首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endurance training increases fatty acid oxidation (FAO) and skeletal muscle oxidative capacity. However, the source of the additional fat and the mechanisms for increasing FAO capacity in muscle are not clear. We measured whole body and regional lipolytic activity and whole body and plasma FAO in six lean women during 90 min of bicycling exercise (50% pretraining peak O(2) consumption) before and after 12 wk of endurance training. We also assessed skeletal muscle content of peroxisome proliferator-activated receptor-alpha (PPARalpha) and its target proteins that regulate FAO [medium-chain and very long chain acyl-CoA dehydrogenase (MCAD and VLCAD)]. Despite a 25% increase in whole body FAO during exercise after training (P < 0.05), training did not alter regional adipose tissue lipolysis (abdominal: 0.56 +/- 0.26 and 0.57 +/- 0.10 micromol x 100 g(-1) x min(-1); femoral: 0.13 +/- 0.07 and 0.09 +/- 0.02 micromol x 100 g(-1) x min(-1)), whole body palmitate rate of appearance in plasma (168 +/- 18 and 150 +/- 25 micromol/min), and plasma FAO (554 +/- 61 and 601 +/- 45 micromol/min). However, training doubled the levels of muscle PPARalpha, MCAD, and VLCAD. We conclude that training increases the use of nonplasma fatty acids and may enhance skeletal muscle oxidative capacity by PPARalpha regulation of gene expression.  相似文献   

2.
We evaluated lipid metabolism during 90 min of moderate-intensity (50% VO(2) peak) cycle ergometer exercise in five men and five women who were matched on adiposity (24 +/- 2 and 25 +/- 1% body fat, respectively) and aerobic fitness (VO(2) peak: 49 +/- 2 and 47 +/- 1 ml x kg fat-free mass(-1) x min(-1), respectively). Substrate oxidation and lipid kinetics were measured by using indirect calorimetry and [(13)C]palmitate and [(2)H(5)]glycerol tracer infusion. The total increase in glycerol and free fatty acid (FFA) rate of appearance (R(a)) in plasma during exercise (area under the curve above baseline) was approximately 65% greater in women than in men (glycerol R(a): 317 +/- 40 and 195 +/- 33 micromol/kg, respectively; FFA R(a): 652 +/- 46 and 453 +/- 70 micromol/kg, respectively; both P < 0.05). Total fatty acid oxidation was similar in men and women, but the relative contribution of plasma FFA to total fatty acid oxidation was higher in women (76 +/- 5%) than in men (46 +/- 5%; P < 0.05). We conclude that lipolysis of adipose tissue triglycerides during moderate-intensity exercise is greater in women than in men, who are matched on adiposity and fitness. The increase in plasma fatty acid availability leads to a greater rate of plasma FFA tissue uptake and oxidation in women than in men. However, total fat oxidation is the same in both groups because of a reciprocal decrease in the oxidation rate of fatty acids derived from nonplasma sources, presumably intramuscular and possibly plasma triglycerides, in women.  相似文献   

3.
The protease inhibitor (PI) ritonavir (RTV) has been associated with elevated resting lipolytic rate, hyperlipidemia, and insulin resistance/glucose intolerance. The purpose of this study was to examine relationships between lipolysis and fatty acid (FA) oxidation during rest, moderate exercise and recovery, and measures of insulin sensitivity/glucose tolerance and fat redistribution in HIV-positive subjects taking RTV (n=12), HAART but no PI (n=10), and HIV-seronegative controls (n=10). Stable isotope tracers [1-(13)C]palmitate and [1,1,2,3,3-(2)H5]glycerol were continuously infused with blood and breath collection during 1-h rest, 70-min submaximal exercise (50% VO2 peak), and 1-h recovery. Body composition was evaluated using DEXA, MRI, and MRS, and 2-h oral glucose tolerance tests with insulin monitoring were used to evaluate glucose tolerance and insulin resistance. Lipolytic and FA oxidation rates were similar during rest and recovery in all groups; however, they were lower during moderate exercise in both HIV-infected groups [glycerol Ra: HIV+RTV 5.1+/-1.2 vs. HIV+no PI 5.9+/-2.8 vs. Control 7.4+/-2.2 micromol.kg fat-free mass (FFM)-1.min-1; palmitate oxidation: HIV+RTV 1.6+/-0.8 vs. HIV+no PI 1.6+/-0.8 vs. Control 2.5+/-1.7 micromol.kg FFM.min, P<0.01]. Fasting and orally-challenged glucose and insulin values were similar among groups. Lipolytic and FA oxidation rates were blunted during moderate exercise in HIV-positive subjects taking HAART. Lower FA oxidation during exercise was primarily due to impaired plasma FA oxidation, with a minor contribution from lower nonplasma FA oxidation. Regional differences in adipose tissue lipolysis during rest and moderate exercise may be important in HIV and warrant further study.  相似文献   

4.
The effect of obesity on regional skeletal muscle and adipose tissue amino acid metabolism is not known. We evaluated systemic and regional (forearm and abdominal subcutaneous adipose tissue) amino acid metabolism, by use of a combination of stable isotope tracer and arteriovenous balance methods, in five lean women [body mass index (BMI) <25 kg/m(2)] and five women with abdominal obesity (BMI 35.0-39.9 kg/m(2); waist circumference >100 cm) who were matched on fat-free mass (FFM). All subjects were studied at 22 h of fasting to ensure that the subjects were in net protein breakdown during this early phase of starvation. Leucine rate of appearance in plasma (an index of whole body proteolysis), expressed per unit of FFM, was not significantly different between lean and obese groups (2.05 +/- 0.18 and 2.34 +/- 0.04 micromol x kg FFM(-1) x min(-1), respectively). However, the rate of leucine release from forearm and adipose tissues in obese women (24.0 +/- 4.8 and 16.6 +/- 6.5 nmol x 100 g(-1) x min(-1), respectively) was lower than in lean women (66.8 +/- 10.6 and 38.6 +/- 7.0 nmol x 100 g(-1) x min(-1), respectively; P < 0.05). Approximately 5-10% of total whole body leucine release into plasma was derived from adipose tissue in lean and obese women. The results of this study demonstrate that the rate of release of amino acids per unit of forearm and adipose tissue at 22 h of fasting is lower in women with abdominal obesity than in lean women, which may help obese women decrease body protein losses during fasting. In addition, adipose tissue is a quantitatively important site for proteolysis in both lean and obese subjects.  相似文献   

5.
The effect of relative body fat mass on exercise-induced stimulation of lipolysis and fatty acid oxidation was evaluated in 15 untrained men (5 lean, 5 overweight, and 5 obese with body mass indexes of 21 +/- 1, 27 +/- 1, and 34 +/- 1 kg/m2, respectively, and %body fat ranging from 12 to 32%). Palmitate and glycerol kinetics and substrate oxidation were assessed during 90 min of cycling at 50% peak aerobic capacity (VO2 peak) by use of stable isotope-labeled tracer infusion and indirect calorimetry. An inverse relationship was found between %body fat and exercise-induced increase in glycerol appearance rate relative to fat mass (r2 = 0.74; P < 0.01). The increase in total fatty acid uptake during exercise [(micromol/kg fat-free mass) x 90 min] was approximately 50% smaller in obese (181 +/- 70; P < 0.05) and approximately 35% smaller in overweight (230 +/- 71; P < 0.05) than in lean (354 +/- 34) men. The percentage of total fatty acid oxidation derived from systemic plasma fatty acids decreased with increasing body fat, from 49 +/- 3% in lean to 39 +/- 4% in obese men (P < 0.05); conversely, the percentage of nonsystemic fatty acids, presumably derived from intramuscular and possibly plasma triglycerides, increased with increasing body fat (P < 0.05). We conclude that the lipolytic response to exercise decreases with increasing adiposity. The blunted increase in lipolytic rate in overweight and obese men compared with lean men limits the availability of plasma fatty acids as a fuel during exercise. However, the rate of total fat oxidation was similar in all groups because of a compensatory increase in the oxidation of nonsystemic fatty acids.  相似文献   

6.
Skeletal muscle from extremely obese individuals exhibits decreased lipid oxidation compared with muscle from lean controls. It is unknown whether this effect is observed in vivo or whether the phenotype is preserved after massive weight loss. The objective of this study was to compare free fatty acid (FFA) oxidation during rest and exercise in female subjects who were either lean [n = 7; body mass index (BMI) = 22.6 +/- 2.2 kg/m(2)] or extremely obese (n = 10; BMI = 40.8 +/- 5.4 kg/m(2)) or postgastric bypass patients who had lost >45 kg (weight reduced) (n = 6; BMI = 33.7 +/- 9.9 kg/m(2)) with the use of tracer ([(13)C]palmitate and [(14)C]acetate) methodology and indirect calorimetry. The lean group oxidized significantly more plasma FFA, as measured by percent fatty acid uptake oxidized, than the extremely obese or weight-reduced group during rest (66.6 +/- 14.9 vs. 41.5 +/- 16.4 vs. 39.9 +/- 15.3%) and exercise (86.3 +/- 11.9 vs. 56.3 +/- 22.1 vs. 57.3 +/- 20.3%, respectively). BMI significantly correlated with percent uptake oxidized during both rest (r = -0.455) and exercise (r = -0.459). In conclusion, extremely obese women and weight-reduced women both possess inherent defects in plasma FFA oxidation, which may play a role in massive weight gain and associated comorbidities.  相似文献   

7.
Objective: The capacity for lipid and carbohydrate (CHO) oxidation during exercise is important for energy partitioning and storage. This study examined the effects of obesity on lipid and CHO oxidation during exercise. Research Methods and Procedures: Seven obese and seven lean [body mass index (BMI), 33 ± 0.8 and 23.7 ± 1.2 kg/m2, respectively] sedentary, middle‐aged men matched for aerobic capacity performed 60 minutes of cycle exercise at similar relative (50% Vo 2max) and absolute exercise intensities. Results: Obese men derived a greater proportion of their energy from fatty‐acid oxidation than lean men (43 ± 5% 31 ± 2%; p = 0.02). Plasma fatty‐acid oxidation determined from recovery of infused [0.15 μmol/kg fat‐free mass (FFM) per minute] [1‐13C]‐palmitate in breath CO2 was similar for obese and lean men (8.4 ± 1.1 and 29 ± 15 μmol/kg FFM per minute). Nonplasma fatty‐acid oxidation, presumably, from intramuscular sources, was 50% higher in obese men than in lean men (10.0 ± 0.6 versus 6.6 ± 0.8 μmol/kg FFM per minute; p < 0.05). Systemic glucose disposal was similar in lean and obese groups (33 ± 8 and 29 ± 15 μmol/kg FFM per minute). However, the estimated rate of glycogen‐oxidation was 50% lower in obese than in lean men (61 ± 12 versus 90 ± 6 μmol/kg FFM per minute; p < 0.05). Discussion: During moderate exercise, obese sedentary men have increased rates of fatty‐acid oxidation from nonplasma sources and reduced rates of CHO oxidation, particularly muscle glycogen, compared with lean sedentary men.  相似文献   

8.
Kinetics of intramuscular triglyceride fatty acids in exercising humans.   总被引:6,自引:0,他引:6  
A pulse ([(14)C]palmitate)-chase ([(3)H]palmitate) approach was used to study intramuscular triglyceride (imTG) fatty acid and plasma free fatty acid (FFA) kinetics during exercise at approximately 45% peak O(2) consumption in 12 adults. Vastus lateralis muscle was biopsied before and after 90 min of bicycle exercise; (3)H(2)O production, breath (14)CO(2) excretion and lipid oxidation (indirect calorimetry) rates were measured during exercise. Results: during exercise, 8.2+/-1.2 and 8.4+/-0.7 micromol x kg(-1) x min(-1) of imTG fatty acids and plasma FFA, respectively, were oxidized according to isotopic measurements. The sum of these two values was not different (P = 0.6) from lipid oxidation by indirect calorimetry (15.4 +/-1.6 micromol x kg(-1) x min(-1)); the isotopic and indirect calorimetry values were correlated (r = 0.79, P<0.005). During exercise, imTG turnover rate was 0.32+/-0.07%/min (6.0+/-2.0 micromol of imTG x kg wet muscle(-1) x min(-1)) and plasma FFA were incorporated into imTG at a rate of 0.7+/-0.1 micromol x kg wet muscle(-1) x min(-1). The imTG pool size did not change during exercise. This pulse-chase, dual tracer appears to be a reasonable approach to measure oxidation and synthesis kinetics of imTG.  相似文献   

9.
Human immunodeficiency virus (HIV)-lipodystrophy syndrome (HLS) is characterized by hypertriglyceridemia, low high-density lipoprotein-cholesterol, lipoatrophy, and central adiposity. We investigated fasting lipid metabolism in six men with HLS and six non-HIV-infected controls. Compared with controls, HLS patients had lower fat mass (15.9 +/- 1.3 vs. 22.3 +/- 1.7 kg, P < 0.05) but higher plasma glycerol rate of appearance (R(a)), an index of total lipolysis (964.71 +/- 103.33 vs. 611.08 +/- 63.38 micromol x kg fat(-1) x h(-1), P < 0.05), R(a) palmitate, an index of net lipolysis (731.49 +/- 72.36 vs. 419.72 +/- 33.78 micromol x kg fat(-1) x h(-1), P < 0.01), R(a) free fatty acids (2,094.74 +/- 182.18 vs. 1,470.87 +/- 202.80 micromol x kg fat(-1) x h(-1), P < 0.05), and rates of intra-adipocyte (799.40 +/- 157.69 vs. 362.36 +/- 74.87 micromol x kg fat(-1) x h(-1), P < 0.01) and intrahepatic fatty acid reesterification (1,352.08 +/- 123.90 vs. 955.56 +/- 124.09 micromol x kg fat(-1) x h(-1), P < 0.05). Resting energy expenditure was increased in HLS patients (30.51 +/- 2.53 vs. 25.34 +/- 1.04 kcal x kg lean body mass(-1) x day(-1), P < 0.05), associated with increased non-plasma-derived fatty acid oxidation (139.04 +/- 24.17 vs. 47.87 +/- 18.81 micromol x kg lean body mass(-1) x min(-1), P < 0.02). The lipoatrophy observed in HIV lipodystrophy is associated with accelerated lipolysis. Increased hepatic reesterification promotes the hypertriglyceridemia observed in this syndrome.  相似文献   

10.
We have previously shown that sex and obesity independently affect basal very low density lipoprotein (VLDL)-triglyceride (TG) kinetics. In the present study, we investigated the effect of hyperglycemia-hyperinsulinemia on VLDL-TG kinetics in lean and obese men and women (n = 6 in each group). VLDL-TG kinetics were measured during basal, postabsorptive conditions and during glucose infusion (5.5 mg x kg FFM(-1) x min(-1)) by using [(2)H(5)]glycerol bolus injection in conjunction with compartmental modeling analysis. Basal VLDL-TG secretion in plasma was greater in obese than in lean men (7.8 +/- 0.6 and 2.9 +/- 0.4 micromol x l plasma(-1) x min(-1); P < 0.001) but was not different in lean and obese women (5.0 +/- 1.1 and 5.9 +/- 1.1 micromol x l plasma(-1) x min(-1)). Glucose infusion decreased the VLDL-TG secretion rate by approximately 50% in lean and obese men and in lean women (to 1.5 +/- 0.4, 4.0 +/- 0.6, and 2.2 +/- 0.4 micromol x l plasma(-1) x min(-1), respectively; all P < 0.05) but had no effect on the VLDL-TG secretion rate in obese women (4.9 +/- 1.0 micromol x l plasma(-1) x min(-1)). These results demonstrate that both sex and adiposity affect the regulation of VLDL-TG metabolism. Glucose and insulin decrease VLDL-TG production in both lean men and lean women; obesity is associated with resistance to the glucose- and insulin-mediated suppression of VLDL-TG secretion in women, but not in men.  相似文献   

11.
We measured whole body and regional lipolytic and adipose tissue blood flow (ATBF) sensitivity to epinephrine in 8 lean [body mass index (BMI): 21 +/- 1 kg/m(2)] and 10 upper body obese (UBO) women (BMI: 38 +/- 1 kg/m(2); waist circumference >100 cm). All subjects underwent a four-stage epinephrine infusion (0.00125, 0.005, 0.0125, and 0.025 microgram. kg fat-free mass(-1). min(-1)) plus pancreatic hormonal clamp. Whole body free fatty acid (FFA) and glycerol rates of appearance (R(a)) in plasma were determined by stable isotope tracer methodology. Abdominal and femoral subcutaneous adipose tissue lipolytic activity was determined by microdialysis and (133)Xe clearance methods. Basal whole body FFA R(a) and glycerol R(a) were both greater (P < 0.05) in obese (449 +/- 31 and 220 +/- 12 micromol/min, respectively) compared with lean subjects (323 +/- 44 and 167 +/- 21 micromol/min, respectively). Epinephrine infusion significantly increased FFA R(a) and glycerol R(a) in lean (71 +/- 21 and 122 +/- 52%, respectively; P < 0.05) but not obese subjects (7 +/- 6 and 39 +/- 10%, respectively; P = not significant). In addition, lipolytic and ATBF sensitivity to epinephrine was blunted in abdominal but not femoral subcutaneous adipose tissue of obese compared with lean subjects. We conclude that whole body lipolytic sensitivity to epinephrine is blunted in women with UBO because of decreased sensitivity in upper body but not lower body subcutaneous adipose tissue.  相似文献   

12.
This study determined the effects of elevated plasma epinephrine on fat metabolism during exercise. On four occasions, seven moderately trained subjects cycled at 25% of peak oxygen consumption (VO(2 peak)) for 60 min. After 15 min of exercise, subjects were intravenously infused with low (0.96 +/- 0.10 nM), moderate (1.92 +/- 0.24 nM), or high (3.44 +/- 0.50 nM) levels (all P < 0.05) of epinephrine to increase plasma epinephrine above control (Con; 0.59 +/- 0.10 nM). During the interval between 35 and 55 min of exercise, lipolysis [i.e., rate of appearance of glycerol] increased above Con (4.9 +/- 0.5 micromol. kg(-1). min(-1)) with low, moderate, and high (6.5 +/- 0.5, 7.1 +/- 0.8, and 10.6 +/- 1.2 micromol. kg(-1). min(-1), respectively; all P < 0.05) levels of epinephrine despite simultaneous increases in plasma insulin. The release of fatty acid into plasma also increased progressively with the graded epinephrine infusions. However, fatty acid oxidation was lower than Con (11.1 +/- 0.8 micromol. kg(-1). min(-1)) during moderate and high levels (8.7 +/- 0.7 and 8.1 +/- 0.9 micromol. kg(-1). min(-1), respectively; P < 0.05). In one additional trial, the same subjects exercised at 45% VO(2 peak) without epinephrine infusion, which produced a plasma epinephrine concentration identical to low levels. However, lipolysis was lower (i.e., 5.5 +/- 0.6 vs. 6.5 +/- 0.5 micromol. kg(-1). min(-1); P < 0.05). In conclusion, elevations in plasma epinephrine concentration during exercise at 25% of VO(2 peak) progressively increase whole body lipolysis but decrease fatty acid oxidation. Last, increasing exercise intensity from 25 to 45% VO(2 peak) attenuates the lipolytic actions of epinephrine.  相似文献   

13.
We evaluated palmitate rate of appearance (R(a)) in plasma during basal conditions and during a four-stage epinephrine infusion plus pancreatic hormonal clamp in nine white and nine black women with abdominal obesity, who were matched on fat-free mass, total and percent body fat, and waist-to-hip circumference ratio. On the basis of single-slice magnetic resonance imaging analysis, black women had the same amount of subcutaneous abdominal fat but less intra-abdominal fat than white women (68 +/- 9 vs. 170 +/- 14 cm(2), P < 0.05). Basal palmitate R(a) was lower in black than in white women (1.95 +/- 0.26 vs. 2.88 +/- 0.23 micromol. kg fat-free mass(-1). min(-1), P < 0.005), even though plasma insulin and catecholamine concentrations were the same in both groups. Palmitate R(a) across a physiological range of plasma epinephrine concentrations remained lower in black women, because the increase in palmitate R(a) during epinephrine infusion was the same in both groups. We conclude that basal and epinephrine-stimulated palmitate R(a) is lower in black than in white women with abdominal obesity. The differences in basal palmitate kinetics are not caused by alterations in plasma insulin or catecholamine concentrations or lipolytic sensitivity to epinephrine. The lower rate of whole body fatty acid flux and smaller intra-abdominal fat mass may have clinical benefits because of the relationship between excessive fatty acid availability and metabolic diseases.  相似文献   

14.
The present study was carried out to assess the effects of protease inhibitor (PI) therapy on basal whole body protein metabolism and its response to acute amino acid-glucose infusion in 14 human immunodeficiency virus (HIV)-infected patients. Patients treated with PIs (PI+, 7 patients) or without PIs (PI-, 7 patients) were studied after an overnight fast during a 180-min basal period followed by a 140-min period of amino acid-glucose infusion. Protein metabolism was investigated by a primed constant infusion of l-[1-(13)C]leucine. Dual-energy X-ray absorptiometry for determination of fat-free mass (FFM) and body fat mass measured body composition. In the postabsorptive state, whole body leucine balance was 2.5 times (P < 0.05) less negative in the PI+ than in the PI- group. In HIV-infected patients treated with PIs, the oxidative leucine disposal during an acute amino acid-glucose infusion was lower (0.58 +/- 0.09 vs. 0.81 +/- 0.07 micromol x kg FFM(-1) x min(-1) using plasma [(13)C]leucine enrichment, P = 0.06; or 0.70 +/- 0.10 vs. 0.99 +/- 0.08 micromol x kg FFM(-1) x min(-1) using plasma [(13)C]ketoisocaproic acid enrichment, P = 0.04 in PI+ and PI- groups, respectively) than in patients treated without PIs. Consequently, whole body nonoxidative leucine disposal (an index of protein synthesis) and leucine balance (0.50 +/- 0.10 vs. 0.18 +/- 0.06 micromol x kg FFM x (-1) x min(-1) in PI+ and PI- groups respectively, P < 0.05) were significantly improved during amino acid-glucose infusion in patients treated with PIs. However, whereas the response of whole body protein anabolism to an amino acid-glucose infusion was increased in HIV-infected patients treated with PIs, any improvement in lean body mass was detected.  相似文献   

15.
We previously reported that epinephrine stimulates leg free fatty acid (FFA) release in men but not in women. The present studies were conducted to determine whether the same is true during exercise. Six men and six women bicycled for 90 min at 45% of peak O(2) consumption, during which time systemic and leg FFA kinetics ([9, 10-(3)H]palmitate) were measured. The catecholamine and hormonal responses to exercise were not different in men and women. The baseline systemic and leg palmitate release was 94 +/- 15 vs. 114 +/- 5 micromol/min and 16 +/- 2 and 20 +/- 3 micromol/min, respectively, in men and women [P = nonsignificant (NS)]. Systemic and leg palmitate release increased (both P < 0.001) to 251 +/- 18 vs. 212 +/- 16 micromol/min and 73 +/- 19 vs. 80 +/- 12 micromol/min in men and women, respectively, during the last 30 min of exercise (P = NS, men vs. women). We conclude that the systemic and leg adipose tissue lipolytic response to exercise is not different in nonobese men and women.  相似文献   

16.
The purpose of this investigation was to determine plasma glucose kinetics and substrate oxidation in men and women during exercise relative to the lactate threshold (LT). Subjects cycled for 25 min at 70 and 90% of O(2) uptake (VO(2)) at LT (70 and 90% LT, respectively). Plasma glucose appearance (R(a)) and disappearance (R(d)) were determined with a primed constant infusion of [6,6-(2)H]glucose. There were no significant differences in glucose R(a) between men [22.6 +/- 1.9 and 39.9 +/- 3.9 micromol x kg fat-free mass (FFM)(-1) x min(-1) for 70 and 90% LT, respectively] and women (22.3 +/- 2.7 and 33.9 +/- 5.7 micromol x kg FFM(-1) x min(-1) for 70 and 90% LT, respectively). Similarly, there were no significant differences in glucose R(d) between men (21.2 +/- 1.9 and 38.1 +/- 3.7 micromol x kg FFM(-1) x min(-1) for 70 and 90% LT, respectively) and women (21.3 +/- 2.8 and 33.3 +/- 5.6 micromol x kg FFM(-1) x min(-1) for 70 and 90% LT, respectively). Although there were no differences between genders in the relative contribution of carbohydrate (CHO) to total energy expenditure, the relative contribution of muscle glycogen to total CHO oxidation (75.8 +/- 3.2 and 64.2 +/- 8.0% for men and women, respectively, at 70% LT and 75.1 +/- 2.6 and 60.1 +/- 11.2% for men and women, respectively, at 90% LT) was lower in women. Consequently, the relative contribution of blood glucose to total CHO oxidation was significantly higher in women. These results indicate that although plasma glucose R(a) and R(d) are similar in men and women, the relative contribution of muscle glycogen and blood glucose is significantly different in women during moderate-intensity exercise relative to LT.  相似文献   

17.
A reduction in fatty acid oxidation has been associated with lipid accumulation and insulin resistance in the skeletal muscle of obese individuals. We examined whether this decrease in fatty acid oxidation was attributable to a reduction in muscle mitochondrial content and/or a dysfunction in fatty acid oxidation within mitochondria obtained from skeletal muscle of age-matched, lean [body mass index (BMI) = 23.3 +/- 0.7 kg/m2] and obese women (BMI = 37.6 +/- 2.2 kg/m2). The mitochondrial marker enzymes citrate synthase (-34%), beta-hydroxyacyl-CoA dehydrogenase (-17%), and cytochrome c oxidase (-32%) were reduced (P < 0.05) in obese participants, indicating that mitochondrial content was diminished. Obesity did not alter the ability of isolated mitochondria to oxidize palmitate; however, fatty acid oxidation was reduced at the whole muscle level by 28% (P < 0.05) in the obese. Mitochondrial fatty acid translocase (FAT/CD36) did not differ in lean and obese individuals, but mitochondrial FAT/CD36 was correlated with mitochondrial fatty acid oxidation (r = 0.67, P < 0.05). We conclude that the reduction in fatty acid oxidation in obese individuals is attributable to a decrease in mitochondrial content, not to an intrinsic defect in the mitochondria obtained from skeletal muscle of obese individuals. In addition, it appears that mitochondrial FAT/CD36 may be involved in regulating fatty acid oxidation in human skeletal muscle.  相似文献   

18.
To evaluate the contribution of working muscle to whole body lipid oxidation, we examined the effects of exercise intensity and endurance training (9 wk, 5 days/wk, 1 h, 75% Vo(2 peak)) on whole body and leg free fatty acid (FFA) kinetics in eight male subjects (26 +/- 1 yr, means +/- SE). Two pretraining trials [45 and 65% Vo(2 max) (45UT, 65UT)] and two posttraining trials [65% of pretraining Vo(2 peak) (ABT), and 65% of posttraining Vo(2 peak) (RLT)] were performed using [1-(13)C]palmitate infusion and femoral arteriovenous sampling. Training increased Vo(2 peak) by 15% (45.2 +/- 1.2 to 52.0 +/- 1.8 ml.kg(-1).min(-1), P < 0.05). Muscle FFA fractional extraction was lower during exercise (EX) compared with rest regardless of workload or training status ( approximately 20 vs. 48%, P < 0.05). Two-leg net FFA balance increased from net release at rest ( approximately -36 micromol/min) to net uptake during EX for 45UT (179 +/- 75), ABT (236 +/- 63), and RLT (136 +/- 110) (P < 0.05), but not 65UT (51 +/- 127). Leg FFA tracer measured uptake was higher during EX than rest for all trials and greater during posttraining in RLT (716 +/- 173 micromol/min) compared with pretraining (45UT 450 +/- 80, 65UT 461 +/- 72, P < 0.05). Leg muscle lipid oxidation increased with training in ABT (730 +/- 163 micromol/min) vs. 65UT (187 +/- 94, P < 0.05). Leg muscle lipid oxidation represented approximately 62 and 30% of whole body lipid oxidation at lower and higher relative intensities, respectively. In summary, training can increase working muscle tracer measured FFA uptake and lipid oxidation for a given power output, but both before and after training the association between whole body and leg lipid metabolism is reduced as exercise intensity increases.  相似文献   

19.
The effects of prolonged caloric restriction (CR) on protein kinetics in lean subjects has not been investigated previously. The purpose of this study was to test the hypotheses that 21 days of CR in lean subjects would 1) result in significant losses of lean mass despite a suppression in leucine turnover and oxidation and 2) negatively impact exercise performance. Nine young, normal-weight men [23 +/- 5 y, 78.6 +/- 5.7 kg, peak oxygen consumption (Vo2 peak) 45.2 +/- 7.3 ml.kg(-1).min(-1), mean +/- SD] were underfed by 40% of the calories required to maintain body weight for 21 days and lost 3.8 +/- 0.3 kg body wt and 2.0 +/- 0.4 kg lean mass. Protein intake was kept at 1.2 g.kg(-1).day(-1). Leucine kinetics were measured using alpha-ketoisocaproic acid reciprocal pool model in the postabsorptive state during rest and 50 min of exercise (EX) at 50% of Vo2 peak). Body composition, basal metabolic rate (BMR), and exercise performance were measured throughout the intervention. At rest, leucine flux (approximately 131 micromol.kg(-1).h(-1)) and oxidation (R(ox); approximately 19 micromol.kg(-1).h(-1)) did not differ pre- and post-CR. During EX, leucine flux (129 +/- 6 vs. 121 +/- 6) and R(ox) (54 +/- 6 vs. 46 +/- 8) were lower after CR than they were pre-CR. Nitrogen balance was negative throughout the intervention ( approximately 3.0 g N/day), and BMR declined from 1,898 +/- 262 to 1,670 +/- 203 kcal/day. Aerobic performance (Vo2 peak, endurance cycling) was not impacted by CR, but arm flexion endurance decreased by 20%. In conclusion, 3 wk of caloric restriction reduced leucine flux and R(ox) during exercise in normal-weight young men. However, despite negative nitrogen balance and loss of lean mass, whole body exercise performance was well maintained in response to CR.  相似文献   

20.
Prolonged infusions of lipid and heparin that achieve high physiological free fatty acid (FFA) concentrations inhibit hepatic (and peripheral) insulin sensitivity in humans. These infusions are composed largely of polyunsaturated fatty acids (PUFA; linoleic and linolenic). It is not known whether fatty acid composition per se affects hepatic glucose metabolism in humans. To address this issue, we examined the impact of enteral infusions of either palm oil (48% palmitic, 35% oleic, and 8% linoleic acids) or safflower oil (6% palmitic, 12% oleic, 74% linoleic acids) in 14 obese nondiabetic subjects. (2)H(2)O was administered to determine the contribution of gluconeogenesis to endogenous glucose production (EGP), and a primed continuous infusion of [6,6-(2)H]glucose was administered to assess glucose appearance. As a result of the lipid infusions, plasma FFA concentrations increased significantly in both the palm oil (507.5 +/- 47.4 to 939.3 +/- 61.3 micromol/l, P < 0.01) and safflower oil (588.2.0 +/- 43.0 to 857.8 +/- 68.7 micromol/l, P < 0.01) groups after 4 h. EGP was similar at baseline (12.4 +/- 1.8 vs. 11.2 +/- 1.0 micromol x kg FFM(-1) x min(-1)). During a somatostatin-insulin clamp, the glucose infusion rate was significantly lower (AUC glucose infusion rate 195.8 +/- 50.7 vs. 377.8 +/- 38.0 micromol/kg FFM, P < 0.01), and rates of EGP were significantly higher (10.7 +/- 1.4 vs. 6.5 +/- 1.5 micromol x kg FFM(-1) x min(-1), P < 0.01) after palm oil compared with safflower oil, respectively. Baseline rates of gluconeogenesis and glycogenolysis were also similar. However, after lipid infusion, rates of glycogenolysis were suppressed by safflower oil but not by palm oil. Thus these studies demonstrate, for the first time in humans, a differential effect of saturated fatty acids and PUFA on hepatic glucose metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号