首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
外泌体是由细胞分泌到胞外的囊泡状小体,体内多种细胞可以分泌外泌体,来源于树突状细胞(DC)和肿瘤细胞的外泌体表面表达MHC分子和抗原肽,体内外实验证明其具有抗肿瘤的作用,因此外泌体作为抗肿瘤疫苗被广泛研究。该文介绍外泌体的发现、蛋白质组成、体内抗肿瘤的机制,以及DC与肿瘤来源的外泌体的基础及临床研究。  相似文献   

2.
外泌体由脂质双分子层构成,内含多种生物分子,如蛋白质、核酸、糖类等,具有调节生命活动的作用,其蛋白质组分也可反映分泌细胞状态。糖基化是一种常见的蛋白质翻译后修饰形式,糖基化蛋白对于维持细胞稳态、细胞间互作等生理功能具有重要作用。近年来,有关于外泌体的研究大多关注外泌体核酸成分如miRNA、mRNA、lncRNA等的功能。外泌体膜蛋白也含有丰富的糖链,且具有重要的病理生理意义。本文着重介绍外泌体糖基化的结构、研究方法、在肿瘤等疾病中的分子功能以及在疾病诊断、治疗中的临床应用和前景。外泌体糖基化研究将随着技术的革新不断深入,有望成为多种疾病临床诊疗的重要手段。  相似文献   

3.
外泌体是晚期内体出芽形成的由脂质双分子层包裹的纳米级胞外小泡,几乎所有细胞均可主动分泌。外泌体能够有效地将所携带的具有生物活性的蛋白质、脂质以及核酸运输至不同的受体细胞,从而改变受体细胞的生物活动。对于外泌体在肿瘤中功能及应用的研究才刚刚起步,多种证据表明外泌体参与了肿瘤形成、肿瘤血管形成、肿瘤耐药性、肿瘤免疫逃逸以及肿瘤转移等多个肿瘤相关进程。外泌体不仅有可能作为载体安全、有效地运输药物,还可作为肿瘤的生物标记与治疗靶点参与到肿瘤的诊治中。本文对目前外泌体及其在肿瘤中的功能与应用的主要研究进展进行总结。  相似文献   

4.
外泌体是体内几乎所有细胞分泌的具有双层脂质膜结构的纳米级小囊泡。外泌体大小均匀,平均直径为40~120 nm,存在于所有体液中。外泌体曾一度被认为是细胞成熟过程中清除废弃细胞器的‘垃圾袋’。但近年研究显示:外泌体含有丰富的来源于‘供体细胞’的信号分子,如蛋白质、DNA、mRNA、miRNA以及lncRNA等。当外泌体与‘受体细胞’融合时,这些信号分子便被运送到‘受体细胞’,从而实现细胞 细胞之间的通讯,影响‘受体细胞’的生理病理过程。虽然外泌体的研究目前主要集中在癌症等疾病的预防、诊断与治疗中,但是越来越多的研究显示,外泌体在心血管系统的生理及病理过程中同样发挥着重要作用。本文将对外泌体的起源、分离与纯化方法及外泌体介导的‘细胞 细胞’之间的通讯机制进行综述,并重点论述利用基因工程技术对外泌体进行靶向运输的方法及靶向外泌体运送在心血管疾病治疗中的应用。  相似文献   

5.
肿瘤细胞能够通过多种机制抵御免疫防御或药物的抗肿瘤作用.近年研究发现,外泌体能够直接介导癌症的进展和远端转移灶的形成.更为重要的是,在肿瘤免疫微环境中,肿瘤来源外泌体不仅能够抑制树突状细胞(DC)、巨噬细胞、T细胞、NK细胞等免疫细胞功能,还能促进骨髓来源的抑制性细胞(MDSC)、调节性T细胞(Treg)等的免疫抑制功能,进而降低抗肿瘤免疫应答过程,帮助肿瘤细胞逃避机体免疫细胞识别.本文将概述肿瘤外泌体及其携带的关键介质分子在介导肿瘤免疫逃逸和耐受过程中扮演的角色,并对这一研究领域的最新进展作一综述.  相似文献   

6.
外泌体是一种包含了复杂RNA和蛋白质的膜性囊泡,其主要来源于细胞内溶酶体微粒内陷形成的多囊泡体,经多囊泡体外膜与细胞膜融合后释放到胞外基质中。外泌体在肿瘤微环境中介导细胞间通讯,其功能取决于来源的细胞类型。环状RNA是一类由前体mRNA反向剪接生成的非编码RNA,在外泌体中富集且稳定表达。外泌体环状RNA在疾病中发挥了重要的调控作用,其作为肿瘤标志物和治疗靶点的临床应用前景与价值现已成为研究热点。本文就外泌体环状RNA在泌尿系统肿瘤中的研究进展作一综述。  相似文献   

7.
外泌体是直径为40~130 nm的纳米级囊泡结构,其中包含有大量的蛋白质、核酸和脂质等,在细胞间物质信息传递过程中发挥重要的作用。与正常细胞相比,肿瘤细胞释放更多的外泌体,并且其中所包含的一系列蛋白质和核酸组分(包括mi RNAs)在调节肿瘤微环境、促进肿瘤的转移侵袭过程中起到了关键的作用。该文重点介绍了由外泌体所介导的整合蛋白、表皮生长因子受体和mi RNAs等分子在细胞间的转运对于肿瘤转移和侵袭的影响,并展望了外泌体在肿瘤的诊断和治疗方面的应用前景。随着研究的深入,通过外泌体建立有效的早期诊断体系和诊疗方案将为肿瘤的治疗提供新的思路和方法。  相似文献   

8.
外泌体可将其内容物蛋白质、脂类、RNA、循环DNA等生物活性分子由供体细胞转运至受体细胞,对细胞与细胞间的通讯发挥重要调控作用。肿瘤细胞可以主动释放包括外泌体在内的胞外囊泡进入周围微环境。血管为肿瘤的生长提供氧气和营养物质,因此血管新生是肿瘤生长所必需的。研究发现,蛋白或非编码RNA在不同肿瘤细胞衍生的外泌体中存在特异性表达的现象。肿瘤外泌体将其内含的非编码RNA以及蛋白转运至内皮细胞,上调促血管新生因子的表达,进而提高内皮细胞的活性,促进其增殖、迁移和管腔形成。  相似文献   

9.
外泌体是由细胞分泌的直径在30~100 nm之间的微小囊泡状结构,内含来源于细胞相关的蛋白质与核苷酸等生物分子。外泌体可由几乎所有类型的细胞分泌,并且在组织细胞生理和病理情况下皆可持续分泌,存在于多种体液当中。目前,外泌体作为细胞间通讯的新途径和作为疾病诊断的生物标记方面取得瞩目的研究进展。本文从外泌体的组成特征及其生物学作用进行了综述,重点介绍了外泌体作为细胞通讯的新途径和内含的蛋白质和核苷酸作为一种新型的生物标记物在疾病诊断和临床方面的应用潜力,还对外泌体在生命科学研究领域的潜在作用及其存在的问题进行了展望。  相似文献   

10.
肿瘤微环境参与了癌症的发生、发展和对治疗的反应,近年来研究发现外泌体在肿瘤微环境中发挥重要作用。外泌体(exosomes)是一类直径30~100nm的囊泡小体,包含蛋白质,脂类和功能性RNA分子等。肿瘤来源的外泌体(cancer cell derived exosomes,CCEs)是肿瘤微环境中的重要成员,可以促使成纤维细胞和间质细胞向肌成纤维细胞分化,重塑细胞外基质,诱导上皮间质转化(epithelial mesenchymal transition,EMT),帮助肿瘤细胞免疫逃逸,引发血管生成,从而促进肿瘤的生长和转移。因此,基于肿瘤微环境中外泌体的疗法为肿瘤治疗开辟了新的途径,如干预外泌体的合成或分泌抑制肿瘤转移,作为药物载体转运各种抗癌药物(mi RNAs和si RNAs等)以及在免疫治疗中避免被免疫系统识别和清除等。  相似文献   

11.
外泌体是细胞分泌的一种纳米级囊泡结构,在血液、唾液、尿液等多种体液中均有分布.作为一类重要的细胞间通信分子,外泌体含有多种具有生物活性的成分,可通过多种方式在人体中发挥调节作用.目前在多种类型的细胞中均发现外泌体的存在,而肿瘤细胞来源的外泌体由于其本身的特性和功能特点,可通过微环境介导肿瘤细胞的增生、血管形成和免疫耐受,并可通过介导上皮-间质转化(epithelial-mesenchymal transition, EMT)
和胞内药物排斥反应等增加肿瘤细胞的化疗抵抗能力.同时,因其含有肿瘤细胞所分泌的特异性成分,因而可通过对外泌体中相关分子改变的检测,对疾病进行诊断和监测,并可为临床个体化用药提供新思路.  相似文献   

12.
Exosome-based immunotherapy   总被引:24,自引:0,他引:24  
Exosomes are small membrane vesicles originating from late endosomes and secreted by hematopoietic and epithelial cells in culture. Exosome proteic and lipid composition is unique and might shed some light into exosome biogenesis and function. Exosomes secreted from professional antigen-presenting cells (i.e., B lymphocytes and dendritic cells) are enriched in MHC class I and II complexes, costimulatory molecules, and hsp70–90 chaperones, and have therefore been more extensively studied for their immunomodulatory capacities in vitro and in vivo. This review will present the main biological features pertaining to tumor or DC-derived exosomes, will emphasize their immunostimulatory function, and will discuss their implementation in cancer immunotherapy.Abbreviations APC antigen-presenting cell - ASI active specific immunotherapy - CTL cytotoxic T lymphocyte - DC dendritic cell - FDC follicular dendritic cell - MD-DC monocyte-derived dendritic cell - GMP good manufacturing procedure - HLA human leukocyte antigen - HSP heat shock protein - MHC major histocompatibility complex - MVB multivesicular body - ExAs ascitis-derived exosomes - DEX DC-derived exosome - TEX tumor cell–derived exosome This work was presented at the first Cancer Immunology and Immunotherapy Summer School, 8–13 September 2003, Ionian Village, Bartholomeio, Peloponnese, Greece.  相似文献   

13.
Tumor cells utilize different strategies to communicate with neighboring tissues for facilitating tumor progression and invasion, one of these strategies has been shown to be the release of exosomes. Exosomes are small nanovesicles secreted by all kind of cells in the body, especially cancer cells, and mediate cell to cell communications. Exosomes play an important role in cancer invasiveness by harboring various cargoes that could accelerate angiogenesis. Here first, we will present an overview of exosomes, their biology, and their function in the body. Then, we will focus on exosomes derived from tumor cells as tumor angiogenesis mediators with a particular emphasis on the underlying mechanisms in various cancer origins. Also, exosomes derived from stem cells and tumor-associated macrophages will be discussed in this regard. Finally, we will discuss the novel therapeutic strategies of exosomes as drug delivery vehicles against angiogenesis.  相似文献   

14.
Cells use secreted signals (e.g. chemokines and growth factors) and sophisticated vehicles such as argosomes, cytonemes, tunneling nanotubes and exosomes to relay important information to other cells, often over large distances. Exosomes, 30-100-nm intraluminal vesicles of multivesicular bodies (MVB) released upon exocytic fusion of the MVB with the plasma membrane, are increasingly recognized as a novel mode of cell-independent communication. Exosomes have been shown to function in antigen presentation and tumor metastasis, and in transmitting infectious agents. However, little is known about the biogenesis and function of exosomes in polarized cells. In this review, we discuss new evidence suggesting that exosomes participate in the transport of morphogens and RNA, and thus influence cell polarity and developmental patterning of tissues.  相似文献   

15.
Exosomes are nano-vesicles secreted by a wide range of mammalian cell types. These vesicles are abundant in serum and other extracellular fluids and contain a large repertoire of proteins, mRNA and microRNA. Exosomes have been implicated in cell to cell communication, the transfer of infectious agents, and neurodegenerative diseases as well as tumor progression. However, the precise mechanisms by which they are internalized and/or secreted remain poorly understood. In order to follow their release and uptake in breast tumor cells in real time, cell-derived exosomes were tagged with green fluorescent protein (GFP)-CD63 while human serum exosomes were rhodamine isothiocynate-labeled. We show that detachment of adherent cells from various substrata induces a rapid and substantial secretion of exosomes, which then concentrate on the cell surfaces and mediate adhesion to various extracellular matrix proteins. We also demonstrate that disruption of lipid rafts with methyl-beta-cyclodextrin (MβCD) inhibits the internalization of exosomes and that annexins are essential for the exosomal uptake mechanisms. Taken together, these data suggest that cellular detachment is accompanied by significant release of exosomes while cellular adhesion and spreading are enhanced by rapid uptake and disposition of exosomes on the cell surface.  相似文献   

16.
Exosomes consist of vesicles that are secreted by several human cells, including tumor cells and neurons, and they are found in several biological fluids. Exosomes have characteristic protein and lipid composition, however, the results concerning glycoprotein composition and glycosylation are scarce. Here, protein glycosylation of exosomes from ovarian carcinoma SKOV3 cells has been studied by lectin blotting, NP-HPLC analysis of 2-aminobenzamide labeled glycans and mass spectrometry. An abundant sialoglycoprotein was found enriched in exosomes and it was identified by peptide mass fingerprinting and immunoblot as the galectin-3-binding protein (LGALS3BP). Exosomes were found to contain predominantly complex glycans of the di-, tri-, and tetraantennary type with or without proximal fucose and also high mannose glycans. Diantennary glycans containing bisecting N-acetylglucosamine were also detected. This work provides detailed information about glycoprotein and N-glycan composition of exosomes from ovarian cancer cells, furthermore it opens novel perspectives to further explore the functional role of glycans in the biology of exosomes.  相似文献   

17.
Exosomes are small membrane vesicles released by a variety of cell types. Exosomes contain genetic materials, such as mRNAs and microRNAs (miRNAs), implying that they may play a pivotal role in cell-to-cell communication. Mesenchymal stem cells (MSCs), which potentially differentiate into multiple cell types, can migrate to the tumor sites and have been reported to exert complex effects on tumor progression. To elucidate the role of MSCs within the tumor microenvironment, previous studies have suggested various mechanisms such as immune modulation and secreted factors of MSCs. However, the paracrine effects of MSC-derived exosomes on the tumor microenvironment remain to be explored. The hypothesis of this study was that MSC-derived exosomes might reprogram tumor behavior by transferring their molecular contents. To test this hypothesis, exosomes from MSCs were isolated and characterized. MSC-derived exosomes exhibited different protein and RNA profiles compared with their donor cells and these vesicles could be internalized by breast cancer cells. The results demonstrated that MSC-derived exosomes significantly down-regulated the expression of vascular endothelial growth factor (VEGF) in tumor cells, which lead to inhibition of angiogenesis in vitro and in vivo. Additionally, miR-16, a miRNA known to target VEGF, was enriched in MSC-derived exosomes and it was partially responsible for the anti-angiogenic effect of MSC-derived exosomes. The collective results suggest that MSC-derived exosomes may serve as a significant mediator of cell-to-cell communication within the tumor microenvironment and suppress angiogenesis by transferring anti-angiogenic molecules.  相似文献   

18.
Physiological and pathological impact of exosomes of adipose tissue   总被引:2,自引:0,他引:2       下载免费PDF全文
Exosomes are nanovesicles that have emerged as a new intercellular communication system for transporting proteins and RNAs; recent studies have shown that they play a role in many physiological and pathological processes such as immune regulation, cell differentiation, infection and cancer. By transferring proteins, mRNAs and microRNAs, exosomes act as information vehicles that alter the behavior of recipient cells. Compared to direct cell‐cell contact or secreted factors, exosomes can affect recipient cells in more efficient ways. In whole adipose tissues, it has been shown that exosomes exist in supernatants of adipocytes and adipose stromal cells (ADSCs). Adipocyte exosomes are linked to lipid metabolism and obesity‐related insulin resistance and exosomes secreted by ADSCs are involved in angiogenesis, immunomodulation and tumor development. This review introduces characteristics of exosomes in adipose tissue, summarizes their functions in different physiological and pathological processes and provides the further insight into potential application of exosomes to disease diagnosis and treatment.  相似文献   

19.
Yang C  Kim SH  Bianco NR  Robbins PD 《PloS one》2011,6(8):e22517
Exosomes are endosome-derived small membrane vesicles that are secreted by most cell types including tumor cells. Tumor-derived exosomes usually contain tumor antigens and have been used as a source of tumor antigens to stimulate anti-tumor immune responses. However, many reports also suggest that tumor-derived exosomes can facilitate tumor immune evasion through different mechanisms, most of which are antigen-independent. In the present study we used a mouse model of delayed-type hypersensitivity (DTH) and demonstrated that local administration of tumor-derived exosomes carrying the model antigen chicken ovalbumin (OVA) resulted in the suppression of DTH response in an antigen-specific manner. Analysis of exosome trafficking demonstrated that following local injection, tumor-derived exosomes were internalized by CD11c+ cells and transported to the draining LN. Exosome-mediated DTH suppression is associated with increased mRNA levels of TGF-β1 and IL-4 in the draining LN. The tumor-derived exosomes examined were also found to inhibit DC maturation. Taken together, our results suggest a role for tumor-derived exosomes in inducing tumor antigen-specific immunosuppression, possibly by modulating the function of APCs.  相似文献   

20.
Adoptive cell transfer (ACT), a form of cell-based immunotherapy that eliminates cancer by restoring and strengthening the body’s immune system, has revolutionized cancer treatment. ACT entails intravenous transfer of either tumor-resident or peripheral blood-modified immune cells into cancer patients to mediate anti-tumor response. Although these immune cells control and eradicate cancer via enhanced cytotoxicity against specific tumor antigens, several side effects have been frequently reported in clinical trials. Recently, exosomes, potential cell-free therapeutics, have emerged as an alternative to cell-based immunotherapies, due to their higher stability under same storage condition, lower risk of GvHD and CRS, and higher resistance to immunosuppressive tumor microenvironment. Exosomes, which are nano-sized lipid vesicles, are secreted by living cells, including immune cells. Exosomes contain proteins, lipids, and nucleic acids, and the functional role of each exosome is determined by the specific cargo derived from parental cells. Exosomes derived from cytotoxic effectors including T cells and NK cells exert anti-tumor effects via proteins such as granzyme B and FasL. In this mini-review, we describe the current understanding of the ACT and immune cell-derived exosomes and discuss the limitations of ACT and the opportunities for immune cell-derived exosomes as immune therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号