首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a novel chemiluminescence (CL) flow biosensor for glucose was proposed. Glucose oxidase (GOD), horseradish peroxidase (HRP) and gold nanoparticles were immobilized with sol-gel method on the inside surface of the CL flow cell. The CL detection involved enzymatic oxidation of glucose to d-gluconic acid and H(2)O(2), and then the generated H(2)O(2) oxidizing luminol to produce CL emission in the presence of HRP. It was found that gold nanoparticles could remarkably enhance the CL respond of the glucose biosensor. The enhanced effect was closely related to the sizes of gold colloids, and the smaller the size of gold colloids had the higher CL respond. The immobilization condition and the CL condition were studied in detail. The CL emission intensity was linear with glucose concentration in the range of 1.0 x 10(-5)molL(-1) to 1.0 x 10(-3)molL(-1), and the detection limit was 5 x 10(-6)molL(-1) (3sigma). The apparent Michaelis-Menten constant of GOD in gold nanoparticles/sol-gel matrix was evaluated to be 0.3mmolL(-1), which was smaller than that of GOD immobilized in sol-gel matrix without gold nanoparticles. The proposed biosensor exhibited short response time, easy operation, low cost and simple assembly, and the proposed biosensor was successfully applied to the determination of glucose in human serum.  相似文献   

2.
A bienzymatic glucose biosensor was proposed for selective and sensitive detection of glucose. This mediatorless biosensor was made by simultaneous immobilization of glucose oxidase (GOD) and horseradish peroxidase (HRP) in an electropolymerized pyrrole (PPy) film on a single-wall carbon nanotubes (SWNT) coated electrode. The amperometric detection of glucose was assayed by potentiostating the bienzymatic electrode at -0.1 versus Ag/AgCl to reduce the enzymatically produced H(2)O(2) with minimal interference from the coexisting electroactive compounds. The single-wall carbon nanotubes, sandwiched between the enzyme loading polypyrrole (PPy) layer and the conducting substrate (gold electrode), could efficiently promote the direct electron transfer of HRP. Operational characteristics of the bienzymatic sensor, in terms of linear range, detection limit, sensitivity, selectivity and stability, were presented in detail.  相似文献   

3.
A novel electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of α-1-fetoprotein (AFP) was designed based on the in situ bi-enzymatic reaction to generate coreactant of peroxydisulfate for signal amplification. In this work, AuNPs were electrodeposited on the glassy carbon electrode (GCE) surface, which promoted the electron transfer. Then, L-cysteine and another layer of AuNPs were, respectively assembled onto the modified electrode surface, which formed the multilayer films for amplifying the ECL signal of peroxydisulfate and immobilizing antibody. At last, glucose oxidase (GOD) and horseradish peroxidase (HRP) were employed to block the nonspecific binding sites. When proper amounts of glucose were added in the detection solution, GOD catalyzed the oxidation of glucose to generate H(2)O(2), which could be further catalyzed by HRP to generate O(2) for the signal amplification. The linear range for AFP detection was 0.001-100 ng mL(-1), with a low detection limit of 3.3 × 10(-4) ng mL(-1). The novel strategy has the advantages of simplicity, sensitivity, good selectivity and reproducibility which might hold a new promise for highly sensitive bioassays applied in clinical detection.  相似文献   

4.
Adsorption and bioelectrocatalytic activity of native horseradish peroxidase (HRP) and its recombinant forms on polycrystalline gold electrodes were studied. Recombinant forms of HRP were produced by a genetic engineering approach using an E. coli expression system. According to direct mass measurements with a quartz crystal microbalance, all the forms of HRP formed monolayer coverage of the enzyme on the gold surface. However, only gold electrodes modified with the recombinant HRP forms (non-glycosylated) exhibited high and stable current response to H2O2 due to its bioelectrocatalytic reduction based on direct electron transfer (ET) between gold and the active site of the enzyme. Introduction of a six-His tag either at the C-terminus or at the N-terminus of the enzyme molecule additionally increased the strength of the enzyme binding with the gold surface and the efficiency of direct ET. Immobilization of recombinant forms of HRP containing histidine functional groups on the surface of the gold electrode was used both for the development of a P-chip, a biosensor for hydrogen peroxide determination based on direct ET, and for the development of a bienzyme biosensor electrode for the determination of L-lysine based on co-immobilized recombinant forms of HRP and L-lysine--oxidase.  相似文献   

5.
We used colloidal Au to enhance the amount of antibody immobilized on a gold electrode and ultimately monitored the interaction of antigen-antibody by impedance measurement. Self-assembly of 6 nm (diameter) colloidal Au onto the self-assembled monolayers (SAMs) of 4-aminothiophenol modified gold electrode resulted in an easier attachment of antibody. The redox reactions of [Fe(CN)6](4-)/[Fe(CN)6](3-) on the gold surface were blocked due to the procedures of self-assembly of 4-aminothiophenol and antibody immobilization, which were investigated by cyclic voltammetry and impedance spectroscopy. The interaction of antigen with grafted antibody recognition layers was carried out by soaking the modified electrode into a phosphate buffer at pH 7.4 with various concentrations of antigen at 37 degrees C for 30 min. The antibody recognition layers and their interactions with various concentrations of antigen could be detected by measurements of the impedance change. The results show that this method has good correlation for detection of Hepatitis B virus surface antigen in the range of 0.5-200 microg/l and a detection limit of about 50 ng/l.  相似文献   

6.
This paper describes a new method for the sensitive detection of cholinesterase inhibitors based on real-time monitoring using a piezoelectric biosensor. The cholinesterase inhibitor paraoxon was immobilized on the sensing surface via a chelate complex as the recognition element. At first, the conjugate of N-mercaptoundecanoic acid (MUA) with Nalpha,Nalpha-bis (carboxymethyl)-L-lysine (NTA-Lys) was chemisorbed to form a self-assembled monolayer on the surface of the gold electrode of the piezosensor. In the next step, paraoxon-spacer-hexahistidine conjugate was linked to the MUA-Lys-NTA layer via the chelate complex with Ni2+. The paraoxon-modified surface thus obtained was applied for the binding of human butyrylcholinesterase (BChE). Regeneration of the sensing surface was achieved by splitting the chelate complex with EDTA and depositing a fresh layer of Ni2+ followed by addition of the paraoxon-spacer-hexahistidine. In the presence of free inhibitors like diisopropylfluorophosphate (DFP), binding of BChE to the surface-bound paraoxon was decreased. In this way, a competitive affinity assay for organophosphorus compounds was developed. The limit of detection for DFP as a model compound was 10 nmol/l (ca. 2 microg/l). This new concept seems suitable for constructing biosensors for the group-specific detection of cholinesterase-inhibiting substances like insecticides in the field.  相似文献   

7.
A new strategy for fabricating glucose biosensor was presented by layer-by-layer assembled chitosan (CS)/gold nanoparticles (GNp)/glucose oxidase (GOD) multilayer films modified Pt electrode. First, a cleaned Pt electrode was immersed in poly(allylamine) (PAA), and then transferred to GNp, followed by the adsorption of GOD (GOD/GNp/PAA/Pt). Second, the GOD/GNp/PAA/Pt electrode was immersed in CS, and then transferred to GNp, followed by the adsorption of GOD (GOD/GNp/CS/GOD/GNp/PAA/Pt). Third, different layers of multilayer films modified Pt electrodes were assembled by repeating the second process. Film assembling and characterization were studied by quart crystal microbalance, and properties of the resulting glucose biosensors were measured by electrochemical measurements. The results confirmed that the assembling process of multilayer films was simple to operate, the immobilized GOD displayed an excellent catalytic property to glucose, and GNp in the biosensing interface efficiently improved the electron transfer between analyte and electrode surface. The amperometric response of the biosensors uniformly increased from one to six layers of multilayer films, and then reached saturation after the seven layers. Among the resulting biosensors, the biosensor based on the six layers of multilayer films was best. It showed a wide linear range of 0.5-16 mM, with a detection limit of 7.0 microM estimated at a signal-to-noise ratio of 3, fast response time (within 8s). Moreover, it exhibited good reproducibility, long-term stability and interference free. This method can be used for constructing other thin films, which is a universal immobilization method for biosensor fabrication.  相似文献   

8.
A novel method for fabrication of horseradish peroxidase (HRP) biosensor has been developed by self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid) (St-co-AA) nanospheres. At first, a cleaned gold electrode was immersed in thiol-functionalized poly(St-co-AA) nanosphere latex prepared by emulsifier-free emulsion polymerization of St with AA and function with dithioglycol to assemble the nanospheres, then gold nanoparticles were chemisorbed onto the thiol groups. Finally, horseradish peroxidase was immobilized on the surface of the gold nanoparticles. The sensor displayed an excellent electrocatalytical response to reduction of H2O2 without the aid of an electron mediator. The sensor was highly sensitive to hydrogen peroxide with a detection limit of 4.0 micromoll(-1), and the linear range was from 10.0 micromoll(-1) to 7.0 mmoll(-1). The biosensor retained more than 97.8% of its original activity after 60 days of use. Moreover, the studied biosensor exhibited good current repeatability and good fabrication reproducibility.  相似文献   

9.
Yin B  Yuan R  Chai Y  Chen S  Cao S  Xu Y  Fu P 《Biotechnology letters》2008,30(2):317-322
A glucose biosensor based on layer-by-layer (LBL) self-assembling of chitosan and glucose oxidase (GOD) on a Prussian blue film was developed. First, Prussian blue was deposited on a cleaned gold electrode then chitosan and GOD were assembled alternately to construct a multilayer film. The resulting amperometric glucose biosensor exhibited a fast response time (within 10 s) and a linear calibration range from 6 μM to 1.6 mM with a detection limit of 3.1 μM glucose (s/n = 3). With the low operating potential, the biosensor showed little interference to the possible interferents, including ascorbic acid, acetaminophen and uric acid, indicating an excellent selectivity.  相似文献   

10.
Mediated biosensors consisting of an oxidase and peroxidase (POx) have attracted increasing attention because of their wider applicability. This work presents a novel approach to fabricate nanobiocomposite bienzymatic biosensor based on functionalized multiwalled carbon nanotubes (MWNTs) with the aim of evaluating their ability as sensing elements in amperometric transducers. Electrochemical behavior of the bienzymatic nanobiocomposite biosensor is investigated by Faradaic impedance spectroscopy and cyclic voltammetry. The results indicate that glucose oxidase (GOD) and horseradish peroxidase (HRP) are strongly adsorbed on the surface of the thionin (TH) functionalized MWNTs and demonstrate a facile electron transfer between immobilized GOD/HRP and the electrode via the functionalized MWNTs in a Nafion film. The functionalized carbon nanotubes act as molecular wires to allow efficient electron transfer between the underlying electrode and the redox centres of enzymes through TH. Linear ranges for these electrodes are from 10 nM to 10 mM for glucose and 17 nM to 56 mM for hydrogen peroxide with the detection limit of 3 and 6 nM, respectively. A remarkable feature of the bienzyme electrode is the possibility to determine glucose and hydrogen peroxide at a very low applied potential where the noise level and interferences from other electroactive compounds are minimal. Performance of the biosensor is evaluated with respect to response time, detection limit, selectivity, temperature and pH as well as operating and storage stability.  相似文献   

11.
A new type of sol-gel/organic hybrid composite material based on the cross-linking of natural polymer chitosan with (3-aoryloxypropyl) dimethoxymethylsilane was developed for the fabrication of an amperometric H(2)O(2) biosensor. The composite film was used to immobilize horseradish peroxidase (HRP) on a gold disk electrode. The properties of sol-gel/chitosan and sol-gel/chitosan-HRP films have been carefully characterized by atomic force microscopy and Fourier transform infrared. By using fluorescent label, a protein density on sol-gel/chitosan has been calculated to be 3.14 x 10(12) moleculescm(-2). With the aid of catechol mediator, the biosensor had a fast response of less than 2 s with linear range of 5.0 x 10(-9)-1.0 x 10(-7) mol l(-1) and a detection limit of 2 x 10(-9) mol l(-1). Its current response shows a typical Michaelis-Menten mechanism. The apparent Michaelis-Menten constant K(M)(app) is found to be 1.30 micromol l(-1). The activation energy for enzymatic reaction is calculated to be 8.22 kJ mol(-1). The biosensor retained approximately 75% of its original activity after about 60 days of storage in a phosphate buffer at 4 degrees C.  相似文献   

12.
A disposable pseudo-mediatorless amperometric biosensor has been fabricated for the determination of hydrogen peroxide (H2O2). In the current study, an indium-tin oxide (ITO) electrode was modified with thiol functional group by (3-mercaptopropyl)trimethoxysilane. The stable nano-Au-SH monolayer (AuS) was then prepared through covalent linking of gold nanoparticles and thiol groups on the surface of the ITO. The horseradish peroxidase (HRP) and tetramethyl benzidine (TMB) were finally coentrapped by the colloidal gold nanoparticles. The immobilized TMB was used as an electron transfer mediator that displayed a surface-controlled electrode process at a scan rate of less than 50mV/s. The biosensor was characterized by photometric and electrochemical measurements. The results showed that the prepared AuS monolayer not only could steadily immobilize HRP but also could efficiently retain HRP bioactivity. Parameters affecting the performance of the biosensor, including the concentrations of the immobilized TMB and HRP, the pH value, and the reaction temperature, were optimized. Under the optimized experimental conditions, H(2)O(2) could be determined in a linear calibration range from 0.005 to 1.5mM with a correlation coefficient of 0.998 (n=14) and a detection limit of 1microM at a signal/noise ratio of 3. The proposed method provides a new alternative to develop low-cost biosensors by using ITO film electrodes from industrial mass production.  相似文献   

13.
Sensors that provide reliable, rapid measurement of toxic substances are needed to solve significant human health and safety problems. We developed a new biosensor design that combines the advantages of immunoassay with electrochemical response. We established that this enzyme-linked immunosensor measures toxic substances in biological samples. The biosensor consists of two major elements: (1) an electrical conducting layer having immobilized enzyme, polyclonal or monoclonal antibodies, and other necessary reagents, and (2) the electronic components used in the signal readout. The result is an amperometric immunoassay based on coupling the immunochemical reaction to the enzyme electrode response by using a soluble, electrochemically active mediator. The specific question addressed was: Does the system's immunochemical detection reliably respond at sufficiently low analyte concentrations? We present our results in these areas: (1) enzyme immobilization on colloidal gold; (2) colloidal gold-enzyme deposition on the electrode surface; (3) mediator-antigen conjugate synthesis; (4) antibody incorporation at the electrode surface; (5) bioelectrode characterization and optimization; and (6) immunosensor demonstration to detect antigen. Sensors that employ immunochemical detection will have broad applicability to detect/diagnose toxic substances in biological samples such as blood and urine and in environmental samples such as wastewater and drinking water.  相似文献   

14.
An ultrasensitive electrochemical DNA biosensor was constructed by assembling probe labeled gold nanoparticles (ssDNA-AuNP) on electrochemically reduced graphene oxide (ERGO) modified electrode with thiol group tagged (GT) DNA strand (d(GT)(29)SH) and coupling with horseradish peroxidase (HRP) functionalized carbon sphere (CNS) as tracer. The heteronanostructure formed on the biosensor surface appeared relatively good conductor for accelerating the electron transfer, while the HRP tagged CNS provided dual signal amplification for electrochemical biosensing. The triplex signal amplification strategy produced an ultrasensitive electrochemical detection of DNA down to attomolar level (5 aM) with a linear range of 5 orders of magnitude (from 1 × 10(-17)M to 1 × 10(-13)M), and appeared high selectivity to differentiate single-base mismatched and three-base mismatched sequences of DNA. The proposed approach provided a simple and reliable method for DNA detection with high sensitivity and specificity, indicating promising application in bioanalysis and biomedicine.  相似文献   

15.
The glucose oxidase (GOD) is entrapped in the composite of carbon nanotubes/chitosan and direct electron transfer reaction between GOD and electrode takes place. The electron transfer rate of GOD is greatly enhanced to 7.73 s(-1) in the system, which is more than one-fold higher than that of flavin adenine dinucleotide adsorbed on the carbon nanotubes (3.1 s(-1)). This maybe results from the conformational change of GOD in the microenvironment enabling the accessibility of active site for GOD to the electrode. Additionally, the bioactivity of GOD modified in the composite on electrode surface is kept. So as-prepared electrode can be used as a glucose biosensor exhibiting higher sensitivity (0.5 microA mM(-1)) and better stability. The facile procedure of immobilizing GOD will promote the developments of electrochemical research for protein, biosensors and other bioelectrochemical devices.  相似文献   

16.
A disposable and mediatorless immunosensor based on a conducting polymer (5,2':5'2"-terthiophene-3'-carboxylic acid) coated screen-printed carbon electrode has been developed using a separation-free homogeneous technique for the detection of rabbit IgG as a model analyte. Horseradish peroxidase (HRP) and streptavidin were covalently bonded with the polymer on the electrode and biotinylated antibody was immobilized on the electrode surface using avidin-biotin coupling. This sensor was based on the competitive assay between free and labeled antigen for the available binding sites of antibody. Glucose oxidase was used as a label and in the presence of glucose, H(2)O(2) formed by the analyte-enzyme conjugate was reduced by the enzyme channeling via HRP bonded on the electrode. The catalytic current was monitored amperometrically at -0.35 V vs. Ag/AgCl and this method showed a linear range of RIgG concentrations from 0.5 to 2 microg/ml with standard deviation +/-0.0145 (n=4). Detection limit was determined to be 0.33 microg/ml.  相似文献   

17.
A novel tracer, glucose oxidase (GOD)-functionalized hollow gold nanospheres encapsulating glucose oxidase (Au(shell)@GOD), was designed to label the ferrocenemonocarboxylic-grafted secondary antibodies (Fc@Ab(2)) for highly sensitive detection of tumor marker using carboxyl group functionalized multiwall carbon nanotubes as platform. Initially, Au(shell)@GOD was synthesized specially by reverse micelle approach, and then the labeling of antibody and the preparation of GOD-functionalized Au(shell)@GOD were performed by one-pot assembly of Fc@Ab(2) and GOD on the surface of Au(shell)@GOD. The ferrocene used to label antibodies acted as a mediator of electron transfer between GOD and electrode surface. The high-content glucose oxidase in the tracer (on the surface and in the cavity) could significantly amplify the amperometric signal for sandwich-type immunoassay. Using carcinoembryonic antigen (CEA) as model analyte, the designed tracer showed linear range from 0.02 to 5.0 ng mL(-1) with the detection limit down to 6.7 pg mL(-1). The assay results of serum samples with the proposed method were in an acceptable agreement with the reference values. The new protocol showed acceptable stability and reproducibility, high sensitivity, and good precision, which could provide a promising potential for clinical screening and diagnosis of tumor disease.  相似文献   

18.
Four forms of horseradish peroxidase (HRP) have been used to prepare peroxidase-modified gold electrodes for mediatorless detection of peroxide: native HRP, wild type recombinant HRP, and two recombinant forms containing six-His tag at the C-terminus and at the N-terminus, respectively. The adsorption of the enzyme molecules on gold was studied by direct mass measurements with electrochemical quartz crystal microbalance. All the forms of HRP formed a monolayer coverage of the enzyme on the gold surface. However, only gold electrodes with adsorbed recombinant HRP forms exhibited high and stable current response to H(2)O(2) due to its bioelectrocatalytic reduction based on direct electron transfer between gold and HRP. The sensitivity of the gold electrodes modified with recombinant HRPs was in the range of 1.4-1.5 A M(-1) cm(-2) at -50 mV versus Agmid R:AgCl. The response to H(2)O(2) in the concentration range 0.1-40 microM was not dependent on the presence of a mediator (i.e. catechol) giving strong evidence that the electrode currents are diffusion limited. Lower detection limit for H(2)O(2) detection was 10 nM at the electrodes modified with recombinant HRPs.  相似文献   

19.
Engineering receptors and antibodies for biosensors   总被引:2,自引:0,他引:2  
Biosensor sensitivity and selectivity depend essentially on the properties of the biorecognition elements to be used for analyte binding. Two principally different applications are considered, (1) effects monitoring with biological components as targets for bioeffective substances, among them endocrine disruptors; and (2) immunochemical analysis employing antibodies as binding proteins for a wide variety of analytes such as pesticides. Genetic engineering provides an elegant way not only for providing unlimited amounts of biorecognition molecules but also for the alteration of existing properties and the supplementation with additional functions. Instrumental applications were carried out with the optical sensor BIAcore. The first example deals with the characterization of receptors. For this purpose, the human estrogen receptor alpha was used. Binding studies were carried out with natural as well as xenoestrogens. An equilibrium dissociation constant K(d) of 2.3x10(-10) (M) was derived for 17beta-estradiol. A competition assay was performed with a bovine serum albumin (BSA)-17beta-estradiol conjugate, immobilized at the optical sensor surface, and the free estrogen. The signals obtained represent estradiol equivalents. This format was transferred to a microplate-based enzyme-linked receptor assay. It reached a detection limit of 0.02 microg l(-1) 17beta-estradiol and proved suitable for the detection of natural and synthetic estrogens as well as xenoestrogens in field studies. The second example is targeted at kinetic and affinity measurements of recombinant antibody fragments derived from antibody libraries with s-triazine selectivities. Different strategies for the synthesis of antibody fragment libraries, followed by the selection of specific antibody variants, were examined. An antibody library was derived from a set of B cells. Chain shuffling of the heavy and light chains provided the best binders. An enzyme linked immunosorbent assay (ELISA) was achieved for atrazine with an IC(50) of 0.9 microg l(-1) and a detection limit of 0.2 microg l(-1). The close relations between the optimization of recombinant antibodies by evolutionary strategies and genetic algorithms are considered.  相似文献   

20.
The direct electrochemistry of glucose oxidase (GOD) adsorbed on a colloidal gold modified carbon paste electrode was investigated. The adsorbed GOD displayed a pair of redox peaks with a formal potential of -(449+/-1) mV in 0.1 M pH 5.0 phosphate buffer solution. The response showed a surface-controlled electrode process with an electron transfer rate constant of (38.9+/-5.3)/s determined in the scan rate range from 10 to 100 mV/s. GOD adsorbed on gold colloid nanoparticles maintained its bioactivity and stability. The immobilized GOD could electrocatalyze the reduction of dissolved oxygen and resulted in a great increase of the reduction peak current. Upon the addition of glucose, the reduction peak current decreased, which could be used for glucose detection with a high sensitivity (8.4 microA/mM), a linear range from 0.04 to 0.28 mM and a detection limit of 0.01 mM at a signal-to-noise ratio of 3sigma. The sensor could exclude the interference of commonly coexisted uric and ascorbic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号