首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alternating cycles of exposure to high pressure and outgrowth of surviving populations were used to select for highly pressure-resistant mutants of Escherichia coli MG1655. Three barotolerant mutants (LMM1010, LMM1020, and LMM1030) were isolated independently by using outgrowth temperatures of 30, 37, and 42 degrees C, respectively. Survival of these mutants after pressure treatment for 15 min at ambient temperature was 40 to 85% at 220 MPa and 0.5 to 1.5% at 800 MPa, while survival of the parent strain, MG1655, decreased from 15% at 220 MPa to 2 x 10(-8)% at 700 MPa. Heat resistance of mutants LMM1020 and LMM1030 was also altered, as evident by higher D values at 58 and 60 degrees C and reduced z values compared to those for the parent strain. D and z values for mutant LMM1010 were not significantly different from those for the parent strain. Pressure sensitivity of the mutants increased from 10 to 50 degrees C, as opposed to the parent strain, which showed a minimum around 40 degrees C. The ability of the mutants to grow at moderately elevated pressure (50 MPa) was reduced at temperatures above 37 degrees C, indicating that resistance to pressure inactivation is unrelated to barotolerant growth. The development of high levels of barotolerance as demonstrated in this work should cause concern about the safety of high-pressure food processing.  相似文献   

2.
Using leaderless alkaline phosphatase as a probe, it was demonstrated that pressure treatment induces endogenous intracellular oxidative stress in Escherichia coli MG1655. In stationary-phase cells, this oxidative stress increased with the applied pressure at least up to 400 MPa, which is well beyond the pressure at which the cells started to become inactivated (200 MPa). In exponential-phase cells, in contrast, oxidative stress increased with pressure treatment up to 150 MPa and then decreased again, together with the cell counts. Anaerobic incubation after pressure treatment significantly supported the recovery of MG1655, while mutants with increased intrinsic sensitivity toward oxidative stress (katE, katF, oxyR, sodAB, and soxS) were found to be more pressure sensitive than wild-type MG1655. Furthermore, mild pressure treatment strongly sensitized E. coli toward t-butylhydroperoxide and the superoxide generator plumbagin. Finally, previously described pressure-resistant mutants of E. coli MG1655 displayed enhanced resistance toward plumbagin. In one of these mutants, the induction of endogenous oxidative stress upon high hydrostatic pressure treatment was also investigated and found to be much lower than in MG1655. These results suggest that, at least under some conditions, the inactivation of E. coli by high hydrostatic pressure treatment is the consequence of a suicide mechanism involving the induction of an endogenous oxidative burst.  相似文献   

3.
Aims:  Previous work showed that the exponential phase of Escherichia coli K12 MG1655, grown in Brain Heart Infusion broth at temperatures close to its maximum growth temperature, is disturbed. Based on plate count data, microscopic images and literature, the existence of a heat-resistant subpopulation was hypothesized. Here, this hypothesis is mathematically explored via a heterogeneous model.
Methods and Results:  A heat-sensitive and a heat-resistant subpopulation are considered. A large fraction of the population is inactivated, while the remaining smaller fraction is able to resist (or adapt to) the inimical temperature and grows. A heterogeneous model that encloses a growth model (resistant population) and an inactivation model (sensitive population) is used to describe the global population dynamics. Most experimental data can be predicted when taking parameter uncertainty via Monte Carlo simulation into account.
Conclusions:  The heterogeneous model accurately describes disturbed growth curves at superoptimal temperatures, except for high initial cell densities.
Significance and Impact of the Study:  This study strengthens the hypothesis of the existence of a (small) heat-resistant subpopulation in typical inoculum cultures of E. coli K12 MG1655.  相似文献   

4.
Since high hydrostatic pressure is becoming increasingly important in modern food preservation, its potential effects on microorganisms need to be thoroughly investigated. In this context, mild pressures (<200 MPa) have recently been shown to induce an SOS response in Escherichia coli MG1655. Due to this response, we observed a RecA- and LexA-dependent induction of lambda prophage upon treating E. coli lysogens with sublethal pressures. In this report, we extend this observation to lambdoid Shiga toxin (Stx)-converting bacteriophages in MG1655, which constitute an important virulence trait in Stx-producing E. coli strains (STEC). The window of pressures capable of inducing Stx phages correlated well with the window of bacterial survival. When pressure treatments were conducted in whole milk, which is known to promote bacterial survival, Stx phage induction could be observed at up to 250 MPa in E. coli MG1655 and at up to 300 MPa in a pressure-resistant mutant of this strain. In addition, we found that the intrinsic pressure resistance of two types of Stx phages was very different, with one type surviving relatively well treatments of up to 400 MPa for 15 min at 20 degrees C. Interestingly, and in contrast to UV irradiation or mitomycin C treatment, pressure was not able to induce Stx prophage or an SOS response in several natural Stx-producing STEC isolates.  相似文献   

5.
The specific aims of this research were to evaluate the combined effects of ethanol and high-pressure homogenization at different temperatures on cell viability in Saccharomyces cerevisiae and to study the induced modification of fatty acid composition. The decrease in viability was weak at 10 degrees C while a homogenization pressure over 1000 bar (1 bar = 100 kPa) induced a significant reduction in viability when the cells were incubated at 20 and 30 degrees C. The cell tolerance to pressure decreased with an increase in ethanol concentration and temperature. Ethanol, particularly intracellular ethanol accumulated by S. cerevisiae, played an important role in the response to homogenization pressure and in modification of the cell fatty acid composition. In fact, an unusually elevated accumulation of ethyl esters in lipid extracts of yeast cells subjected to high homogenization pressure, especially in the presence of exogenous ethanol and at 30 degrees C, was observed. Moreover, only unsaturated and traces of short chain fatty acids were esterified with ethanol.  相似文献   

6.
7.
Inactivation of Bacillus cereus spores during cooling (10 degrees C/h) from 90 degrees C occurred in two phases. One phase occurred during cooling from 90 to 80 degrees C; the second occurred during cooling from 46 to 38 degrees C. In contrast, no inactivation occurred when spores were cooled from a maximum temperature of 80 degrees C. Inactivation of spores at a constant temperature of 45 degrees C was induced by initial heat treatments from 80 to 90 degrees C. The higher temperatures accelerated the rate of inactivation. Germination of spores was required for 45 degrees C inactivation to occur; however, faster germination was not the cause of accelerated inactivation of spores receiving higher initial heat treatments. Repair of possible injury was not observed in Trypticase soy broth (BBL Microbiology Systems), peptone, beef extract, starch, or L-alanine at 30 or 35 degrees C. Microscopic evaluation of spores outgrowing at 45 degrees C revealed that when inactivation occurred, outgrowth halted at the swelling stage. Inhibition of protein synthesis by chloramphenicol at the optimum temperature also stopped outgrowth at swelling; thus protein synthesis may play a role in the 45 degree C inactivation mechanism.  相似文献   

8.
Inactivation of Bacillus cereus spores during cooling (10 degrees C/h) from 90 degrees C occurred in two phases. One phase occurred during cooling from 90 to 80 degrees C; the second occurred during cooling from 46 to 38 degrees C. In contrast, no inactivation occurred when spores were cooled from a maximum temperature of 80 degrees C. Inactivation of spores at a constant temperature of 45 degrees C was induced by initial heat treatments from 80 to 90 degrees C. The higher temperatures accelerated the rate of inactivation. Germination of spores was required for 45 degrees C inactivation to occur; however, faster germination was not the cause of accelerated inactivation of spores receiving higher initial heat treatments. Repair of possible injury was not observed in Trypticase soy broth (BBL Microbiology Systems), peptone, beef extract, starch, or L-alanine at 30 or 35 degrees C. Microscopic evaluation of spores outgrowing at 45 degrees C revealed that when inactivation occurred, outgrowth halted at the swelling stage. Inhibition of protein synthesis by chloramphenicol at the optimum temperature also stopped outgrowth at swelling; thus protein synthesis may play a role in the 45 degree C inactivation mechanism.  相似文献   

9.
Carbon fluxes through main pathways of glucose utilization in Escherichia coli cells--glycolysis, pentose phosphate pathway (PPP), and Enther-Doudoroff pathway (EDP)--were studied. Their ratios were analyzed in E. coli strains MG1655, MG1655(edd-eda), MG1655(zwf, edd-eda), and MG1655(pgi, edd-eda). It was shown that the carbon flux through glycolysis was the main route of glucose utilization, averaging ca. 80%. Inactivation of EDP did not affect growth parameters. Nevertheless, it altered carbon fluxes through the tricarboxylic acid cycles and energy metabolism in the cell. Inactivation of PPP decreased growth rate to a lesser degree than glycolysis inactivation.  相似文献   

10.
The effect of a high-pressure carbonation treatment on the change in quality of sake during storage was investigated. Measurements of the amino acidity and isovaleraldehyde content of carbonated sake (20 MPa pressure at 40, 45 and 50 degrees C for 7, 21 and 33 min, respectively) as well as of heat-treated sake (reaching temperature of 65 degrees C and immediately cooled) were almost unchanged during storage at 3 and 20 degrees C. Glucose in the sake subjected to these treatments was retained at an almost constant under the same storage conditions, except for the sake carbonated at 40 degrees C and stored at 20 degrees C. In contrast, the amino acidity, and glucose and isovaleraldehyde contents of non-pasteurized (fresh) sake increased during storage at both temperatures. The sake samples subjected to the carbonation treatment and heat treatment both gave better sensory scores than the fresh sake sample after 6 month of storage at 3 and 20 degrees C, especially at 3 degrees C for the flavor. These results suggest that the high-pressure carbonation treatment is an effective new technique for preserving the quality of sake.  相似文献   

11.
Murine norovirus (strain MNV-1), a propagable norovirus, was evaluated for susceptibility to high-pressure processing. Experiments with virus stocks in Dulbecco's modified Eagle medium demonstrated that at room temperature (20 degrees C) the virus was inactivated over a pressure range of 350 to 450 MPa, with a 5-min, 450-MPa treatment being sufficient to inactivate 6.85 log(10) PFU of MNV-1. The inactivation of MNV-1 was enhanced when pressure was applied at an initial temperature of 5 degrees C; a 5-min pressure treatment of 350 MPa at 30 degrees C inactivated 1.15 log(10) PFU of virus, while the same treatment at 5 degrees C resulted in a reduction of 5.56 log(10) PFU. Evaluation of virus inactivation as a function of treatment times ranging from 0 to 150 s and 0 to 900 s at 5 degrees C and 20 degrees C, respectively, indicated that a decreasing rate of inactivation with time was consistent with Weibull or log-logistic inactivation kinetics. The inactivation of MNV-1 directly within oyster tissues was demonstrated; a 5-min, 400-MPa treatment at 5 degrees C was sufficient to inactivate 4.05 log(10) PFU. This work is the first demonstration that norovirus can be inactivated by high pressure and suggests good prospects for inactivation of nonpropagable human norovirus strains in foods.  相似文献   

12.
The Mrr protein of Escherichia coli is a laterally acquired Type IV restriction endonuclease with specificity for methylated DNA. While Mrr nuclease activity can be elicited by high-pressure stress in E. coli MG1655, its (over)expression per se does not confer any obvious toxicity. In this study, however, we discovered that Mrr of E. coli MG1655 causes distinct genotoxicity when expressed in Salmonella typhimurium LT2. Genetic screening enabled us to contribute this toxicity entirely to the presence of the endogenous Type III restriction modification system (StyLTI) of S. typhimurium LT2. The StyLTI system consists of the Mod DNA methyltransferase and the Res restriction endonuclease, and we revealed that expression of the LT2 mod gene was sufficient to trigger Mrr activity in E. coli MG1655. Moreover, we could demonstrate that horizontal acquisition of the MG1655 mrr locus can drive the loss of endogenous Mod functionality present in S. typhimurium LT2 and E. coli ED1a, and observed a strong anti-correlation between close homologues of MG1655 mrr and LT2 mod in the genome database. This apparent evolutionary antagonism is further discussed in the light of a possible role for Mrr as defense mechanism against the establishment of epigenetic regulation by foreign DNA methyltransferases.  相似文献   

13.
Extracted tomato polygalacturonase was purified by cation-exchange chromatography (and gel filtration) and characterized for molar mass, isoelectric point, as well as optimal pH for polygalacturonase activity. The enzymatic reaction of purified tomato polygalacturonase on polygalacturonic acid as substrate was investigated during a combined high-pressure/temperature treatment in a temperature range of 25 degrees to 80 degrees C and in a pressure range of 0.1 to 500 MPa at pH 4.4 (the pH of tomato-based products). The optimal temperature for initial tomato polygalacturonase activity in the presence of polygalacturonic acid at atmospheric pressure is about 55 degrees to 60 degrees C. The optimal temperature for initial tomato polygalacturonase activity during processing shifted to lower values at elevated pressure as compared with atmospheric pressure, and the catalytic activity of pure tomato polygalacturonase decreased with increasing pressure, which was mostly pronounced at higher temperatures. The elution profiles of the degradation products on high-performance anion-exchange chromatography indicated that for both thermal and high-pressure treatment all oligomers were present in very small amounts in the initial stage of polygalacturonase activity. The amounts of monomer and small oligomers increased with increasing incubation times, whereas the amount of larger oligomers decreased due to further degradation.  相似文献   

14.
We have studied inactivation of four strains each of Escherichia coli and Listeria innocua in milk by the combined use of high hydrostatic pressure and the lactoperoxidase-thiocyanate-hydrogen peroxide system as a potential mild food preservation method. The lactoperoxidase system alone exerted a bacteriostatic effect on both species for at least 24 h at room temperature, but none of the strains was inactivated. Upon high-pressure treatment in the presence of the lactoperoxidase system, different results were obtained for E. coli and L. innocua. For none of the E. coli strains did the lactoperoxidase system increase the inactivation compared to a treatment with high pressure alone. However, a strong synergistic interaction of both treatments was observed for L. innocua. Inactivation exceeding 7 decades was achieved for all strains with a mild treatment (400 MPa, 15 min, 20 degrees C), which in the absence of the lactoperoxidase system caused only 2 to 5 decades of inactivation depending on the strain. Milk as a substrate was found to have a considerable effect protecting E. coli and L. innocua against pressure inactivation and reducing the effectiveness of the lactoperoxidase system under pressure on L. innocua. Time course experiments showed that L. innocua counts continued to decrease in the first hours after pressure treatment in the presence of the lactoperoxidase system. E. coli counts remained constant for at least 24 h, except after treatment at the highest pressure level (600 MPa, 15 min, 20 degrees C), in which case, in the presence of the lactoperoxidase system, a transient decrease was observed, indicating sublethal injury rather than true inactivation.  相似文献   

15.
A random library of Escherichia coli MG1655 genomic fragments fused to a promoterless green fluorescent protein (GFP) gene was constructed and screened by differential fluorescence induction for promoters that are induced after exposure to a sublethal high hydrostatic pressure stress. This screening yielded three promoters of genes belonging to the heat shock regulon (dnaK, lon, clpPX), suggesting a role for heat shock proteins in protection against, and/or repair of, damage caused by high pressure. Several further observations provide additional support for this hypothesis: (i). the expression of rpoH, encoding the heat shock-specific sigma factor sigma(32), was also induced by high pressure; (ii). heat shock rendered E. coli significantly more resistant to subsequent high-pressure inactivation, and this heat shock-induced pressure resistance followed the same time course as the induction of heat shock genes; (iii). basal expression levels of GFP from heat shock promoters, and expression of several heat shock proteins as determined by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins extracted from pulse-labeled cells, was increased in three previously isolated pressure-resistant mutants of E. coli compared to wild-type levels.  相似文献   

16.
Using leaderless alkaline phosphatase as a probe, it was demonstrated that pressure treatment induces endogenous intracellular oxidative stress in Escherichia coli MG1655. In stationary-phase cells, this oxidative stress increased with the applied pressure at least up to 400 MPa, which is well beyond the pressure at which the cells started to become inactivated (200 MPa). In exponential-phase cells, in contrast, oxidative stress increased with pressure treatment up to 150 MPa and then decreased again, together with the cell counts. Anaerobic incubation after pressure treatment significantly supported the recovery of MG1655, while mutants with increased intrinsic sensitivity toward oxidative stress (katE, katF, oxyR, sodAB, and soxS) were found to be more pressure sensitive than wild-type MG1655. Furthermore, mild pressure treatment strongly sensitized E. coli toward t-butylhydroperoxide and the superoxide generator plumbagin. Finally, previously described pressure-resistant mutants of E. coli MG1655 displayed enhanced resistance toward plumbagin. In one of these mutants, the induction of endogenous oxidative stress upon high hydrostatic pressure treatment was also investigated and found to be much lower than in MG1655. These results suggest that, at least under some conditions, the inactivation of E. coli by high hydrostatic pressure treatment is the consequence of a suicide mechanism involving the induction of an endogenous oxidative burst.  相似文献   

17.
李宗军 《微生物学报》2005,45(3):426-430
通过对大肠杆菌生长温度、膜脂肪酸组成和压力抗性之间关系研究发现,10℃培养,对数期细胞有最大的压力抗性,随着培养温度的升高直到4 5℃,压力抗性呈下降的趋势;相反,10℃培养,稳定期的细胞对压力最敏感,随着培养温度的升高,压力抗性呈增加趋势,30~37℃时达到最大,之后到4 5℃有下降。对数期和稳定期细胞膜脂中不饱和脂肪酸的组成随温度的上升而下降,这与从全细胞中抽提的磷脂的熔点密切相关。因此,对数期细胞压力抗性随着膜流动性的增大而升高;但稳定期细胞,膜流动性与压力抗性之间不存在简单的对应变化关系  相似文献   

18.
The objective of this study was to determine the effect of high pressure (HP) on the inactivation of microbial contaminants in Cheddar cheese (Escherichia coli K-12, Staphylococcus aureus ATCC 6538, and Penicillium roqueforti IMI 297987). Initially, cheese slurries inoculated with E. coli, S. aureus, and P. roqueforti were used as a convenient means to define the effects of a range of pressures and temperatures on the viability of these microorganisms. Cheese slurries were subjected to pressures of 50 to 800 MPa for 20 min at temperatures of 10, 20, and 30 degrees C. At 400 MPa, the viability of P. roqueforti in cheese slurry decreased by >2-log-unit cycles at 10 degrees C and by 6-log-unit cycles at temperatures of 20 and 30 degrees C. S. aureus and E. coli were not detected after HP treatments in cheese slurry of >600 MPa at 20 degrees C and >400 MPa at 30 degrees C, respectively. In addition to cell death, the presence of sublethally injured cells in HP-treated slurries was demonstrated by differential plating using nonselective agar incorporating salt or glucose. Kinetic experiments of HP inactivation demonstrated that increasing the pressure from 300 to 400 MPa resulted in a higher degree of inactivation than increasing the pressurization time from 0 to 60 min, indicating a greater antimicrobial impact of pressure. Selected conditions were subsequently tested on Cheddar cheese by adding the isolates to cheese milk and pressure treating the resultant cheeses at 100 to 500 MPa for 20 min at 20 degrees C. The relative sensitivities of the isolates to HP in Cheddar cheese were similar to those observed in the cheese slurry, i.e., P. roqueforti was more sensitive than E. coli, which was more sensitive than S. aureus. The organisms were more sensitive to pressure in cheese than slurry, especially with E. coli. On comparison of the sensitivities of the microorganisms in a pH 5.3 phosphate buffer, cheese slurry, and Cheddar cheese, greatest sensitivity to HP was shown in the pH 5.3 phosphate buffer by S. aureus and P. roqueforti while greatest sensitivity to HP by E. coli was exhibited in Cheddar cheese. Therefore, the medium in which the microorganisms are treated is an important determinant of the level of inactivation observed.  相似文献   

19.
Effects of thermoradiation on bacteria.   总被引:2,自引:2,他引:0       下载免费PDF全文
A 60Co source was used to determine the effects of thermoradiation on Achromobacter aquamarinus, Staphylococcus aureus, and vegetative and spore cells of Bacillus subtilis var. globigii. The rate of inactivation of these cultures, except vegetative-cell populations of B. subtilis, was exponential and in direct proportion to temperature. The D10 (dose that inactivates 90% of the microbial population) value for A. aquamarinus was 8.0 Krad at 25 degrees C and 4.9 Krad at 35 degrees C. For S. aureus, D10 was 9.8 and 5.3 Krad at 35 and 45 degrees C, respectively. Vegetative cells of B. subtilis demonstrated a rapid initial inactivation followed by a steady but decreased exponential rate. The D10 at 25 degrees C was 10.3 Krad, but at 35 and 45 degrees C this value was 6.2 and 3.8 Krad, respectively. Between 0 and 95 Krad, survival curves for B. subtilis spores at 75 degrees C showed slight inactivation, increasing in rat at and above 85 degrees C. The D10 values for spores at 85 and 90 degrees C were 129 and 92 Krad, respectively. Significant synergism between heat and irradiation was noted at 35 degrees C for A. aquamarinus and 45 degrees C for S. aureus. The presence of 0.1 mM cysteine in suspending media afforded protection to both cultures at these critical temperatures. On the other hand, cysteine sensitized B. subtilis spores at radiation doses greater than 100 Krad. The combined effect of heat and irradiation was more destructive to bacteria than either method alone.  相似文献   

20.
The relationship among growth temperature, membrane fatty acid composition, and pressure resistance was examined in Escherichia coli NCTC 8164. The pressure resistance of exponential-phase cells was maximal in cells grown at 10 degrees C and decreased with increasing growth temperatures up to 45 degrees C. By contrast, the pressure resistance of stationary-phase cells was lowest in cells grown at 10 degrees C and increased with increasing growth temperature, reaching a maximum at 30 to 37 degrees C before decreasing at 45 degrees C. The proportion of unsaturated fatty acids in the membrane lipids decreased with increasing growth temperature in both exponential- and stationary-phase cells and correlated closely with the melting point of the phospholipids extracted from whole cells examined by differential scanning calorimetry. Therefore, in exponential-phase cells, pressure resistance increased with greater membrane fluidity, whereas in stationary-phase cells, there was apparently no simple relationship between membrane fluidity and pressure resistance. When exponential-phase or stationary-phase cells were pressure treated at different temperatures, resistance in both cell types increased with increasing temperatures of pressurization (between 10 and 30 degrees C). Based on the above observations, we propose that membrane fluidity affects the pressure resistance of exponential- and stationary-phase cells in a similar way, but it is the dominant factor in exponential-phase cells whereas in stationary-phase cells, its effects are superimposed on a separate but larger effect of the physiological stationary-phase response that is itself temperature dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号