The effect of phlorizin has been tested on hexose transport and hexose-induced changes of electrical potential (m) and conductance (gm) across the plasmalemma of rhizoid and thallus cells of the aquatic liverwort Riccia fluitans. The decrease of m (depolarization) and gm induced by 1 mM 3-oxymethyl-D-glucose (3-OMG) is substantially inhibited by simultaneous addition of 2 mM phlorizin, whereas no significant response was observed when phlorizin was added alone or several minutes after the sugar. Current-voltage data show that the 3-OMG-generated electrical inward current of 0.016 A m-2 drops to 0.010 A m-2 when phlorizin is present. Uptake as well as efflux of [14C]-3-OMG is strongly and reversibly inhibited by phlorizin between 0.2 and 5 mM. The results are consistent with our hypothesis that the hexose carrier has one binding site with competitive inhibition of glucose uptake by phlorizin (ki=0.08 mM). The electrical data indicate that phlorizin affects an m step of the carrier transport cycle.Abbreviation 3-OMG
3-oxymethyl-D-glucose 相似文献
In the aquatic liverwort Riccia fluitans the regulation of theplasma membrane H+/amino acid symport has been investigated.Cytosolic pH (pHc), membrane potential (Em) and membrane conductancehave been measured and related to transport data, (i) The releaseof [14C]amino acids is strongly stimulated by cytosolic acidification,induced by the external addition of acetic acid, a decreasein external K+, and in the change from light to dark. On average,a decrease in pHc of 0.5 to 0.6 units corresponded with a 4-foldstimulation in amino acid efflux. (ii) External pH changes havefar less effect on substrate transport than the cytosolic pHshifts of the same order. (iii) The inwardly directed positivecurrent, induced by amino acids, is severely inhibited by cytosolicacidification. (iv) Fusicoccin (FC) stimulates amino acid uptakewithout considerable change in proton motive force. (v) Whenthe proton motive force is kept constant, the uptake of aminoacids into Riccia thalli is much lower than when the pump isdeactivated. It is suggested that both the proton pump activityand cytosolic pH are the dominant factors in the regulationof the H+/amino acid symport across the plasma membrane of Ricciafluitans, and it is concluded that the proton motive force isnot a reliable quantity to predict and interpret transport kinetics. Key words: Amino acid, cytosolic pH, pH-sensitive electrode, proton motive force, regulation, Riccia fluitans相似文献
The question is raised, to what extent is the plasma membraneproton pump involved in short-term pH regulation of plant cells?For this purpose the cytosolic pH (pHc) of Riccia fluitans rhizoidand thallus cells has been measured continuously using pH-sensitivemicroelectrodes (Felle and Bertl, 1986a). It is demonstratedthat pH perturbations (light, weak acids, external pH) in bothdirections are completely or at least partly eliminated withinminutes. The pHc recovery occurs regardless of the activationstate of the proton pump. The proton pump reacts to changesin cytosolic pH as expected, namely with increased proton extrusionto decreased pHc; however, changes in pump activity (fusicoccin,CCCP, cyanide) do not necessarily result in cytosolic pH shifts.These results suggest that several proton transport mechanisms(including the proton pump) co-operate in the restoration ofa perturbed cytosolic pH. It is concluded, however, that theproton pump, although most important for the energization ofthe plasma membrane, does not regulate cytosolic pH. 相似文献
The kinetics of vacuolar acidification upon addition of ATP and/or pyrophosphate (PPi) has been assayed on single immobilized vacuoles by computer-aided microfluorimetry of 9-aminoacridine, and by acridine orange absorption photometry on vacuole suspensions isolated from green suspension cells of Chenopodium rubrum L. Two proton pumps at the tonoplast, an ATPase and a pyrophosphatase (PPase), operate in parallel to acidify the vacuole with different contributions adding up to a transtonoplast Δ pH of 2.6 pH units at external pH 7.2. The saturable components of proton pumping reach half maximal velocity with 0.32 ± 0.06 mM ATP and 23 ± 2.5 μM PPi, respectively. At saturating substrate concentrations, ATPase and PPase hydrolyse ATP and PPi, respectively, at a ratio of 2.3. The same ratio holds for the corresponding proton fluxes maintaining a given steady-state vacuolar pH. We conclude that both pumps operate at the same stoichiometry. 相似文献
ATP-dependent and PPi-dependent H+-transport systems of thetonoplast were characterized in plasmalemma-permeabilized Nitellacells, where direct access to the protoplasmic surface of thetonoplast was possible. Since H+ transport across the tonoplastcan be measured in situ, the identity of the membrane responsiblefor H+ pumping is unequivocal. H+ transport was evaluated bythe accumulation of neutral red. While both transport systemswere obligately dependent on Mg2+, the two transport systemsshowed completely different sensitivity to NO3 and K+,suggesting the presence of two types of H+-pumps in Nitellatonoplast. NO3 applied to the protoplasmic surface, completelyand reversibly inhibited ATP-dependent transport but had noeffect on PPi-dependent transport. By contrast, NO3 appliedinto the vacuole by the vacuolar perfusion technique did notinhibit ATP-dependent or PPi-dependent H+ transport. Replacementof K+ with the organic cation, BTP, inhibited PPi-dependenttransport but not the ATP-dependent one, indicating that PPi-dependenttransport is K+ dependent. The sensitivities of the H+ transportsystems found in the tonoplast of Nitella are quite similarto those of higher plant tonoplasts.
1 Present address: Department of Botany, Faculty of Science,University of Tokyo, Hongo, Tokyo 113, Japan. (Received February 21, 1987; Accepted May 27, 1987) 相似文献
The transport of several amino acids with different side-chain characteristics has been investigated in the aquatic liverwort Riccia fluitans. i) The saturation of system I (neutral amino acids) by addition of excess -aminoisobutyric acid to the external medium completely eliminated the electrical effects which are usually set off by neutral amino acids. Under these conditions arginine and lysine significantly depolarized the plasmalemma. ii) L- and D-lysine/arginine were discriminated against in favour of the L-isomers. iii) Increasing the external proton concentration in the interval pH 9 to 4.5 stimulated plasmalemma depolarization, electrical net current, and uptake of [14C]-basic amino acids. iv) Uptake of [14C]-glutamic acid took place only at acidic pHs. v) [14C]-histidine uptake had an optimum between pH 6 and 5.5. vi) Overlapping of the transport of basic, neutral, and acidic amino acids was common. It is suggested that besides system I, a second system (II), specific for basic amino acids, exists in the plasmalemma of Riccia fluitans. It is concluded that the amino-acid molecule with an uncharged side chain is the substrate for system I, which also binds and transports the neutral species of acidic amino acids, whereas system II is specific for amino acids with a positively charged side chain. The possibility of system II being a proton cotransport is discussed.Abbreviation AiB
-aminoisobutyric acid 相似文献
Two types of ATP-dependent calcium (Ca2+) transport systems were detected in sealed microsomal vesicles from oat roots. Approximately 80% of the total Ca2+ uptake was associated with vesicles of 1.11 grams per cubic centimeter and was insensitive to vanadate or azide, but inhibited by NO3−. The remaining 20% was vanadate-sensitive and mostly associated with the endoplasmic reticulum, as the transport activity comigrated with an endoplasmic reticulum marker (antimycin A-insensitive NADH cytochrome c reductase), which was shifted from 1.11 to 1.20 grams per cubic centimeter by Mg2+.
Like the tonoplast H+-ATPase activity, vanadate-insensitive Ca2+ accumulation was stimulated by 20 millimolar Cl− and inhibited by 10 micromolar 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid or 50 micromolar N,N′-dicyclohexylcarbodiimide. This Ca2+ transport system had an apparent Km for Mg-ATP of 0.24 millimolar similar to the tonoplast ATPase. The vanadate-insensitive Ca2+ transport was abolished by compounds that eliminated a pH gradient and Ca2+ dissipated a pH gradient (acid inside) generated by the tonoplast-type H+-ATPase. These results provide compelling evidence that a pH gradient generated by the H+-ATPase drives Ca2+ accumulation into right-side-out tonoplast vesicles via a Ca2+/H+ antiport. This transport system was saturable with respect to Ca2+ (Km apparent = 14 micromolar). The Ca2+/H+ antiport operated independently of the H+-ATPase since an artifically imposed pH gradient (acid inside) could also drive Ca2+ accumulation. Ca2+ transport by this system may be one major way in which vacuoles function in Ca2+ homeostasis in the cytoplasm of plant cells.
The electrical properties of the tonoplast from a large variety of plant materials such as mesophyll cells, storage cells, tumor cells, suspension cultured cells, guard cells, coleoptile cells, and liverwort cells have been investigated using the patch-clamp technique. Whole-vacuole recordings were employed to study the dynamics of an ATP-dependent proton pump by directly measuring the electrogenic currents. The addition of Mg-ATP induced an inwardly directed current which depolarized the tonoplast (the vacuole becoming positive inside). Furthermore, voltage-dependent passive ion fluxes were analyzed using whole vacuoles and isolated membrane patches. Whole-vacuolar currents and single-channel currents were induced at hyperpolarizing potentials, whereas currents decreased at positive trans-tonoplast potentials. The electrical properties of the tonoplast of vacuoles from various plant tissues were similar and it was concluded that ion fluxes across the tonoplast follow the same general mechanisms. 相似文献
By means of pH-sensitive microelectrodes, cytoplasmic pH has been monitored continuously during amino-acid transport across the plasmalemma of Riccia fluitans rhizoid cells under various experimental conditions. (i) Contrary to the general assumption that import of amino acids (or hexoses) together with protons should lead to cytoplasmic acidification, an alkalinization of 0.1–0.3 pHc units was found for all amino acids tested. Similar alkalinizations were recorded in the presence of hexoses and methylamine. No alkalinization occurred when the substrates were added in the depolarized state or in the presence of cyanide, where the electrogenic H+-pump is inhibited. (ii) After acidification of the cytoplasm by means of various concentrations of acetic acid, amino-acid transport is massively altered, although the protonmotive force remained essentially constant. It is suggested that H+-cotransport is energetically interconnected with the proton-export pump which is stimulated by the amino-acid-induced depolarization, thus causing proton depletion of the cytoplasm. It is concluded that, in order to investigate H+-dependent cotransport processes, the cytoplasmic pH must be measured and be under continuous experimental control; secondly, neither pH nor the protonmotive force across a membrane are reliable quantities for analysing a proton-dependent process.Abbreviations 3-OMG
3-oxymethylglucose
- pHc
cytoplasmic pH
-
m
electrical potential difference across the respective membrane, i.e. membrane potential
- H+/F (=pmf)
electrochemical proton gradient 相似文献
In green thallus cells of the aquatic liverwort Riccia fluitans light-induced pH changes have been measured, using a turgor-resistant pH-sensitive microelectrode. (1) Light-off/-on causes oscillations of the cytoplasmic pH (pHc), as well as of the membrane potential difference across the plasmalemma (ψ). Beside the well-known ψm changes, the first detectable pHc change following light-off is a transient acidification of about 0.3 pH units, whereas light-on causes a transient alkalinization of roughly 0.4 pH units. (2) 1 μM DCMU eliminates these transients. (3) In the presence of 0.2 mM procaine, which alkalizes the cytoplasm to over pH 8, the light-induced ψm transients are enhanced, but are almost absent, if pHc is acidified to 6.9 by 1 mM acetate. It is suggested that the transient light-induced changes in pHc are caused by light-dependent proton translocation across the thylakoid membranes, and it is concluded that the subsequent changes in ψm are essentially the result of altered activities of the electrogenic proton pump in the plasmalemma, due to the observed fluctuations of its substrate, the proton. 相似文献
In Cd-exposed oat (Avena sativa) roots Cd was found to be associated primarily with the phytochelatin ([gamma]-glutamylcysteinyl)3-glutamic acid [([gamma]EC)3G], with a peptide to Cd ratio of 1:3 (cysteine to Cd ratio of 1:1), even though both ([gamma]EC)2G and ([gamma]EC)3G were present in the roots. Phytochelatins are known to accumulate in the vacuoles of plant cells on exposure to Cd, but the mechanism is not clear. Here we present evidence for the transport of the phytochelatins ([gamma]EC)3G and ([gamma]EC)2G as well as the Cd complex Cd-([gamma]EC)3G across the tonoplast of oat roots. Transport of ([gamma]EC)3G had a Km, for MgATP of 0.18 mM and a Vmax of 0.7 to 1 nmol mg-1 protein min-1. Transport of ([gamma]EC)3G was also energized by MgGTP and to a lesser extent MgUTP and was highly sensitive to orthovanadate, with a 50%-inhibitory concentration of 0.9 [mu]M. The Cd complex Cd-([gamma]EC)3G and ([gamma]EC)2G were also transported in a MgATP-dependent, vanadate-sensitive manner. Therefore, this process is a candidate for the transport of both phytochelatins, and Cd as its peptide complex, from the cytoplasm into the vacuole. 相似文献
Changes in electrical potential, measured as a microelectrodewas advanced into epidermal cells and from cell to cell in rootsof Lolium multiflorum and Zea mays, are described. The recordingssuggest that the electrical potential difference between thecytoplasm and vacuole, Evc is of the order of a few millivolts,the vacuole tending to be the more positive. Evc appeared tobe approximately the same for epidermal, cortical, endodermal,and pericycle cells. 相似文献
The Mg2+-dependent activity of the tonoplast pyrophosphatase (PPase) was investigated by measuring proton transport and by using the acridine orange technique on intact vacuoles of the aquatic liverwort Riccia fluitans L. In solutions with both Mg2+ and pyrophosphate present, a number of complexes are formed, which could all influence the enzymatic and hence the transport activity of the PPase. Therefore, the individual concentrations of these complexes were calculated and their contributions to proton transport across the tonoplast were tested. From these experiments we conclude that Mg2+ has three different roles: (i) Mg2+ stimulates transport activity of the PPase. (ii) Mg2PPi inhibits PPase-mediated H+ transport, (iii) MgPPi* (= MgPPi2-+ MgHPPi-) is the substrate with an apparent K1/2= 5–10 μM, with no discrimination between MgPPi2- and MgHPPi-. 相似文献
Uptake experiments and efflux compartmental analyses of abscisic acid (ABA) with acid treated epidermal peels of Valerianella locusta were performed to elucidate the mechanisms of transport of ABA across the plasmalemma and tonoplast of guard cells. ABA uptake across the plasmalemma is linearly correlated with external ABA concentration in the incubation medium. Under alkaline conditions ABA-uptake was not significantly above background, indicating that ABA uptake occurs mainly by diffusion of undissociated ABAH as the most permeable species, which is trapped afterwards in the alkaline cytosol as impermeable ABA?. Efflux analysis of ABA revealed a saturable component of ABA transfer across the tonoplast. A Woolf-Augustinsson-Hofstee analysis suggested the existence of two transport systems for ABA at the tonoplast. The high affinity transport system had a KM of 0.21 mol m?3 and a Vmax 85.8 amol ABA cell?1 h?1. Using the data of the uptake and efflux experiments we calculated the permeability coefficients of ABA for the plasmalemma and the tonoplast of guard cells, which are 2.46 10?7 m s–1 and 1.26 10?8m s?1, respectively. The distribution of the pH-probe (14C)-DMO between medium, cytosol and vacuole was investigated and used to calculate cytosolic and vacuolar pH. The vacuolar pH is too low to explain the high vacuolar ABA concentration by trapping of ABA?, whereas the cytosol is sufficiently alkaline to act as an efficient anion trap. Therefore we conclude that ABA transport across the guard cell tonoplast is catalyzed by a saturable uptake component. 相似文献
Two cultivars of wheat (Triticum aestivum L.), 'Yaqui 54' and'Seri M82', were grown along a gradient of daytime carbon dioxideconcentrations ([CO2]) from near 350-200 µmol CO2 mol-1air in a 38 m long controlled environment chamber. Carbon dioxidefluxes and evapotranspiration were measured for stands (plantsand soil) in five consecutive 7·6-m lengths of the chamberto determined potential effects of the glacial/interglacialincrease in atmospheric [CO2] on C3 plants. Growth rates andleaf areas of individual plants and net assimilation per unitleaf area and daily (24-h) net CO2 accumulation of wheat standsrose with increasing [CO2]. Daytime net assimilation (PD, mmolCO2 m-2 soil surface area) and water use efficiency of wheatstands increased and the daily total of photosynthetic photonflux density required by stands for positive CO2 accumulation(light compensation point) declined at higher [CO2]. Nighttimerespiration (RN, mmol CO2 m-2 soil surface) of wheat, measuredat 369-397 µmol mol-1 CO2, apparently was not alteredby growth at different daytime [CO2], but RN /PD of stands declinedlinearly as daytime [CO2] and PD increased. The responses ofwheat to [CO2], if representative of other C3 species, suggestthat the 75-100% increase in [CO2] since glaciation and the30% increase since 1800 reduced the minimum light and waterrequirements for growth and increased the productivity of C3plants.Copyright 1993, 1999 Academic Press Atmospheric carbon dioxide, carbon accumulation, evapotranspiration, light compensation point, net assimilation, respiration, Triticum aestivum, water use efficiency, wheat 相似文献