroscopic and sedimentation studies. The results show that in the pH 8.0 0.7 M ionic strength crystallization buffer TMVP exists as stacks of disks which range in size from about 6 to 24 layers, corresponding to 3-12 2-layer disk aggregates having 17 subunits per layer. These TMVP aggregates persist in a metastable form in 0.1 M ionic strength virus reconstitution buffer with no apparent changes in structure of the stacked disks. The results are consistent with the conclusions of the solution physical-chemical studies which suggest that the disk structure may not be related to the 20S TMVP aggregate that is the nucleation species in virus  相似文献   

5.
The kinetics of assembly and disassembly of tobacco mosaic virus coat protein (TMVP) following temperature jumps have been studied by small-angle X-ray scattering and turbidimetry. The structures of the principal aggregates of TMVP oligomers (A protein), intermediate size (helix I) and large size helical rods (helix II), have been characterized by their average radii of gyration of thickness, cross section, and shape obtained from the corresponding regimes of the small-angle scattering pattern. This structural information was obtained within seconds after the temperature-induced initiation of either polymerization or depolymerization and allowed us to detect transient intermediates. This methodology made it possible to observe and characterize the structure of a principal intermediate. Taken together with other kinetic information, these data suggest that polymerization of TMVP under virus self-assembly conditions may proceed via a single-layered helical nucleus that contains about 20 subunits. Previous studies have shown that overshoot polymerization of TMVP can occur and results in metastable long helical viruslike rods which subsequently depolymerize and then form short helical rods, depending on the conditions of the final equilibrium state. The longer rods (helix II) are overshoot polymers which form within seconds and contain 17 1/3 subunits per turn (helix IIB), in contrast to the subunit packing arrangement of 16 1/3 subunits per turn found in the shorter helical rods (helix IA). The latter packing arrangement is the one found in TMV. An overall polymerization scheme is proposed for the formation of these two helical forms of TMVP.  相似文献   

6.
A method that allows the quantitative determination of reaction volumes from sedimentation velocity experiments in an analytical ultracentrifuge is presented. Combined with a second method for detecting pressure-induced depolymerization, general characteristics of polymer distributions may be probed. We show that it is possible to determine if a sample is in an equilibrium or metastable state of subunit association. Our approach to probe macromolecular aggregation systems by small pressure perturbations is not restricted to the use of centrifuges. This method has been applied to characterize certain aspects of the polymerization of tobacco mosaic virus coat protein (TMVP). There are at least two helical polymer conformations in RNA-free coat protein rods. The smaller, helix I, polymers are limited to sizes below about 70 subunits (four to five helical turns) and undergo some kind of cooperative conformational change before further subunits may be added indefinitely. In contrast to helix I, the larger helix II polymers occur as broader and skewed size distributions. Under moderately strong polymerization conditions, the equilibrium state can contain both types of helical rods. The reaction volume for the addition of trimers is -220 ml/mol for both types of helical polymers. These results are compared with the results of previous thermodynamic analyses of TMVP polymerization.  相似文献   

7.
Experiments have been carried out on the coat protein of tobacco mosaic virus (TMVP) to test for the occurrence of the previously postulated RNA-induced direct switching, during in vitro assembly of tobacco mosaic virus (TMV), of the subunit packing from the cylindrical bilayer disk to the virus helical arrangement. No evidence was found for such RNA-induced switching and no evidence for the direct participation of the bilayer disk in either the nucleation or elongation phases of the in vitro virus assembly. Instead, virus assembly proceeds by an initiation step involving the binding of the RNA to the previously characterized two-plus turn helical aggregate that is formed from small oligomers of subunits. However, a bilayer disk, which has been characterized in high ionic strength crystals, has been observed in low ionic strength virus assembly solutions only as a transient species upon depolymerization of dimers of bilayer disks formed in solution at high ionic strength, and not as an equilibrium species of TMVP.  相似文献   

8.
Summary We had proposed that both the initiation and growth of tobacco mosaic virus rods takes place from the RNA and protein disks, containing 34 protein subunits. Other workers have reported that growth occurs not from disks but from A-protein. We now review their experiments and show that they have not used disks, but rather two-disk stacks and that their results, but not conclusions, are compatible with our earlier findings.  相似文献   

9.
The length distributions of growing particles have been determined and followed as a function of time during the reconstitution of tobacco mosaic virus from its isolated RNA and protein. The protein was supplied either largely as the “disk” aggregate or as A-protein obtained by cooling a disk preparation. In a further experiment, the growth was initiated with disks and then continued with A-protein. It has been possible to correct the resulting distributions of lengths for the effect of broken RNA molecules and hence to obtain a picture of the distribution of lengths of the growing particles.From these distributions and also the average lengths, it is concluded that the growth is most rapid when disks are the protein source, giving full length particles in six to ten minutes. When A-protein is supplied for the growth, the rate is about one quarter of that with disks, irrespective of whether the rods have been nucleated with disks or not.  相似文献   

10.
Recombinant DNA derived tobacco mosaic virus (vulgare strain) coat protein (r-TMVP) was obtained by cloning and expression in Escherichia coli and was purified by column chromatography, self-assembly polymerization, and precipitation. SDS-PAGE, amino terminal sequencing, and immunoblotting with polyclonal antibodies raised against TMVP confirmed the identify and purity of the recombinant protein. Isoelectric focusing in 8 M urea and fast atom bombardment mass spectrometry demonstrated that the r-TMVP is not acetylated at the amino terminus, unlike the wild-type protein isolated from the tobacco plant derived virus. The characterization of r-TMVP with regard to its self-assembly properties revealed reversible endothermic polymerization as studied by analytical ultracentrifugation, circular dichroism, and electron microscopy. However, the details of the assembly process differed from those of the wild-type protein. At neutral pH, low ionic strength, and 20 degrees C, TMVP forms a 20S two-turn helical rod that acts as a nucleus for further assembly with RNA and additional TMVP to form TMV. Under more acidic conditions, this 20S structure also acts as a nucleus for protein self-assembly to form viruslike RNA-free rods. The r-TMVP that is not acetylated carries an extra positive charge at the amino terminus and does not appear to form the 20S nucleus. Instead, it forms a 28S four-layer structure, which resembles in size and structure the dimer of the bilayer disk formed by the wild-type protein at pH 8.0, high ionic strength, and 20 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Previous X-ray studies (2.8-A resolution) on the crystals of tobacco mosaic virus protein (TMVP) grown from solutions containing high salt have characterized the structure of the protein aggregate as a bilayered cylindrical disk formed by 34 identical subunits [Bloomer, A.C., Champness, J.N., Bricogne, G., Staden, R., & Klug, A. (1978) Nature (London) 276, 362-368]. Under low-salt conditions, 20S aggregates are in equilibrium with 4S species and involved in the efficient nucleation of TMV assembly in vitro [Butler, P.J.G. (1984) J. Gen. Virol. 65, 253-279]. We have investigated by sedimentation velocity and near-UV circular dichroism (CD) measurements the structure of 20S aggregates in low salt (I = 0.1 potassium phosphate at pH 7.0 and 20 degrees C) and the aggregates in high salt [0.2 M (NH4)2SO4 in I = 0.1 tris(hydroxymethyl)aminomethane hydrochloride at pH 8.0 and 20 degrees C, close to the conditions under which TMVP crystallizes as disk aggregates]. At high salt, we observe structures (presumably stacks of disks) having s20,w values around 40, 45, and 50 S, but not the 20S species present in low-salt buffers. The near-UV CD spectrum of 20S aggregates has been obtained for the first time, using computer techniques, from the spectra of the 4S-20S equilibrium mixture and the 4S species. This spectrum of 20S aggregates differs dramatically from that of the stacks of disks examined at both high and low salt (into which the stacks can be returned by dialysis), indicating that the difference is not a solvent effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The aggregation of the protein of the dahlemense strain of tobacco mosaic virus has been studied by electron microscopy and ultracentrifugation. The aggregates formed are similar to those formed by the vulgare strain, although the particular conditions for their formation are often rather different. Helix formation by dialysis of A protein at pH 8 to acid pH is much more efficient if an intermediate step at pH 7 is introduced. The 20 S particle or two-layer disk is stable over a wide range of pH and ionic strength values. There is no tendency to form short stacks of disks at high ionic strength; instead, 30 S particles are formed that correspond to a pair of interlocked disks giving a “figure-of-eight” appearance in electron micrographs. These particles appear to be the “building blocks” of the protein crystal.  相似文献   

13.
Titration of TMV-A-protein from pH 8 to 7 (20°C) or raising the temperature from 4° to 20°C (pH 7) produces, within a few minutes, a reversible change in the aromatic region of the CD-spectrum, before any extensive aggregation has taken place. This spectral change is solely a matter of the conditions of the solution and not of the history of the protein. There is no further CD-change during the slow aggregation process. Thus there must be some proton-uptake within the A-protein. The results are discussed with regard to the different interpretations of the role of A-protein or double-disc in the elongation-step of TMV-“in vitro” -self-assembly.  相似文献   

14.
R Gabler  I Bendet 《Biopolymers》1972,11(12):2393-2413
The dichroic ratio spectra of TMV and four of its mutants (YTAMV, GTAMV, HR, and CV4) were determined from 320 to 240 nm. Measurements were also made on particles of ATMV (TMV protein reconstituted with polyadenylic acid) and rods of repolymerized TMV, YTAMV and GTAMV protein, respectively. These cylindrical molecules were oriented in a flow gradient with their degree of orientation being determined from anisotropic light scattering measurements. Taking length distributions into account, the dichroic ratios were then extrapolated to values characteristic of perfect particle alignment. Due to the large number of overlapping absorbing bands in the whole viruses, it is very difficult to separate out specific contributions to the total spectra. Since, however, the spectra for the whole viruses were similar, this would suggest an overall likeness in structure for all the virus particles studied. Because the repolymerized proteins did not have the four RNA chromophoric groups present, their spectra would be more sensitive to protein contributions to the total spectrum. Repolymerized rods of YTAMVP yielded results similar to those for TMVP, while the spectrum for repolymerized rods of GTAMVP was significantly different from that obtained for TMVP. Dichroic ratio spectra of the nucleic acids, as they exist within the whole particles, were also calculated by subtracting protein absorptivities from their respective viral absorptivities. The spectra indicates similar results for the various nucleic acids in all the particles studied.  相似文献   

15.
The conformation of polysaccharide PGG-Glucan, isolated from yeast cell walls, in aqueous solution was investigated by small angle x-ray scattering (SAXS) and multidetector gel permeation chromatography coupled with postcolumn delivery (GPC/PCD) techniques in comparison with scleroglucan. It was shown that both polysaccharides exhibit a rigid rod-like conformation in aqueous solution by SAXS experiments. The mass per unit length (M/L) and radius (R) of rod cross section of PGG-Glucan were measured to be 6300 daltons/nm and 1.89 nm, while those of scleroglucan are 2300 and 0.83, respectively. Utilizing a GPC/light scattering technique, the average aggregation number of PGG-Glucan is 9, while that of scleroglucan is around 3. From the comparison of the M/L and R of the respective rod cross sections as well as their aggregation number data, it is concluded that PGG-Glucan is composed of triple helices, which tend to aggregate as triplets in solution, whereas scleroglucan is composed of a single triple helix. The aggregation number distribution of PGG-Glucan was found to range from 1 to about 25 determined by GPC/PCD. From the observation of a Debye-Scherrer ring type of peak in the macroscopic scattering cross section of PGG-Glucan by SAXS, the existence of a small amount of ordered clusters of PGG-Glucan can be deduced. The "lattice parameter" of these ordered fasces-like clusters is consistent with the radius of the individual triple-helical rods forming a microfibrillar superstructure. These results indicate that higher aggregated forms of PGG-Glucan containing up to 8 triple helices behave as ordered fasces-like clusters. We conclude that PGG-Glucan is triple-helix aggregates formed by rigid rods stacking together side by side. We propose a molecular structural model for PGG-Glucan conformations.  相似文献   

16.
This is a review of applications of the McMillan-Mayer-Hill virial theory and the ionic double-layer theory to dilute colloidal solutions, in particular, solutions of DNA. Interactions of highly charged colloidal rods are developed in terms of the second virial coefficients between two rods, and between one rod and one small co-ion. The relevant cluster integrals are evaluated with interaction potentials based on the Poisson-Boltzmann equation. The treatment is extended to the intrachain repulsion responsible for the statistical swelling of coiled DNA (excluded volume effect). The theory is compared with three sets of experimental data: The salt distribution in Donnan membrane equilibria of DNA-salt solutions, sedimentation equilibria of short DNA fragments at different ionic strengths, and the intrinsic viscosity of T7 DNA in NaCl solutions. In all cases the theory agrees well with the experiments. The agreement is not convincing for the sedimentation equilibrium at low ionic strength, because here the experimental DNA concentration is too high for the truncated dilute solution expansion of the DNA-salt repulsion.  相似文献   

17.
RNA-protein interactions in the assembly of tobacco mosaic virus.   总被引:4,自引:0,他引:4       下载免费PDF全文
Assembly of tobacco mosaic virus is initiated by the binding of a specific loop of the RNA into the central hole of the disk aggregate of protein subunits. Since the nucleation loop is located about five-sixths along the RNA molecule, subsequent elongation must be bidirectional. We have now measured the rates of elongation in the two directions by determining the lengths of RNA protected from nuclease digestion at different times and using either intact TMV rNA, or RNA with most of the longer tail removed. Comparison of the rates with the protein supplied as either a mixture of disks with A-protein (a mixture of less aggregated states) or just A-protein, shows that different mechanisms and protein aggregates are used for the most rapid growth. When disks are present, they add more rapidly along the longer RNA tail but do not appear to add directly on the shorter tail. In contrast, smaller aggregates (A-protein) can add at both ends of the rod, but do so more slowly. Mechanisms for these processes are discussed. Preliminary results on the binding of the specific hexanucleotide AAGAAG to the disk are given and compared with the known changes on binding nonspecific hexanucleotides or the trinucleotide AAG.  相似文献   

18.
Small-angle X-ray scattering (SAXS) experiments are increasingly used to probe RNA structure. A number of forward models that relate measured SAXS intensities and structural features, and that are suitable to model either explicit-solvent effects or solute dynamics, have been proposed in the past years. Here, we introduce an approach that integrates atomistic molecular dynamics simulations and SAXS experiments to reconstruct RNA structural ensembles while simultaneously accounting for both RNA conformational dynamics and explicit-solvent effects. Our protocol exploits SAXS pure-solute forward models and enhanced sampling methods to sample an heterogenous ensemble of structures, with no information towards the experiments provided on-the-fly. The generated structural ensemble is then reweighted through the maximum entropy principle so as to match reference SAXS experimental data at multiple ionic conditions. Importantly, accurate explicit-solvent forward models are used at this reweighting stage. We apply this framework to the GTPase-associated center, a relevant RNA molecule involved in protein translation, in order to elucidate its ion-dependent conformational ensembles. We show that (a) both solvent and dynamics are crucial to reproduce experimental SAXS data and (b) the resulting dynamical ensembles contain an ion-dependent fraction of extended structures.  相似文献   

19.
The reconstitution process of tobacco mosaic virus (TMV) was investigated by the solution X-ray scattering measurements with the synchrotron radiation source using low-temperature quenching. TMV assembly in an aqueous solution is completely stopped below 5 degrees C. The TMV assembly was traced by the small-angle X-ray scattering (SAXS) measurements at 5 degrees C on a series of solutions prepared by low-temperature quenching after incubation either at 15, 20 or 25 degrees C for an appropriate interval between 0 and 60 min. The SAXS results were analyzed by the Guinier plot, the Kratky plot and the distance distribution function. In order to account the time course of SAXS profiles in terms of the elongation of TMV assembly, a model calculation was performed to simulate the Guinier plot, the Kratky plot and the distance distribution function by applying Glatter's multibody method using models that were constituted of the spheres representing a column of piled two-layer disks of TMV-protein. The three simulated functions thus obtained support the conclusion derived from the three functions calculated from the experimental results that the incubation of the RNA and protein of TMV began to reconstitute TMV instantly after mixing, proceeded steeply to a long rod, and then extended asymptotic to the full length of the TMV particle. This process is in good agreement with that obtained from electron microscopic studies.  相似文献   

20.
Bovine serum albumin (BSA) causes tobacco mosaic virus (TMV) to crystallize at pH values where both have negative charges. The amount of albumin required to precipitate the virus varies inversely with ionic strength of added electrolyte. At pH values above 5, the precipitating power is greatest when BSA has the maximum total, positive plus negative, charge. Unlike early stages of the crystallization of TMV in ammonium sulfate-phosphate solutions, which can be reversed by lowering the temperature, the precipitation of TMV by BSA is not readily reversed by changes in temperature. The logarithm of the apparent solubility of TMV in BSA solutions, at constant ionic strength of added electrolyte, decreases linearly with increasing BSA concentration. This result and the correlation of precipitating power with total BSA charge suggest that BSA acts in the manner of a salting-out agent. The effect of BSA on the reversible entropy-driven polymerization of TMV protein (TMVP) depends on BSA concentration, pH, and ionic strength. In general, BSA promotes TMVP polymerization, and this effect increases with increasing BSA concentrations. The effect is larger at pH 6.5 than at pH 6. Even though increasing ionic strength promotes polymerization of TMVP in absence of BSA, the effect of increasing ionic strength from 0.08 to 0.18 at pH 6.5 decreases the polymerization-promoting effect of BSA. Likewise, the presence of BSA decreases the polymerization-promoting effect of ionic strength. The polymerization-promoting effect of BSA can be interpreted in terms of a process akin to salting-out. The mutual suppression of the polymerization-promoting effects of BSA and of electrolytes by each other can be partially explained in terms of salting-in of BSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号