首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosystem II (PSII) photochemical efficiency (chlorophyll fluorescence ratio Fv/Fm) was recorded in vivo in Synechocystis 6803 during high light illumination and during a subsequent shift of the cells to darkness. A continuing decrease in the Fv/Fm ratio was observed even after the cells were transferred to darkness, provided the temperature was high enough. The decrease in the PSII efficiency after the shifting of the cells to darkness correlated directly with the loss of the D1 protein under different temperatures, suggesting that temperature-dependent proteolysis of the D1 protein in darkness induces the loss of PSII photochemical efficiency under these conditions. Furthermore, the amount of FtsH protease was found to increase during the high light treatment. This observation suggests that the synthesis of the FtsH protein is a light-regulated process and that this protease most probably has a key role in an efficient degradation of the D1 protein even under post-illuminative conditions, provided the temperature is high enough to prevent the initial reversible steps of photoinhibition.  相似文献   

2.
To determine the dependence of in vivo photosystem (PS) II function on photon exposure and to assign the relative importance of some photoprotective strategies of PSII against excess light, the maximal photochemical efficiency of PSII (Fv/Fm) and the content of functional PSII complexes (measured by repetitive flash yield of oxygen evolution) were determined in leaves of pea (Pisum satlvum L.) grown in moderate light. The modulation of PSII functionality in vivo was induced by varying either the duration (from 0 to 3 h) of light treatment (fixed at 1200 or 1800 mol photons · m-2 · s-1) or irradiance (from 0 to 3000 mol photons · m-2 · s-1) at a fixed duration (1 h) after infiltration of leaves with water (control), lincomycin (an inhibitor of chloroplast-encoded protein synthesis), nigericin (an uncoupler), or dithiothreitol (an inhibitor of the xanthophyll cycle) through the cut petioles of leaves of 22 to 24-day-old plants. We observed a reciprocity of irradiance and duration of illumination for PSII function, demonstrating that inactivation of functional PSII depends on the total number of photons absorbed, not on the rate of photon absorption. The Fv/Fm ratios from photoinhibitory light-treated leaves, with or without inhibitors, declined pseudo-linearly with photon exposure. The number of functional PSII complexes declined multiphasically with increasing photon exposure, in the following decreasing order of inhibitor effect: lincomycin > nigericin > DTT, indicating the central role of D1 protein turnover. While functional PSII and Fv/Fm ratio showed a linear relationship under high photon exposure conditions, in inhibitor-treated leaves the Fv/Fm ratio failed to reveal the loss of up to 25% of the total functional PSII under low photon exposure. The loss of this 25% of less-stable functional PSII was accompanied by a decrease of excitation-energy trapping capacity at the reaction centre of PSII (revealed by the fluorescence parameter, 1/Fo-1/Fm, where Fo and Fm stand for chlorophyll fluorescence when PSII reaction centres are open and closed, respectively), but not by a loss of excitation energy at the antenna (revealed by the fluorescence parameter, 1/Fm). We conclude that (i) PSII is an intrinsic photon counter under photoinhibitory conditions, (ii) PSII functionality is mainly regulated by D1 protein turnover, and to a lesser extent, by events mediated via the transthylakoid pH gradient, and (iii) peas exhibit PSII heterogeneity in terms of functional stability during photon exposure.Abbreviations D1 protein psbA gene product - DTT dithiothreitol - Fo chlorophyll fluorescence corresponding to open PSII reaction centres - Fv, Fm variable and maximum fluorescence after dark incubation, respectively - Fs, Fm steady-state and maximum fluorescence during illumination, respectively - P680 reactioncentre chlorophyll and primary electron donor of PSII - PS photosystem Financial support of this work by Department of Employment, Education and Training/Australian Research Council International Research Fellowships Program (Korea) is gratefully acknowledged.  相似文献   

3.
Under a moderately heat-stressed condition, the photosystems of higher plants are damaged in the dark more easily than they are in the presence of light. To obtain a better understanding of this heat-derived damage mechanism that occurs in the dark, we focused on the involvement of the light-independent electron flow that occurs at 40 °C during the damage. In various plant species, the maximal photochemical quantum yield of photosystem (PS) II (Fv/Fm) decreased as a result of heat treatment in the dark. In the case of wheat, the most sensitive plant species tested, both Fv/Fm and oxygen evolution rapidly decreased by heat treatment at 40 °C for 30 min in the dark. In the damage, specific degradation of D1 protein was involved, as shown by immunochemical analysis of major proteins in the photosystem. Because light canceled the damage to PSII, the light-driven electron flow may play a protective role against PSII damage without light. Light-independent incorporation of reducing power from stroma was enhanced at 40 °C but not below 35 °C. Arabidopsis mutants that have a deficit of enzymes which mediate the incorporation of stromal reducing power into thylakoid membranes were tolerant against heat treatment at 40 °C in the dark, suggesting that the reduction of the plastoquinone pool may be involved in the damage. In conclusion, the enhanced introduction of reducing power from stroma into thylakoid membranes that occurs around 40 °C causes over-reduction of plastoquinone, resulting in the damage to D1 protein under heat stress without linear electron flow.  相似文献   

4.
Photosensitivity and photosynthetic characteristics have been analyzed in wild type (KC) and its psbAII mutant (I6) of Synechocystis having three point amino acid substitutions, i.e., N322I, I326F and F328S, which are localized in the C-terminal extension of D1 protein of the photosystem II reaction center. Wild type and mutant cells show almost an identical growth pattern under normal/low light (30 mumol m-2s-1, 30 degrees C) liquid culture (BG-11) condition. However, upon shifting the cultures to high light (500 mumol m-2s-1, 30 degrees C), these two types of cells exhibit entirely different growth characteristics, i.e., the mutant cells continue to grow normally whereas, the control cells fail to adapt the light stress and eventually resulting in complete loss of the photosynthetic pigments. On the other hand, a quick loss in the Fv/Fm value with half--decay time of about 30 min is observed in the mutant, in contrast to 120-130 min in case of control, upon shifting to high light conditions. In spite of this, mutant cells are able to adapt and grow well under prolonged high light exposure even after losing a major part of the variable yield of chlorophyll fluorescence (Fv/Fm). The high light treatment also induced decrease in the level of D1 protein in the mutant. However, half-decay time for D1 is much longer (approximately 10 hr) than that of variable fluorescence. Thus, the mutant cells have shown an unique way for cell growth and maintenance under high light even after losing Fv/Fm and photosynthetic oxygen evolving capacity as well as D1 content to a great extent. Therefore, these results could extend an interesting insight to understand the coordination of physiological, biochemical and molecular mechanisms regulating phototolerance of the photosynthetic organisms.  相似文献   

5.
高、低温胁迫对牡丹叶片PSⅡ功能和生理特性的影响   总被引:1,自引:0,他引:1  
以牡丹‘肉芙蓉’离体叶片为试材,以25 ℃为对照,研究了强光(1400 μmol·m-2·s-1)下高温(40℃)和低温(15℃)处理对牡丹叶片PSⅡ光化学活性和生理特性的影响.结果表明:随处理时间的延长,各处理叶片的PSⅡ最大光化学效率(Fv/Fm)、PSⅡ实际光量子效率(φPsⅡ)和光下开放的PSⅡ反应中心激发能捕获效率(Fv’/Fm’)均持续降低.暗恢复4h后,对照和15℃处理叶片的Fv/Fm基本上完全恢复,而40℃处理叶片仅恢复到处理前的75.5%,即使15 h后也不能完全恢复;强光下40℃处理使PSⅠ和PSⅡ间的激发能分配严重偏离平衡状态.强光下40 ℃处理抑制了超氧化物歧化酶活性,加剧了O2、H2O2、丙二醛的产生,导致叶绿素和可溶性蛋白含量不断下降.说明强光下40℃高温胁迫对牡丹叶片光合机构造成了不可逆的破坏,而15℃低温处理对其光合机构的影响相对较弱.  相似文献   

6.
水淹对水芹叶片结构和光系统II光抑制的影响   总被引:3,自引:0,他引:3  
通过探讨在水淹条件下水芹(Oenanthe javanica)叶片结构的变化以及出水对其光系统II功能和光抑制的影响, 阐明水芹光合机构在水淹条件下及出水后死亡的可能原因。结果表明: 水淹条件下新生沉水功能叶光系统II(PSII)最大光化学效率(Fv/Fm) 、电子传递活性与对照叶片差异很小, 但水淹使气生功能叶的Fv/Fm显著降低; 植株总生物量呈负增长趋势; 活体弱光条件下, 沉水叶出水后2小时叶片相对含水量(RWC)和Fv/Fm无显著变化; 中等光强和强光条件下其RWC和Fv/Fm迅速降低; 离体条件下, 5小时的中等光强对沉水叶的Fv/Fm影响不显著, 在随后的弱光下能恢复到出水时的初始状态; 强光能使沉水叶的Fv/Fm大幅降低, 且弱光下不能恢复到出水时的初始水平; 在解剖结构上, 水芹沉水叶的叶片总厚度、上下表皮厚度和气孔大小都显著低于气生叶, 而且沉水叶没有明显的栅栏组织分化, 但是沉水叶上表皮的气孔密度显著高于气生叶。研究结果表明, 水淹使水芹原气生叶PSII功能迅速衰退, 但对新生沉水叶片影响很小。水芹植株出水后, 沉水叶片结构变化使其在光下保水能力下降, 而强光导致了光合机构的光抑制和反应中心失活。田间条件下两者共同作用则加剧了对叶片光合机构的破坏, 进而致使其死亡。  相似文献   

7.
To clarify the characteristics of photoinhibition and the primary defense mechanisms of ephemeral plant leaves against photodestruction under high temperature stress, inhibitors and the technology to determine chlorophyll fluorescence were used to explore the protective effects of D1 protein turnover and the lutein cycle in the high temperature stress of the leaves of three ephemeral plants. The results showed that the maximum light conversion efficiency (Fv/Fm) of the ephemeral plant leaves decreased, and the initial fluorescence (Fo) increased under 35°C ± 1°C heat stress for 1–4 h or on sunny days in the summer. Both Fv/Fm and Fo could be recovered after 8 h of darkness or afternoon weakening of the external temperature. Streptomycin sulfate (SM) or dithiothreitol (DTT) accelerated the decrease of Fv/Fm and the photochemical quenching coefficient (qP) in the leaves of three ephemeral plants at high temperature, and the decrease was greater in the SM than in the DTT treatment. When the high temperature stress was prolonged, the Y(II) values of light energy distribution parameters of PSII decreased, and the Y(NPQ) and Y(NO) values increased gradually in all the treatment groups of the three ephemeral plants. The results showed that the leaves of the three ephemeral plants had their own highly advanced mechanisms to protect against photodamage, which inhibited the turnover of D1 protein and xanthophyll cycle. This can damage the PSII reaction center in the leaves of the three ephemeral plants under high temperature. The protective effect of D1 protein turnover on heat stress in Erodium oxyrrhynchum and Senecio subdentatus was greater than that of the lutein cycle, while the protective effect of lutein cycle was greater than that of D1 protein turnover in Heliotropium acutiflorum subjected to heat damage.  相似文献   

8.
Photosynthetic characteristics along with phototolerance and photoinhibition of photosystem II (PS II) were monitored in Synechocystis sp. PCC 6803 wild type (KC) and its psbAII mutants viz., I6 (N322I, I326F, and F328S), G6 (N267Y), and H7 (Y254C and I314V) that have up to three point mutations, localized in the D-E loop of the D1 polypeptide of PSII reaction centre. These strains exhibited entirely different growth trends upon shifting from 30 micormol m(-2)s(-1) to high irradiance (500 micromol m(-2)s(-1) , 30 degrees C). The I6 and H7 cells grew well, whereas KC and G6 cells showed inability for cell multiplication. The photosynthetic efficiency demonstrated about 50% loss in chlorophyll fluorescence of variable yield (Fv/Fm) within 20-30 min in all mutants, whereas the wild type (KC) cells could reach the same level of loss in 2 hr. I6 and H7 cells showed continuous cell growth and maintenance under long-term exposure of high light compared to G6 mutant and wild type cells. The wild type cells showed slow decrease in their photochemical activity and Fv/Fm values, compared to mutant cells. The recovery seemed to be almost identical, and also stimulated by growth light, inspite of differential photoinhibitory behaviours. Darkness and translational inhibitor lincomycin both were found to be unassociated with the restoration of photoinhibited process of PS II.  相似文献   

9.
In a previous study, we characterized a high chlorophyll fluorescence lpa1 mutant of Arabidopsis thaliana, in which approximately 20% photosystem (PS) II protein is accumulated. In the present study, analysis of fluorescence decay kinetics and thermoluminescence profiles demonstrated that the electron transfer reaction on either the donor or acceptor side of PSII remained largely unaffected in the lpa1 mutant. In the mutant, maximal photochemical efficiency (Fv/Fm, where Fm is the maximum fluorescence yield and Fv is variable fluorescence) decreased with increasing light intensity and remained almost unchanged in wild-type plants under different light conditions. The Fv/Fm values also increased when mutant plants were transferred from standard growth light to low light conditions. Analysis of PSII protein accumulation further confirmed that the amount of PSII reaction center protein is correlated with changes in Fv/Fm in lpa1 plants. Thus, the assembled PSII in the mutant was functional and also showed increased photosensitivity compared with wild-type plants.(Author for correspondence. Tel: +86 (0)10 6283 6256; Fax: +86 (0)10 8259 9384; E-mail: zhanglixin@ibcas.ac.cn)  相似文献   

10.
高温胁迫对柑橘光合速率和光系统Ⅱ活性的影响   总被引:35,自引:12,他引:35  
用红外CO2分析仪和叶绿素荧光仪测定了温州蜜柑和脐橙叶片的净光合速率(Pn)、初始荧光(Fo)、最大光能转换效率(Fv/Fm)及电子传递速率(ETR).结果表明,与常温(25℃)相比,高温胁迫(38~40℃)使温州蜜柑和脐橙叶片的Pn、Fv/Fm及ETR下降,Fo升高.胁迫25d后温州蜜柑和脐橙叶片的Pn分别下降55.6%和39.8%.Fv/Fm下降22.0%和6.7%,ETR下降55.0%和41.5%,Fo分别上升了113.8%和14.9%.柑橘经高温胁迫后,在25℃下处理10d,叶片的Pn、Fv/Fm、Fo及ETR恢复明显.这些结果说明柑橘的光合速率下降与PSⅡ反应中心失活有关.  相似文献   

11.
1.07mmol/L氯化胆碱处理降低了低温弱光(6℃.PFD100μmol m^-2s^-1)下黄瓜幼苗叶片膜脂组分中主要是磷脂酰甘油(PG)的饱和脂肪酸含量,增加了膜脂不饱和度:减缓了膜透性的下降、MDA的产生速率、叶绿素的降解及PSII最大量子效率(Fv/Fm)、捕光效率(Fv'/Fm')、光化学猝灭系数(qp)、实际光化学效率(ФPSII)和抗氧化酶POD、APX及CAT活性的下降;提高了非光化学猝灭系数(NPQ)和脯氨酸的含量。以上结果表明氯化胆碱处理保护了低温弱光对黄瓜叶片细胞膜和光合机构的伤害。  相似文献   

12.
The stability of PSII in leaves of the resurrection plant Haberlea rhodopensis to high temperature and high light intensities was studied by means of chlorophyll fluorescence measurements. The photochemical efficiency of PSII in well-hydrated Haberlea leaves was not significantly influenced by temperatures up to 40 degrees C. Fo reached a maximum at 50 degrees C, which is connected with blocking of electron transport in reaction center II. The intrinsic efficiency of PSII photochemistry, monitored as Fv/Fm was less vulnerable to heat stress than the quantum yield of PSII electron transport under illumination (phiPSII). The reduction of phiPSII values was mainly due to a decrease in the proportion of open PSII centers (qP). Haberlea rhodopensis was very sensitive to photoinhibition. The light intensity of 120 micromol m(-2) s(-1) sharply decreased the quantum yield of PSII photochemistry and it was almost fully inhibited at 350 micromol m(-2) s(-1). As could be expected decreased photochemical efficiency of PSII was accompanied by increased proportion of thermal energy dissipation, which is considered as a protective effect regulating the light energy distribution in PSII. When differentiating between the three components of qN it was evident that the energy-dependent quenching, qE, was prevailing over photoinhibitory quenching, qI, and the quenching related to state 1-state 2 transitions, qT, at all light intensities at 25 degrees C. However, the qE values declined with increasing temperature and light intensities. The qI was higher than qE at 40 degrees C and it was the major part of qN at 45 degrees C, indicating a progressing photoinhibition of the photosynthetic apparatus.  相似文献   

13.
Photoinhibition of photosynthesis was studied in Vitis berlandieri and Vitis rupestris leaves under controlled conditions (irradiation of detached leaves to about 1900 micromol m(-2) s(-1)). The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and electron transport measurements. The potential efficiency of PS2, Fv/Fm declined, Fo increased significantly in leaves of V. berlandieri, while Fo decreased in V. rupestris. In isolated thylakoids, the rate of whole chain and PS2 activity markedly decreased in high light irradiated more in leaves of V. berlandieri than in leaves of V. rupestris. A smaller inhibition of PS1 activity was also observed in both leaves. In the subsequent dark incubation, fast recovery was observed in both leaves and reached maximum PS2 efficiencies similar to those observed in non-photoinhibited leaves. The artificial exogenous electron donors DPC, NH2OH and Mn2+ failed to restore the high light induced loss of PS2 activity in V. berlandieri leaves, while DPC and NH2OH significantly restored in V. rupestris leaves. It is concluded that high light inactivates on the donor side of PS2 and acceptor side of PS2 in V. rupestris and V. berlandieri leaves, respectively. Quantification of the PS2 reaction center protein D1 and 33 kDa protein of water splitting complex following high light exposure of leaves showed pronounced differences between V. berlandieri and V. rupestris leaves. The marked loss of PS2 activity in high light irradiated leaves was due to the marked loss of D1 protein and 33 kDa protein in V. berlandieri and V. rupestris leaves, respectively.  相似文献   

14.
用叶黄素循环抑制剂二硫苏糖醇(DTT)处理7h的柑橘离体叶片,其非光化学猝灭系数NPQ大幅度下降;在中等强度光(500μmol·m^-2·s^-1)和高强度光(1500μmol·m^-2·s^-1)下,DTT处理的叶片光化学效率(Fv/Fm)分别下降3.8%和39.7%,光合电子传递速率(ETR)分别下降12%和49.5%,D1蛋白含量也分别下降87%和92.3%;黑暗对DTT处理叶片的各种荧光参数和D1蛋白的影响不大。显示叶黄素循环在保护光系统(PS)II反应中心、抵御光抑制中有一定的积极效应,可能影响了D1蛋白周转。  相似文献   

15.
To determine whether the net loss of D1 protein is the main cause of photoinhibition of photosynthesis in wheat leaves under field conditions in the absence of any environmental stress other than strong sunlight, the D1 protein content, photosynthetic evolution of oxygen and chlorophyll a fluorescence parameters were measured in field grown wheat leaves. After exposure to midday strong light for about 3 h, apparent photosynthetic quantum efficiency (Φ), Fv/Fm and Fo in wheat leaves declined, and these parameters recovered almost completely 1 h after transfer to the weak light of 30~40 ttmol photons · m-2 · s-1. No evident change in the D1 protein content was observed in the leaves after exposure to midday strong light for 3 h. After 3 hours exposure to strong light, the slow-relaxed fluorescence quenching in the leaves treated with streptomycin (SM) increased much more than that in the control leaves, but there was no effect SM on the recovery of Fv/Fm and F0; dithiothretol (DTT) treatment enhanced photoinhibition of photosynthesis and reduced the D1 protein content in the leaves after exposure to midday strong light. These results indicated that under field conditions with no environmental stress other than strong sunlight, photoinhibition of photosynthesis in wheat leaves was not due to the net loss of D1 protein, and it could be attributed mainly by the increased nonradiative energy dissipation.  相似文献   

16.
investigated through chlorophyll fluorescence parameters in morning glory (Ipomoea setosa) leaves, which were dipped into water, dithiothreitol (DTT) and lincomycin (LM), respectively. During the stress, both the xanthophyll cycle and D1 protein turnover could protect PSI from photoinhibition. In DTT leaves, non-photochemical quenching (NPQ) was inhibited greatly and the oxidation level of P700 (P700+) was the lowest one. However, the maximal photochemical efficiency of PSII (Fv/Fm) in DTT leaves was higher than that of LM leaves and was lower than that of control leaves. These results suggested that PSI was more sensitive to the loss of the xanthophyll cycle than PSII under high irradiance. In LM leaves, NPQ was partly inhibited, Fv/Fm was the lowest one among three treatments under high irradiance and P700+ was at a similar level as that of control leaves. These results implied that inactivation of PSII reaction centers could protect PSI from further photoinhibition. Additionally, the lowest of the number of active reaction centers to one inactive reaction center for a PSII cross-section (RC/CSo), maximal trapping rate in a PSII cross-section (TRo/CSo), electron transport in a PSII cross-section (ETo/CSo) and the highest of 1-qP in LM leaves further indicated that severe photoinhibition of PSII in LM leaves was mainly induced by inactivation of PSII reaction centers, which limited electrons transporting to PSI. However, relative to the LM leaves the higher level of RC/CSo, TRo/CSo, Fv/Fm and the lower level of 1-qP in DTT leaves indicated that PSI photoinhibition was mainly induced by the electron accumulation at the PSI acceptor side, which induced the decrease of P700+ under high irradiance.  相似文献   

17.
Under 30-min high irradiance (1500μmol m^-2 s^-1), the roles of the xanthophyll cycle and D1 protein turnover were investigated through chlorophyll fluorescence parameters in morning glory (Ipomoea setosa) leaves, which were dipped into water, dithiothreitol (DTT) and lincomycin (LM), respectively. During the stress, both the xanthophyll cycle and D1 protein turnover could protect PSI from photoinhibition. In DTT leaves, non-photochemical quenching (NPQ) was inhibited greatly and the oxidation level of P700 (P700^+) was the lowest one. However, the maximal photochemical efficiency of PSII (Fv/Fm) in DTT leaves was higher than that of LM leaves and was lower than that of control leaves. These results suggested that PSI was more sensitive to the loss of the xanthophyll cycle than PSII under high irradiance. In LM leaves, NPQ was partly inhibited, Fv/Fm was the lowest one among three treatments under high irradiance and P700^+ was at a similar level as that of control leaves. These results implied that inactivation of PSII reaction centers could protect PSI from further photoinhibition. Additionally, the lowest of the number of active reaction centers to one inactive reaction center for a PSII cross-section (RC/CSo), maximal trapping rate in a PSll cross-section (TRo/CSo), electron transport in a PSll cross-section (ETo/CSo) and the highest of 1-qP in LM leaves further indicated that severe photoinhibition of PSII in LM leaves was mainly induced by inactivation of PSII reaction centers, which limited electrons transporting to PSh However, relative to the LM leaves the higher level of RC/CSo, TRo/CSo, Fv/Fm and the lower level of 1-qP in DTT leaves indicated that PSI photoinhibition was mainly induced by the electron accumulation at the PSI acceptor side, which induced the decrease of P700^+ under high irradiance.  相似文献   

18.
The response of microalgae to photooxidative stress resulting from high light exposure is a well-studied phenomenon. However, direct analyses of photosystem II (PSII) D1 protein (the main target of photoinhibition) in diatoms are scarce. In this study, the response of the diatom model species Phaeodactylum tricornutum to short-term exposure to high light was examined and the levels of D1 protein determined immunochemically. Low light (LL) acclimated cells (40 μmol photons m(-2) s(-1)) subjected to high light (HL, 1,250 μmol photons m(-2) s(-1)) showed rapid induction of non-photochemical quenching (NPQ) and ca. 20-fold increase in diatoxanthin (DT) concentration. This resulted from the conversion of diadinoxanthin (DD) to DT through the activation of the DD-cycle. D1 protein levels under LL decreased about 30% after 1 h of the addition of lincomycin (LINC), a chloroplast protein synthesis inhibitor, showing significant D1 degradation and repair under low irradiance. Exposure to HL lead to a 3.2-fold increase in D1 degradation rate, whereas average D1 repair rate was 1.3-x higher under HL than LL, leading to decreased levels of D1 protein under HL. There were significant effects of both HL and LINC on P. tricornutum maximum quantum yield of PSII (F(v)/F(m)), showing a reduction of active PSII reaction centres. Partial recovery of F(v)/F(m) in the dark demonstrates the photosynthetic resilience of this diatom to changes in the light regime. P. tricornutum showed high allocation of total protein to D1 and an active D1-repair cycle to limit photoinhibition.  相似文献   

19.
This experiment was conducted to test the effects of foliar application of progesterone on the photochemical efficiency of photosystem II (PSII) and photosynthetic rate in wheat flag leaves subjected to cross-stress of heat and high light during grain-filling stage. The results showed that progesterone pretreatment increased the activities of superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase, and the contents of ascorbic acid and glutathione under the cross-stress. Meanwhile, the rate of O2 ? production, hydrogen peroxide (H2O2) and malondialdehyde contents in progesterone pretreated leaves were significantly lower under heat and high light stress. In parallel with the alleviation of oxidative stress, higher content of D1 protein in PSII reactive center was observed in progesterone pretreated leaves, resulting in a significant increase in the potential (Fv/Fm) and actual (ΦPS II) photochemical efficiency of PSII, and the net photosynthetic rate. In summary, this study suggested that foliar application of progesterone might protect the PSII complex from heat and high light stress-induced damage through enhancing antioxidant defense system and further facilitating D1 protein stability in the wheat leaves.  相似文献   

20.
The light-dependent reactivation of photosystem II in Chlorella pyrenoidosa Chick, CALU-175 cells, inactivated with supraoptimal temperatures (40-43 degrees C) in the dark or during heterotrophic growth was studied. It was shown that the inactivation of photosystem II after incubation in the dark at 41-42 degrees C, which showed up in the suppression of relative yield of variable chlorophyll fluorescence Fv due to an increase in yield F0 could be completely reversed by light. The inactivation of photosystem II at 43 degrees C in the dark could not be reversed by subsequent irradiation. In this case, the suppression of Fv/Fm was related not only to the growth of F0 but also with the decrease in Fm. The light dependences of the rate and extent of reactivation of yield Fv after heterotrophic growth or incubation of chlorella at 41 degrees C in the dark completely coincided. The full light-induced reactivation of photosystem II took place as the rate of photoinduced electron transport reached the rate of nonphotochemical reduction of plastoquinone in the dark. These results suggest that the light-reversed inactivation of photosystem II after heterotrophic growth or incubation at 41 degrees C in the dark is due to the redox-interaction of the primary quinone acceptor with plastoquinone reduced by the electron flux from the substrates of chlororespiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号