首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolically stable anaerobic enrichment cultures have been obtained from sediment samples contaminated with chlorophenolic compounds. Enrichment was carried out with esculin, esculetin, naringin, naringenin, fraxin, quercetin, and acetate in media with two sulfate concentrations. These cultures were used to examine the O-demethylation of 4,5,6-trichloroguaiacol and the dechlorination of 3,4,5-trichlorocatechol. Whereas O-demethylation was observed in all cultures, the occurrence of dechlorination was significantly more restricted. The presence of the carbohydrate moiety in the cultures enriched with the glycones repressed development of populations which were able to carry out dechlorination. Although sulfate at a concentration of 2 g/liter in the primary enrichments blocked the development of populations able to bring about dechlorination, addition of sulfate at this concentration did not inhibit dechlorination in cultures possessing this capability. Different dichlorocatechol isomers were produced under the various conditions, so that in view of the established resistance of some of these to further dechlorination, the ultimate fate of 3,4,5-trichlorocatechol in the natural environment remains partly unresolved. No enrichment culture containing a low sulfate concentration was able to dechlorinate either 2,4,5-trichlorophenol or 2,4,6-trichlorobenzoate.  相似文献   

2.
Metabolically stable anaerobic cultures obtained by enrichment with 5-bromovanillin, 5-chlorovanillin, catechin, and phloroglucinol were used to study dechlorination of chlorocatechols. A high degree of specificity in dechlorination was observed, and some chlorocatechols were appreciably more resistant to dechlorination than others: only 3,5-dichlorocatechol, 4,5-dichlorocatechol, 3,4,5-trichlorocatechol, and tetrachlorocatechol were dechlorinated, and not all of them were dechlorinated by the same consortium. 3,5-Dichlorocatechol produced 3-chlorocatechol, 4,5-dichlorocatechol produced 4-chlorocatechol, and 3,4,5-trichlorocatechol produced either 3,5-dichlorocatechol or 3,4-dichlorocatechol; tetrachlorocatechol produced only 3,4,6-trichlorocatechol. Incubation of uncontaminated sediments without additional carbon sources brought about dechlorination of 3,4,5-trichlorocatechol to 3,5-dichlorocatechol. O-demethylation of chloroguaiacols was generally accomplished by enrichment cultures, except that catechin enrichment was unable to O-demethylate tetrachloroguaiacol. None of the enrichments dechlorinated any of the polychlorinated phenols examined. The results suggested that dechlorination was not dependent on enrichment with or growth at the expense of chlorinated compounds and that it would be premature to formulate general rules for the structural dependence of the dechlorination reaction.  相似文献   

3.
Metabolically stable consortia of anaerobic bacteria obtained by enrichment of sediment samples with 3,4,5-trimethoxybenzoate (TMBA), 3,4,5-trihydroxybenzoate (gallate [GA]), or 5-chlorovanillin (CV) were used to study the anaerobic transformation of a series of chloroveratroles, chloroguaiacols, and chlorocatechols used as cosubstrates. Experiments were carried out with growing cultures, and the following pathways were demonstrated for metabolism of the growth substrates: (i) TMBA produced GA, which was further degraded without the formation of aromatic intermediates; (ii) GA formed pyrogallol, which was stable to further transformation; and (iii) CV was degraded by a series of steps involving de-O-methylation, oxidation of the aldehyde group, and decarboxylation to 3-chlorocatechol before ring cleavage. Mono-de-O-methylation of the cosubstrates occurred rapidly in the order 4,5,6-trichloroguaiacol greater than 3,4,5-trichloroguaiacol approximately 3,4,5-trichloroveratrole approximately tetrachloroveratrole greater than tetrachloroguaiacol and was concomitant with degradation of the growth substrates. For the polymethoxy compounds--chloroveratroles, 1,2,3-trichloro-4,5,6-trimethoxybenzene, and 4,5,6-trichlorosyringol--de-O-methylation took place sequentially. The resulting chlorocatechols were stable to further transformation until the cultures had exhausted the growth substrates; selective dechlorination then occurred with the formation of 3,5-dichlorocatechol from 3,4,5-trichlorocatechol and of 3,4,6-trichlorocatechol from tetrachlorocatechol. 2,4,5-, 2,4,6-, and 3,4,5-trichoroanisole and 2,3,4,5-tetrachloroanisole were de-O-methylated, but the resulting chlorophenols were resistant to dechlorination. These results extend those of a previous study with spiked sediment samples and their endogenous microflora and illustrate some of the transformations of chloroguaiacols and chlorocatechols which may be expected to occur in anaerobic sediments.  相似文献   

4.
Metabolically stable consortia of anaerobic bacteria obtained by enrichment of sediment samples with 3,4,5-trimethoxybenzoate (TMBA), 3,4,5-trihydroxybenzoate (gallate [GA]), or 5-chlorovanillin (CV) were used to study the anaerobic transformation of a series of chloroveratroles, chloroguaiacols, and chlorocatechols used as cosubstrates. Experiments were carried out with growing cultures, and the following pathways were demonstrated for metabolism of the growth substrates: (i) TMBA produced GA, which was further degraded without the formation of aromatic intermediates; (ii) GA formed pyrogallol, which was stable to further transformation; and (iii) CV was degraded by a series of steps involving de-O-methylation, oxidation of the aldehyde group, and decarboxylation to 3-chlorocatechol before ring cleavage. Mono-de-O-methylation of the cosubstrates occurred rapidly in the order 4,5,6-trichloroguaiacol greater than 3,4,5-trichloroguaiacol approximately 3,4,5-trichloroveratrole approximately tetrachloroveratrole greater than tetrachloroguaiacol and was concomitant with degradation of the growth substrates. For the polymethoxy compounds--chloroveratroles, 1,2,3-trichloro-4,5,6-trimethoxybenzene, and 4,5,6-trichlorosyringol--de-O-methylation took place sequentially. The resulting chlorocatechols were stable to further transformation until the cultures had exhausted the growth substrates; selective dechlorination then occurred with the formation of 3,5-dichlorocatechol from 3,4,5-trichlorocatechol and of 3,4,6-trichlorocatechol from tetrachlorocatechol. 2,4,5-, 2,4,6-, and 3,4,5-trichoroanisole and 2,3,4,5-tetrachloroanisole were de-O-methylated, but the resulting chlorophenols were resistant to dechlorination. These results extend those of a previous study with spiked sediment samples and their endogenous microflora and illustrate some of the transformations of chloroguaiacols and chlorocatechols which may be expected to occur in anaerobic sediments.  相似文献   

5.
Bacteria in anaerobic enrichment cultures that dechlorinated a range of chlorocatechols were used to examine the stability of endogenous chlorocatechols in a contaminated sediment sample and in interstitial water prepared from it. During incubation of the sediment sample for 450 days with or without added cells, there was a decrease in the concentration of solvent-extractable chlorocatechols but not in that of the total chlorocatechols, including sediment-associated components. In the presence of azide, the decrease in the concentrations of the former was eliminated or substantially decreased. Control experiments in which 3,4,5-trichlorocatechol was added to the sediment suspensions after 130 days showed that its dechlorination was accomplished not only by the added cells but also by the endemic microbial flora. It was concluded that the endogenous chlorocatechols in the sediment were not accessible to microorganisms with dechlorinating activity. On the other hand, microorganisms were apparently responsible for decreasing the solvent extractability of the chlorocatechols, and this effect decreased with increasing length of exposure time. Similar experiments carried out for 70 days with the sediment interstitial water showed that the chlorocatechols that were known to be associated with organic matter were also inaccessible to microbial dechlorination. Experiments with model compounds in which 4,5,6-trichloroguaiacol and tetrachloroguaiacol were covalently linked to C(2)-guaiacyl residues showed that these compounds were resistant to O demethylation or dechlorination during incubation with a culture having these activities. The only effect of microbial action was the quantitative reduction in 12 days of the C'1 keto group to an alcohol which was stable against further transformation for up to 65 days. The results of these experiments are consistent with the existence of chlorocatechols and chloroguaiacols in contaminated sediments and illustrate the cardinal significance of bioavailability in determining their recalcitrance to dechlorination and O demethylation, respectively. It is suggested that bioavailability is an important factor in determining the persistence of xenobiotics in natural ecosystems and that its omission represents a serious limitation in the interpretation of many laboratory experiments directed towards determining the persistence of xenobiotics in aquatic ecosystems.  相似文献   

6.
Bacteria in anaerobic enrichment cultures that dechlorinated a range of chlorocatechols were used to examine the stability of endogenous chlorocatechols in a contaminated sediment sample and in interstitial water prepared from it. During incubation of the sediment sample for 450 days with or without added cells, there was a decrease in the concentration of solvent-extractable chlorocatechols but not in that of the total chlorocatechols, including sediment-associated components. In the presence of azide, the decrease in the concentrations of the former was eliminated or substantially decreased. Control experiments in which 3,4,5-trichlorocatechol was added to the sediment suspensions after 130 days showed that its dechlorination was accomplished not only by the added cells but also by the endemic microbial flora. It was concluded that the endogenous chlorocatechols in the sediment were not accessible to microorganisms with dechlorinating activity. On the other hand, microorganisms were apparently responsible for decreasing the solvent extractability of the chlorocatechols, and this effect decreased with increasing length of exposure time. Similar experiments carried out for 70 days with the sediment interstitial water showed that the chlorocatechols that were known to be associated with organic matter were also inaccessible to microbial dechlorination. Experiments with model compounds in which 4,5,6-trichloroguaiacol and tetrachloroguaiacol were covalently linked to C2-guaiacyl residues showed that these compounds were resistant to O demethylation or dechlorination during incubation with a culture having these activities. The only effect of microbial action was the quantitative reduction in 12 days of the C′1 keto group to an alcohol which was stable against further transformation for up to 65 days. The results of these experiments are consistent with the existence of chlorocatechols and chloroguaiacols in contaminated sediments and illustrate the cardinal significance of bioavailability in determining their recalcitrance to dechlorination and O demethylation, respectively. It is suggested that bioavailability is an important factor in determining the persistence of xenobiotics in natural ecosystems and that its omission represents a serious limitation in the interpretation of many laboratory experiments directed towards determining the persistence of xenobiotics in aquatic ecosystems.  相似文献   

7.
Dechlorination studies were conducted using microbial cultures developed in a fluidized-bed reactor (FBR) that dechlorinates pentachlorophenol (PCP) to 3,4-dichlorophenol (3,4-DCP) and 4-monochlorophenol (4-MCP). Electron donor experiments demonstrated that lactate, propionate, and H2 can serve as electron donors for chlorophenol (CP) dechlorination in mixed, anaerobic, PCP-enriched cultures. Dechlorination did not proceed in the absence of an electron donor. Acetate, which resulted in little H2 production, was a poor electron donor. The results of inhibition studies using vancomycin and 2-bromoethanesulfonic acid implicate members of the domain bacteria in the dechlorination of CPs, whereas methanogens do not appear to be involved in dechlorination. Brief heat treatment (80°C for 90 min) of the FBR enrichment cultures implicated endospore formers in the dechlorination of CPs, primarily at the ortho position, where PCP was dechlorinated to 3,4,5-trichlorophenol (3,4,5-TCP) (the sole TCP detected) and subsequently to 3,4-DCP. Both lactate and H2 served as electron donors in the heat-and oxygen-treated cultures. In contrast, a lactate-fed anaerobic spread-plate enrichment culture exhibited solely meta-dechlorination, where PCP dechlorinated solely to 2,4,6-TCP. The separation of ortho- and meta-specific dechlorination reactions provides evidence that PCP dechlorination in the FBR enrichment culture was catalyzed by at least the following two separate groups of CP-dechlorinating bacteria: one meta-dechlorinating group and one primarily ortho-dechlorinating group.  相似文献   

8.
1,2-Dichloropropane (1,2-D), a widespread groundwater contaminant, can be reductively dechlorinated to propene by anaerobic bacteria. To shed light on the populations involved in the detoxification process, a comprehensive 16S rRNA gene-based bacterial community analysis of two enrichment cultures derived from geographically distinct locations was performed. Analysis of terminal restriction fragments, amplicons obtained with dechlorinator-specific PCR primers, and enumeration with quantitative real-time PCR as well as screening clone libraries all implied that Dehalococcoides populations were involved in 1,2-D dechlorination in both enrichment cultures. Physiological traits (e.g., dechlorination in the presence of ampicillin and a requirement for hydrogen as the electron donor) supported the involvement of Dehalococcoides populations in the dechlorination process. These findings expand the spectrum of chloroorganic compounds used by Dehalococcoides species as growth-supporting electron acceptors. The combined molecular approach allowed a comparison between different 16S rRNA gene-based approaches for the detection of Dehalococcoides populations.  相似文献   

9.
The transformation and toxicity of trichlorophenols (TCPs) were studied with a methanogenic enrichment culture derived from sewage sludge. Transformation of TCPs rapidly resumed after heating of the culture at *) degrees C for 1 h, suggesting that the dechlorinating bacteria are spore-forming anaerobes. 2,4,6-TCP was rapidly dechlorinated via 2,4-dichlorophenol to 4-chlorophenol. During the transformation of 2,4,6-TCP, the most probable number of dechlorinating bacteria increased by 4 orders of magnitude. The most extensive dechlorination was observed in media with complex carbon sources such as yeast extract, peptone, and Casamino Acids, but glucose, galactose, and lactose were also used by the consortium. Experiments using chloramphenicol indicated that the reductive dechlorination of 2,4,6-TCP was regulated by an inducible enzyme system. The highest initial concentration at which dechlorination of 2,4,6-TCP was observed was 400 microM. 2,4,5-TCP and 3,4,5-TCP were dechlorinated to, respectively, 3,4-dichlorophenol and 3-chlorophenol at initial concentrations of less than or equal to 40 microM. Toxicity for the acid-producing and methanogenic bacteria in the consortium was a function of chemical structure, as the inhibition of these activities increased from 2,4,6-TCP, via 2,4,5-TCP, to 3,4,5,-TCP.  相似文献   

10.
The transformation and toxicity of trichlorophenols (TCPs) were studied with a methanogenic enrichment culture derived from sewage sludge. Transformation of TCPs rapidly resumed after heating of the culture at *) degrees C for 1 h, suggesting that the dechlorinating bacteria are spore-forming anaerobes. 2,4,6-TCP was rapidly dechlorinated via 2,4-dichlorophenol to 4-chlorophenol. During the transformation of 2,4,6-TCP, the most probable number of dechlorinating bacteria increased by 4 orders of magnitude. The most extensive dechlorination was observed in media with complex carbon sources such as yeast extract, peptone, and Casamino Acids, but glucose, galactose, and lactose were also used by the consortium. Experiments using chloramphenicol indicated that the reductive dechlorination of 2,4,6-TCP was regulated by an inducible enzyme system. The highest initial concentration at which dechlorination of 2,4,6-TCP was observed was 400 microM. 2,4,5-TCP and 3,4,5-TCP were dechlorinated to, respectively, 3,4-dichlorophenol and 3-chlorophenol at initial concentrations of less than or equal to 40 microM. Toxicity for the acid-producing and methanogenic bacteria in the consortium was a function of chemical structure, as the inhibition of these activities increased from 2,4,6-TCP, via 2,4,5-TCP, to 3,4,5,-TCP.  相似文献   

11.
1,2-Dichloropropane (1,2-D), a widespread groundwater contaminant, can be reductively dechlorinated to propene by anaerobic bacteria. To shed light on the populations involved in the detoxification process, a comprehensive 16S rRNA gene-based bacterial community analysis of two enrichment cultures derived from geographically distinct locations was performed. Analysis of terminal restriction fragments, amplicons obtained with dechlorinator-specific PCR primers, and enumeration with quantitative real-time PCR as well as screening clone libraries all implied that Dehalococcoides populations were involved in 1,2-D dechlorination in both enrichment cultures. Physiological traits (e.g., dechlorination in the presence of ampicillin and a requirement for hydrogen as the electron donor) supported the involvement of Dehalococcoides populations in the dechlorination process. These findings expand the spectrum of chloroorganic compounds used by Dehalococcoides species as growth-supporting electron acceptors. The combined molecular approach allowed a comparison between different 16S rRNA gene-based approaches for the detection of Dehalococcoides populations.  相似文献   

12.
The addition of different concentrations of sodium bicarbonate had a profound effect on 2,3,4,5-chlorobiphenyl (2,3,4,5-CB) dechlorination in Hudson River sediment cultures. The most extensive dechlorination was observed in cultures to which 100 mg l(-1) bicarbonate was added. Cultures amended with 1000 mg l(-1) bicarbonate had the least extensive dechlorination, with 2,4-CB and 2,5-CB as predominant end-products. A significant loss of total chlorinated biphenyl mass was observed in cultures to which < or = 500 mg l(-1) bicarbonate was added, suggesting that degradation beyond chlorinated biphenyls occurred. The dynamics of acetate formation were different among the treatments, with high acetate concentrations detected throughout the 303-day experiment in cultures to which 1000 mg l(-1) bicarbonate had been added. Sodium bicarbonate addition also had a significant impact on bacterial community structure as detected by polymerase chain reaction-denaturant gradient gel electrophoresis (PCR-DGGE) of 16S rRNA gene fragments. Three putative polychlorinated biphenyl (PCB) dechlorinators were identified; one Dehalococcoides-like population was detected in all enrichment cultures, whereas two Dehalobacter-like populations were only detected in the enrichment cultures with the most extensive dechlorination. These results suggest that the availability of bicarbonate, and potentially sodium, may affect PCB dechlorination in Hudson River sediment and thus need to be taken into consideration when assessing the fate of PCBs or implementing bioremediation.  相似文献   

13.
A H(2)-based, denitrifying and sulfate-reducing membrane biofilm reactor (MBfR) was effective for removing 1,1,1-trichloroethane (TCA) and chloroform (CF) by reductive dechlorination. When either TCA or CF was first added to the MBfR, reductive dechlorination took place immediately and then increased over 3 weeks, suggesting enrichment for TCA- or CF-dechlorinating bacteria. Increasing the H(2) pressure increased the dechlorination rates of TCA or CF, and it also increased the rate of sulfate reduction. Increased sulfate loading allowed more sulfate reduction, and this competed with reductive dechlorination, particularly the second steps. The acceptor flux normalized by effluent concentration can be an efficient indicator to gauge the intrinsic kinetics of the MBfR biofilms for the different reduction reactions. The analysis of normalized rates showed that the kinetics for reductive-dechlorination reactions were slowed by reduced H(2) bio-availability caused by a low H(2) pressure or competition from sulfate reduction.  相似文献   

14.
Sulfate-reducing bacteria contribute considerably to the degradation of organic matter in sewage contaminated soils, particularly below leaking sewers. Molybdate as a specific inhibitor of sulfate reduction is known to be present in sewage. Its influence on sulfur isotope fractionation during sulfate reduction was explored in batch experiments with pure cultures of Desulfovibrio desulfuricans and with natural populations enriched from sewage-contaminated soil. Results with D. desulfuricans show that molybdate (0.1 mmol/l) caused a decrease of 6‰ in the isotope enrichment factor compared to an uninhibited control. The decrease in sulfur isotope fractionation may be explained by a depletion of ATP resulting in a lesser amount of activated sulfate available for sulfate reduction in the organism. Experiments carried out at 15 and 37°C reveal a decrease of about 4‰ in the isotope enrichment factor at the low temperature, which is attributed to limited uptake of sulfate. The sulfate-reducing enrichment cultures have fractionated sulfur isotopes to an extent that lies within the range of that produced by the pure cultures of Desulfovibrio desulfuricans (? = ?13.5‰). Furthermore, the results demonstrate the influence of bacterial growth on development of the isotope enrichment factor and its possible changes during a batch-type experiment.  相似文献   

15.
We studied the degradation of pentachlorophenol (PCP) under methanogenic and sulfate-reducing conditions with an anaerobic mixed culture derived from sewage sludge. The consortium degraded PCP via 2,3,4,5-tetrachlorophenol, 3,4,5-trichlorophenol, and 3,5-dichlorophenol and eventually accumulated 3-chlorophenol. Dechlorination of PCP and metabolites was inhibited in the presence of sulfate, thiosulfate, and sulfite. A decrease in the rate of PCP transformation was noted when the endogenous dissolved H2 was depleted below 0.11 μM in sulfate-reducing cultures. The effect on dechlorination observed with sulfate could be relieved by addition of molybdate, a competitive inhibitor of sulfate reduction. Addition of H2 reduced the inhibition observed with sulfuroxy anions. The inhibitory effect of sulfuroxy anions may be due to a competition for H2 between sulfate reduction and dechlorination. When cultured under methanogenic conditions, the consortium degraded several chlorinated and brominated phenols.  相似文献   

16.
A major obstacle in the implementation of the reductive dechlorination process at chloroethene-contaminated sites is the accumulation of the intermediate vinyl chloride (VC), a proven human carcinogen. To shed light on the microbiology involved in the final critical dechlorination step, a sediment-free, nonmethanogenic, VC-dechlorinating enrichment culture was derived from tetrachloroethene (PCE)-to-ethene-dechlorinating microcosms established with material from the chloroethene-contaminated Bachman Road site aquifer in Oscoda, Mich. After 40 consecutive transfers in defined, reduced mineral salts medium amended with VC, the culture lost the ability to use PCE and trichloroethene (TCE) as metabolic electron acceptors. PCE and TCE dechlorination occurred in the presence of VC, presumably in a cometabolic process. Enrichment cultures supplied with lactate or pyruvate as electron donor dechlorinated VC to ethene at rates up to 54 micromol liter(-1)day(-1), and dichloroethenes (DCEs) were dechlorinated at about 50% of this rate. The half-saturation constant (K(S)) for VC was 5.8 microM, which was about one-third lower than the concentrations determined for cis-DCE and trans-DCE. Similar VC dechlorination rates were observed at temperatures between 22 and 30 degrees C, and negligible dechlorination occurred at 4 and 35 degrees C. Reductive dechlorination in medium amended with ampicillin was strictly dependent on H(2) as electron donor. VC-dechlorinating cultures consumed H(2) to threshold concentrations of 0.12 ppm by volume. 16S rRNA gene-based tools identified a Dehalococcoides population, and Dehalococcoides-targeted quantitative real-time PCR confirmed VC-dependent growth of this population. These findings demonstrate that Dehalococcoides populations exist that use DCEs and VC but not PCE or TCE as metabolic electron acceptors.  相似文献   

17.
Anaerobic cultures capable of reductively dechlorinating 2,3,4,5-tetrachlorobiphenyl (CB) were enriched from three different sediments, one estuarine, one marine and one riverine. Two different electron donors were used in enrichments with the estuarine sediment (elemental iron or a mixture of fatty acids). The removal of doubly flanked meta and para chlorines to form 2,3,5-CB and 2,4,5-CB was observed in all cultures. Bacterial community analysis of PCR-amplified 16S rRNA gene fragments revealed different communities in these cultures, with the exception of one common population that showed a high phylogentic relatedness to Dehalococcoides species. No Dehalococcoides-like populations were ever detected in control cultures to which no PCBs were added. In addition, the dynamics of this Dehalococcoides-like population were strongly correlated with dechlorination. Subcultures of the estuarine sediment culture demonstrated that the Dehalococcoides-like population disappeared when dechlorination was inhibited with 2-bromoethanesulfonate or when 2,3,4,5-CB had been consumed. These results provide evidence that Dehalococcoides-like populations were involved in the removal of doubly flanked chlorines from 2,3,4,5-CB. Furthermore, the successful enrichment of these populations from geographically distant and geochemically distinct environments indicates the widespread presence of these PCB-dechlorinating, Dehalococcoides-like organisms.  相似文献   

18.
The extent of tetrachloroethene (PCE) dechlorination in two chemostats was evaluated as a function of hydraulic retention time (HRT). The inoculum of these chemostats was from an upflow anaerobic sludge blanket (UASB) reactor that rapidly converts PCE to vinyl chloride (VC) and ethene. When the HRT was 2.9 days, PCE was converted only to cis-dichloroethene (cDCE). When the HRT was 11 days, the end products were VC and ethene. Further studies showed that the dechlorinating microbial community in the UASB reactor contained two distinct populations, one of which converted PCE to cDCE and the other cDCE to VC and ethene. Methanogenic activity was very low in these cultures. The cDCE dechlorinating culture apparently has a lower growth rate than the PCE dechlorinating culture, and as a result, at a shorter HRT, the cDCE dechlorinating culture was washed out from the system leading to incomplete dechlorination of PCE. Both enrichment cultures used pyruvate or hydrogen as electron donors for dechlorination. Acetate was the carbon source (but not energy source) when hydrogen was used. Both cultures had undefined nutrient requirements and needed supplements of cell extract obtained from the mixed culture in the UASB reactor. However, the two cultures were different in their response to the addition of an inhibitor of methanogenesis (2-bromoethanesulfonate [BES]). BES inhibited the dechlorinating activity of the enriched cDCE dechlorinating culture, but had no influence on the PCE dechlorinating culture. Preliminary studies on BES inhibition are presented.  相似文献   

19.
In order to determine the effects of sulfate concentration on the anaerobic dechlorination of polychlorinated biphenyls, sediments spiked with Aroclor 1242 were made into slurries using media which had various sulfate concentrations ranging from 3 to 23 mM. The time course of dechlorination clearly demonstrated that dechlorination was inhibited at high concentration of sulfate due to less dechlorination of meta-substituted congeners. When the dechlorination patterns were analyzed by the calculation of Euclidean distance, the dechlorination pathway in the 3 mM sulfate samples was found to be different from that observed in the 13 mM samples, although the extent of dechlorination in these two samples was similar. It is possible that the dechlorination in the high sulfate concentration samples is inhibited by the suppression of growth of methanogen, which have been shown to be meta-dechlorinating microorganisms.  相似文献   

20.
Bacterial enrichment cultures developed with Baltimore Harbor (BH) sediments were found to reductively dechlorinate 2,3,5,6-tetrachlorobiphenyl (2,3,5,6-CB) when incubated in a minimal estuarine medium containing short-chain fatty acids under anaerobic conditions with and without the addition of sediment. Primary enrichment cultures formed both meta and ortho dechlorination products from 2,3,5,6-CB. The lag time preceding dechlorination decreased from 30 to less than 20 days as the cultures were sequentially transferred into estuarine medium containing dried, sterile BH sediment. In addition, only ortho dechlorination was observed following transfer of the cultures. Sequential transfer into medium without added sediment also resulted in the development of a strict ortho-dechlorinating culture following a lag of more than 100 days. Upon further transfer into the minimal medium without sediment, the lag time decreased to less than 50 days. At this stage all cultures, regardless of the presence of sediment, would produce 2,3,5-CB and 3,5-CB from 2,3,5,6-CB. The strict ortho-dechlorinating activity in the sediment-free cultures has remained stable for more than 1 year through several transfers. These results reveal that the classical microbial enrichment technique using a minimal medium with a single polychlorinated biphenyl (PCB) congener selected for ortho dechlorination of 2,3,5,6-CB. Furthermore, this is the first report of sustained anaerobic PCB dechlorination in the complete absence of soil or sediment.Anaerobic dechlorination of polychlorinated biphenyls (PCBs) has been demonstrated in situ and with laboratory microcosms containing sediment (reviewed in reference 1a). However, sustained PCB dechlorination has never been shown to occur in the absence of soil or sediments. Morris et al. (6) demonstrated a sediment requirement for the stimulation of PCB dechlorination within freshwater sediment slurries. Wu and Wiegel have recently described PCB-dechlorinating enrichments which required soil for the successful transfer of PCB-dechlorinating activity (9). In addition, no anaerobic microorganisms that dechlorinate PCBs have been isolated or characterized, and this may be due in part to the soil or sediment requirement. The inability to isolate dechlorinating organisms or maintain dechlorination without sediment has limited biogeochemical and physiological investigations into the mechanisms of PCB dechlorination.Dechlorination (ortho, meta, and para) of single PCB congeners has been observed following anaerobic incubation of Baltimore Harbor (BH) sediment under estuarine or marine conditions (2). While sediments from several sites within BH are contaminated with PCBs (1, 5), background contamination of sediment is not necessarily a prerequisite for the development of PCB dechlorination in laboratory microcosms. Wu et al. (8) recently demonstrated meta and ortho dechlorination of Aroclor 1260 when it was added to the same BH sediments. These results showed that more than one dechlorinating activity could be developed with these sediments. It has been proposed that discrete microbial populations are responsible for specific PCB dechlorinations (1a). Consistent with this idea, the ortho dechlorination observed with BH sediments may be catalyzed by discrete microbial populations. In addition, these organisms may be able to couple PCB dechlorination with growth. Therefore we have attempted to select for ortho PCB-dechlorinating organisms by enrichment under minimal conditions with high levels of 2,3,5,6-tetrachlorobiphenyl. We also speculated that given the proper conditions, a PCB-dechlorinating population could be maintained in an actively dechlorinating state in the absence of sediment. Here we report that a distinct PCB-dechlorinating activity, namely, ortho dechlorination, was selected for through sequential transfer initiated with sediments from BH and sustained in the absence of soil or sediment. This is the first report of sustained anaerobic PCB-dechlorinating activity in the total absence of sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号