首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The isolation of a maize cDNA clone that encodes a membrane spanning protein kinase related to the self-incompatibility glycoproteins (SLG) of Brassica and structurally similar to the growth factor receptor tyrosine kinases has recently been reported. Three distinct receptor-like protein kinase (RLK) cDNA clones from Arabidopsis thaliana have now been identified. Two of the Arabidopsis RLK genes encode SLG-related protein kinases but have different patterns of expression: one is expressed predominantly in rosettes while the other is expressed primarily in roots. The third RLK gene contains an extracellular domain that consists of 21 leucine-rich repeats that are analogous to the leucine-rich repeats found in proteins from humans, flies and yeast. The Arabidopsis leucine-rich gene is expressed at equivalent levels in roots and rosettes. These results show that there are several genes in higher plants that encode members of the receptor protein kinase superfamily. The structural diversity and differential expression of these genes suggest that each plays a distinct and possibly important role in cellular signaling in plants.  相似文献   

2.
3.
4.
Receptor-like kinases (RLKs) constitute a large family of signal perception molecules. We characterized two highly homologous RLK genes, RLK902 and RKL1, in Arabidopsis. RLK902 and RKL1 showed a 75% amino acid sequence identity over their entire regions. In the RLK902 pro::GUS transgenic lines, GUS activity was strong in the root tips, lateral root primordia, stipules, and floral organ abscission zones, while the RKL1 promoter activity was dominant in the stomata cells, hydathodes and trichomes of young rosette leaves, and floral organ abscission zones. Neither the rlk902 mutant line, rkl1 mutant line nor rlk902/rkl1 double-knockout mutant line showed any significant phenotypes under normal growth conditions. These results suggest that RLK902 and RKL1 might mediate the signal transduction pathway in which at least one other complementary signaling pathway to these two RLKs might exist.  相似文献   

5.
Phosphoenolpyruvate carboxylase (PEPC) is thought to play many roles in C(3) plants including the provision of biosynthetic precursors and control of pH during N assimilation. Its activity is controlled via phosphorylation catalysed by PEPC kinases, which are encoded by PPCK genes. We examined PPCK expression in response to changes in the supply of N or C, and to changes in intracellular pH, using cultured Arabidopsis cells and seedlings. The results show that expression of both PPCK1 and PPCK2 is increased by C availability, but does not respond to N availability. Expression of the two PPCK genes and the phosphorylation state of PEPC are increased in response to increasing intracellular pH. Elevated pH also reduces the repression of PPCK gene expression by P(i). Expression of phosphoenolpyruvate carboxykinase (PEPCK), which catalyses the decarboxylation of oxaloacetate, is decreased in response to increasing intracellular pH. pH homeostasis may be mediated at least partly by reciprocal changes in the expression of PPCK genes and PEPCK.  相似文献   

6.
Novel family of sensor histidine kinase genes in Arabidopsis thaliana   总被引:8,自引:0,他引:8  
We identified three novel, highly homologous, sensor histidine kinases that possibly function in the plasma membrane of Arabidopsis thaliana, i.e. AHK2, 3 and 4. While AHK2 and 3 are expressed in several organs, AHK4 is mainly expressed in roots. AHK3 suppresses a sensor histidine kinase mutant of yeast.  相似文献   

7.
8.
9.
The role of salicylic acid (SA) in plant responses to pathogens has been well documented, but its direct and indirect effects on plant responses to insects are not so well understood. We examined the effects of SA, alone and in combination with jasmonic acid (JA), on the performance of the generalist herbivore, Spodoptera exigua, in wild-type and mutant Arabidopsis thaliana genotypes that varied genetically in their ability to mount SA- and JA-mediated defence responses. In one experiment, growth of S. exigua larvae was highest on the Wassilewskija wild-type, intermediate on the Columbia wild-type and the JA-deficient fad mutant, and lowest on the nim1-1 and jar1-mutants, which are defective in the SA and JA pathways, respectively. Activity of guaiacol peroxidase, polyphenoloxidase, n-acetylglucosaminidase, and trypsin inhibitor varied by genotype but did not correlate with insect performance. SA treatment increased growth of S. exigua larvae by approximately 35% over all genotypes, but had no discernable effect on activities of the four defence proteins. In a second experiment, growth of S. exigua was highest across treatments on the cep1 mutant, a constitutive expressor of high SA levels and systemic acquired resistance, and lowest on the fad mutant, which is JA-deficient. JA treatment generally increased activity of all four defence proteins, increased total glucosinolate levels and reduced insect growth by approximately 25% over all genotypes. SA generally inhibited expression of JA-induced resistance to S. exigua when both hormones were applied simultaneously. Across genotypes and treatments, larval mass was negatively correlated with the activity of trypsin inhibitor and polyphenoloxidase and with total glucosinolate levels, and insect damage was negatively correlated with the activity of polyphenoloxidase. SA had little effect on the induction of defence protein activity by JA. However, SA attenuated the induction of glucosinolates by JA and therefore may explain better the interactive effects of SA and JA on insect performance. This study illustrates that direct and indirect cross-effects of SA on resistance to S. exigua can occur in A. thaliana. Effects of SA may be mediated through effects on plant defence chemistry or other aspects of the suitability of foliage for insect feeding and growth.  相似文献   

10.
11.
12.
《Molecular cell》2021,81(15):3216-3226.e8
  1. Download : Download high-res image (344KB)
  2. Download : Download full-size image
  相似文献   

13.
In higher plants, an outer layer of meristematic cells, the protoderm, forms early in embryogenesis and this layer gives rise to the epidermis in differentiating tissues. We proposed previously that an Arabidopsis thaliana homolog of crinkly4 (ACR4), a gene for a receptor-like protein kinase, would be involved in differentiation and/or maintenance of epidermis-related tissues. In the present study, we isolated loss-of-function acr4 mutants by a reverse genetic approach. Our extensive analyses using the transmission electron microscopy and the toluidine blue test -- a method that has recently been developed for the rapid visualization of defects in the leaf cuticle -- showed that the acr4 mutations significantly affected the differentiation of leaf epidermal cells, suggesting similar roles for ACR4 and CR4 in the differentiation of leaf epidermis. Our acr4 mutants also had various abnormalities related to epidermal differentiation, which included disorganized cell layers in the integument and endothelium of ovules. In addition, the green fluorescent protein fused to ACR4 was localized preferentially on the lateral and basal plasma membranes in the epidermis of the leaf primordia, suggesting a role for ACR4 in epidermal differentiation at cell surfaces that make contact with adjacent cells. Furthermore, the loss-of-function mutations in the ACR4 and ABNORMAL LEAF SHAPE1 (ALE1) genes, which encode a putative subtilisin-like serine protease, synergistically affected the function of the epidermis such that most leaves fused. Thus, ACR4 seems to play an essential role in the differentiation of proper epidermal cells in both vegetative and reproductive tissues.  相似文献   

14.
15.
Metallochaperone-like genes in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
A complete inventory of metallochaperone-like proteins containing a predicted HMA domain in Arabidopsis revealed a large family of 67 proteins. 45 proteins, the HIPPs, have a predicted isoprenylation site while 22 proteins, the HPPs, do not. Sequence comparisons divided the proteins into seven major clusters (I-VII). Cluster IV is notable for the presence of a conserved Asp residue before the CysXXCys, metal binding motif, analogous to the Zn binding motif in E. coli ZntA. HIPP20, HIPP21, HIPP22, HIPP26 and HIPP27 in Cluster IV were studied in more detail. All but HIPP21 could rescue the Cd-sensitive, ycf1 yeast mutant but failed to rescue the growth of zrt1zrt2, zrc1cot1 and atx1 mutants. In Arabidopsis, single and double mutants did not show a phenotype but the hipp20/21/22 triple mutant was more sensitive to Cd and accumulated less Cd than the wild-type suggesting the HIPPs can have a role in Cd-detoxification, possibly by binding Cd. Promoter-GUS reporter expression studies indicated variable expression of these HIPPs. For example, in roots, HIPP22 and HIPP26 are only expressed in lateral root tips while HIPP20 and HIPP25 show strong expression in the root vasculature.  相似文献   

16.
Terrestrial plants serve as large and diverse habitats for a wide range of pathogenic and nonpathogenic microbes, yet these communities are not well described and little is known about the effects of plant defense on microbial communities in nature. We designed a field experiment to determine how variation in two plant defense signaling pathways affects the size, diversity, and composition of the natural endophytic and epiphytic bacterial communities of Arabidopsis thaliana. To do this, we provide an initial characterization of these bacterial communities in one population in southwestern Michigan, United States, and we compare these two communities among A. thaliana mutants deficient in salicylic acid (SA) and jasmonic acid (JA) signaling defense pathways, controls, and plants with artificially elevated levels of defense. We identified 30 distinct bacterial groups on A. thaliana that differ in colony morphology and 16S rRNA sequence. We show that induction of SA-mediated defenses reduced endophytic bacterial community diversity, whereas plants deficient in JA-mediated defenses experienced greater epiphytic bacterial diversity. Furthermore, there was a positive relationship between total community size and diversity, indicating that relatively susceptible plants should, in general, harbor higher bacterial diversity. This experiment provides novel information about the ecology of bacteria on A. thaliana and demonstrates that variation in two specific plant-signaling defense pathways can influence bacterial diversity on plants.  相似文献   

17.
Receptor-like kinases (RLKs) are a family of transmembrane proteins with versatile N-terminal extracellular domains and C-terminal intracellular kinases. They control a wide range of physiological responses in plants and belong to one of the largest gene families in the Arabidopsis genome with more than 600 members. Interestingly, this gene family constitutes 60% of all kinases in Arabidopsis and accounts for nearly all transmembrane kinases in Arabidopsis. Analysis of four fungal, six metazoan, and two Plasmodium sp. genomes indicates that the family was represented in all but fungal genomes, indicating an ancient origin for the family with a more recent expansion only in the plant lineages. The RLK/Pelle family can be divided into several subfamilies based on three independent criteria: the phylogeny based on kinase domain sequences, the extracellular domain identities, and intron locations and phases. A large number of receptor-like proteins (RLPs) resembling the extracellular domains of RLKs are also found in the Arabidopsis genome. However, not all RLK subfamilies have corresponding RLPs. Several RLK/Pelle subfamilies have undergone differential expansions. More than 33% of the RLK/Pelle members are found in tandem clusters, substantially higher than the genome average. In addition, 470 of the RLK/Pelle family members are located within the segmentally duplicated regions in the Arabidopsis genome and 268 of them have a close relative in the corresponding regions. Therefore, tandem duplications and segmental/whole-genome duplications represent two of the major mechanisms for the expansion of the RLK/Pelle family in Arabidopsis.  相似文献   

18.
Atmospheric CO(2) concentration ([CO(2)]) is rising on a global scale and is known to affect flowering time. Elevated [CO(2)] may be as influential as temperature in determining future changes in plant developmental timing, but little is known about the molecular mechanisms that control altered flowering times at elevated [CO(2)]. Using Arabidopsis thaliana, the expression patterns were compared of floral-initiation genes between a genotype that was selected for high fitness at elevated [CO(2)] and a nonselected control genotype. The selected genotype exhibits pronounced delays in flowering time when grown at elevated [CO(2)], whereas the control genotype is unaffected by elevated [CO(2)]. Thus, this comparison provides an evolutionarily relevant system for gaining insight into the responses of plants to future increases in [CO(2)]. Evidence is provided that elevated [CO(2)] influences the expression of floral-initiation genes. In addition, it is shown that delayed flowering at elevated [CO(2)] is associated with sustained expression of the floral repressor gene, FLOWERING LOCUS C (FLC), in an elevated CO(2)-adapted genotype. Understanding the mechanisms that account for changes in plant developmental timing at elevated [CO(2)] is critical for predicting the responses of plants to a high-CO(2) world of the near future.  相似文献   

19.
Receptor kinases play a key role in the cellular perception of signals. To verify models for receptor activation through dimerization, an experimental system is required to determine the precise oligomerization status of proteins within living cells. Here we show that photon counting histogram analysis and dual-color fluorescence cross correlation spectroscopy are able to monitor fluorescently labeled proteins at the single-molecule detection level in living plant cells. In-frame fusion proteins of the brassinosteroid insensitive 1 (BRI1) receptor and the Arabidopsis thaliana somatic embryogenesis receptor-like kinases 1 and 3 (AtSERK1 and 3) to the enhanced cyan or yellow fluorescent protein were transiently expressed in plant cells. Although no oligomeric structures were detected for AtSERK3, 15% (AtSERK1) to 20% (BRI1) of the labeled proteins in the plasma membrane was found to be present as homodimers, whereas no evidence was found for higher oligomeric complexes.  相似文献   

20.
Introns are often added to transgenes to increase expression, although the mechanism through which introns stimulate gene expression in plants and other eukaryotes remains mysterious. While introns vary in their effect on expression, it is unknown whether different genes respond similarly to the same stimulatory intron. Furthermore, the degree to which gene regulation is preserved when expression is increased by an intron has not been thoroughly investigated. To test the effects of the same intron on the expression of a range of genes, GUS translational fusions were constructed using the promoters of eight Arabidopsis genes whose expression was reported to be constitutive (GAE1, CNGC2 and ROP10), tissue specific (ADL1A, YAB3 and AtAMT2) or regulated by light (ULI3 and MSBP1). For each gene, a fusion containing the first intron from the UBQ10 gene was compared to fusions containing the gene's endogenous first intron (if the gene has one) or no intron. In every case, the UBQ10 intron increased expression relative to the intronless control, although the magnitude of the change and the level of expression varied. The UBQ10 intron also changed the expression patterns of the CNGC2 and YAB3 fusions to include strong activity in roots, indicating that tissue specificity was disrupted by this intron. In contrast, the regulation of the ULI3 and MSBP1 genes by light was preserved when their expression was stimulated by the intron. These findings have important implications for biotechnology applications in which a high level of transgene expression in only certain tissues is desired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号