首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of body size and temperature on population growth   总被引:1,自引:0,他引:1  
For at least 200 years, since the time of Malthus, population growth has been recognized as providing a critical link between the performance of individual organisms and the ecology and evolution of species. We present a theory that shows how the intrinsic rate of exponential population growth, rmax, and the carrying capacity, K, depend on individual metabolic rate and resource supply rate. To do this, we construct equations for the metabolic rates of entire populations by summing over individuals, and then we combine these population-level equations with Malthusian growth. Thus, the theory makes explicit the relationship between rates of resource supply in the environment and rates of production of new biomass and individuals. These individual-level and population-level processes are inextricably linked because metabolism sets both the demand for environmental resources and the resource allocation to survival, growth, and reproduction. We use the theory to make explicit how and why rmax exhibits its characteristic dependence on body size and temperature. Data for aerobic eukaryotes, including algae, protists, insects, zooplankton, fishes, and mammals, support these predicted scalings for rmax. The metabolic flux of energy and materials also dictates that the carrying capacity or equilibrium density of populations should decrease with increasing body size and increasing temperature. Finally, we argue that body mass and body temperature, through their effects on metabolic rate, can explain most of the variation in fecundity and mortality rates. Data for marine fishes in the field support these predictions for instantaneous rates of mortality. This theory links the rates of metabolism and resource use of individuals to life-history attributes and population dynamics for a broad assortment of organisms, from unicellular organisms to mammals.  相似文献   

2.
Dispersal capacity is a key life‐history trait especially in species inhabiting fragmented landscapes. Evolutionary models predict that, given sufficient heritable variation, dispersal rate responds to natural selection imposed by habitat loss and fragmentation. Here, we estimate phenotypic variance components and heritability of flight and resting metabolic rates (RMRs) in an ecological model species, the Glanville fritillary butterfly, in which flight metabolic rate (FMR) is known to correlate strongly with dispersal rate. We modelled a two‐generation pedigree with the animal model to distinguish additive genetic variance from maternal and common environmental effects. The results show that FMR is significantly heritable, with additive genetic variance accounting for about 40% of total phenotypic variance; thus, FMR has the potential to respond to selection on dispersal capacity. Maternal influences on flight metabolism were negligible. Heritability of flight metabolism was context dependent, as in stressful thermal conditions, environmentally induced variation dominated over additive genetic effects. There was no heritability in RMR, which was instead strongly influenced by maternal effects. This study contributes to a mechanistic understanding of the evolution of dispersal‐related traits, a pressing question in view of the challenges posed to many species by changing climate and fragmentation of natural habitats.  相似文献   

3.
The study of metabolism has traditionally focused upon factors that influence metabolic rate, at levels of both the metabolic pathway and the whole organism. This paper focuses on the cost, and thereby the efficiency, of metabolic processes. The genotype-dependent cost of enzyme turnover is proposed as a biochemical genetic mechanism for relating genetic variation at single genes to phenotypic variation in quantitative traits of energy metabolism. Decreased costs of maintenance metabolism can accompany artificial selection for increased production (e.g. growth, reproduction, etc.) and lower maintenance is correlated with multiple locus heterozygosity in outbred populations. In both cases, high production has been associated with lower rates of protein turnover. Several factors influence the ATP-equivalent cost of enzyme turnover. These factors are used to calculate the cost of turnover for a single enzyme. This cost can conservatively constitute up to several percent of the total daily mass-specific energy demands of maintenance metabolism. Genetic variants of an enzyme can differ in the cost of turnover. These differences can constitute the basis for metabolic changes associated with artificial selection for production and the metabolic differences that are associated with individual levels of heterozygosity. The metabolic and evolutionary significance of genotype-dependent turnover costs is a function of individual energy balance. The strength of selection against increases in cost will be an inverse function of individual energy balance and is therefore influenced by both environmental and genetic factors.  相似文献   

4.
1. A general hypothesis is presented to explain interspecific differences in size-independent resting metabolic rate. This hypothesis is based on a presumed trade-off between a low resting metabolism and adaptations of metabolism during activity.
2. With such a trade-off, selection to reduce resting metabolism is less intense in active species than in species where resting metabolism constitutes a large proportion of the daily metabolic costs. Those animals that spend more energy on activity should therefore have a higher resting metabolic rate than animals that spend less energy on activity.
3. A literature review reveals that flying insects have higher resting metabolic rates than species that use energetically less demanding types of locomotion.
4. Insects producing acoustic advertisement signals can be shown to have higher mass-independent resting metabolic rates than closely related species without this energetically demanding behaviour.
5. Literature data on vertebrate resting metabolic rates are also consistent with the presented hypothesis: the more energy animals spend on activity, the higher the mass-independent resting metabolic rate.  相似文献   

5.
Published estimates of protozoan respiratory rates are reviewed with the object of clarifying their value in ecological studies. The data show a surprisingly large variance when similarly sized cells or individual species are compared. This is attributed to the range of physiological states in the cells concerned. The concept of basal metabolism has little meaning in protozoa. During balanced growth, energy metabolism is nearly linearly proportional to the growth rate constant; at the initiation of starvation, metabolic rate rapidly declines. Motility requires an insignificant fraction of the energy budget of protozoans. For growing cells, metabolic rate is approximately proportional to weight0.75 and the data fall nearly exactly on a curve extrapolated from that describing the respiration rates of poikilotherm metazoans as a function of body weight. It is conceivable that protozoan species exist with lower maximum potential growth and metabolic rates than those predicted from cell volume and the equations derived from the available data. However, the lack of information concerning the state of the cells studied prevents verification of this idea. Laboratory measurements of protozoan respiratory rates have no predictive value for protozoa in nature other than delimiting a potential range. For small protozoans, this range may, on an individual basis, represent a factor of 50.  相似文献   

6.
Survival rates vary dramatically among species and predictably across latitudes, but causes of this variation are unclear. The rate‐of‐living hypothesis posits that physiological damage from metabolism causes species with faster metabolic rates to exhibit lower survival rates. However, whether increased survival commonly observed in tropical and south temperate latitudes is associated with slower metabolic rate remains unclear. We compared metabolic rates and annual survival rates that we measured across 46 species, and from literature data across 147 species of birds in northern, southern and tropical latitudes. High metabolic rates were associated with lower survival but survival varied substantially among latitudinal regions independent of metabolism. The inability of metabolic rate to explain latitudinal variation in survival suggests (1) species may evolve physiological mechanisms that mitigate physiological damage from cellular metabolism and (2) extrinsic rather than intrinsic sources of mortality are the primary causes of latitudinal differences in survival.  相似文献   

7.
Basal metabolic rate (BMR) was established as a common reference point allowing comparable measures across different individuals and species. BMR is often regarded as a minimal rate of metabolism compatible with basic processes necessary to sustain life. One confusing aspect, however, is that BMR is highly variable, both within and between species. A potential explanation for this variability is that while individuals with high BMRs may suffer the disadvantage of having to feed for longer to cover the extra energy demands, this may be offset by advantages that accrue because of the high metabolic rate. One suggested advantage is that high levels of BMR are a consequence of maintaining a morphology that permits high rates of the maximal sustained rate of metabolism (SusMR)--the rate of metabolism that can be sustained for days or weeks. We have been studying the energetics of MF1 laboratory mice during peak lactation to investigate this idea. In this article, we review some of our work in connection with three particular predictions that derive from the hypothesised links among morphology, basal metabolism, and sustained metabolic rate. By comparing groups of individuals, for example, lactating and nonlactating individuals, the patterns that emerge are broadly consistent with the hypothesis that BMR and SusMR are linked by morphology. Lactating mice have bigger organs connected with energy acquisition and utilisation, greater resting metabolic rates in the thermoneutral zone, called RMRt (approximately equivalent to BMR), and high sustainable rates of maximal energy intake. However, when attempts are made to establish these relationships across individuals within lactating mice, the associations that are anticipated are either absent or very weak and depend on shared variation due to body mass. At this level there is very little support for the suggestion that variation in RMRt (and thus BMR) is sustained by associations with SusMR.  相似文献   

8.
Postcopulatory sexual selection is widely accepted to underlie the extraordinary diversification of sperm morphology. However, why does it favour longer sperm in some taxa but shorter in others? Two recent hypotheses addressing this discrepancy offered contradictory explanations. Under the sperm dilution hypothesis, selection via sperm density in the female reproductive tract favours more but smaller sperm in large, but the reverse in small, species. Conversely, the metabolic constraint hypothesis maintains that ejaculates respond positively to selection in small endothermic animals with high metabolic rates, whereas low metabolic rates constrain their evolution in large species. Here, we resolve this debate by capitalizing on the substantial variation in mammalian body size and reproductive physiology. Evolutionary responses shifted from sperm length to number with increasing mammalian body size, thus supporting the sperm dilution hypothesis. Our findings demonstrate that body-size-mediated trade-offs between sperm size and number can explain the extreme diversification in sperm phenotypes.  相似文献   

9.
The study of intra- and inter-individual variation in the metabolic response to environmental variation can provide mechanistic explanations to large-scale ecological and evolutionary patterns. In a study of range-limiting factors, variation in resting metabolic rates of cottonmouths (Agkistrodon piscivorus leucostoma) was investigated along a latitudinal gradient in southern populations and in populations near and at the northern range limit. CO(2) production rates of 53 snakes were measured in response to body mass, temperature, time of day, latitude of origin, and sex. The within-subjects effects were similar to those reported for other pit vipers. Metabolic cold adaptation appears to exist, with cottonmouths from northern populations having higher low temperature metabolic rates. Calculations suggest that Arkansas cottonmouths allocate almost twice as much energy to resting metabolism during non-feeding periods (brumation) as Louisiana cottonmouths. While maintenance metabolism alone during brumation is more costly near the northern range limit, it is most likely not a limiting factor in geographic distribution and may be used to fuel important processes other than activity metabolism.  相似文献   

10.
The effect of temperature on the evolution of metabolism has been the subject of debate for a century; however, no consistent patterns have emerged from comparisons of metabolic rate within and among species living at different temperatures. We used experimental evolution to determine how metabolism evolves in populations of Drosophila melanogaster exposed to one of three selective treatments: a constant 16°C, a constant 25°C, or temporal fluctuations between 16 and 25°C. We tested August Krogh's controversial hypothesis that colder environments select for a faster metabolism. Given that colder environments also experience greater seasonality, we also tested the hypothesis that temporal variation in temperature may be the factor that selects for a faster metabolism. We measured the metabolic rate of flies from each selective treatment at 16, 20.5, and 25°C. Although metabolism was faster at higher temperatures, flies from the selective treatments had similar metabolic rates at each measurement temperature. Based on variation among genotypes within populations, heritable variation in metabolism was likely sufficient for adaptation to occur. We conclude that colder or seasonal environments do not necessarily select for a faster metabolism. Rather, other factors besides temperature likely contribute to patterns of metabolic rate over thermal clines in nature.  相似文献   

11.
Interactions between mitochondrial and nuclear gene products that underlie eukaryotic energy metabolism can cause the fitness effects of mutations in one genome to be conditional on variation in the other genome. In ectotherms, the effects of these interactions are likely to depend upon the thermal environment, because increasing temperature accelerates molecular rates. We find that temperature strongly modifies the pleiotropic phenotypic effects of an incompatible interaction between a Drosophila melanogaster polymorphism in the nuclear-encoded, mitochondrial tyrosyl-transfer (t)RNA synthetase and a D. simulans polymorphism in the mitochondrially encoded tRNATyr. The incompatible mitochondrial–nuclear genotype extends development time, decreases larval survivorship, and reduces pupation height, indicative of decreased energetic performance. These deleterious effects are ameliorated when larvae develop at 16° and exacerbated at warmer temperatures, leading to complete sterility in both sexes at 28°. The incompatible genotype has a normal metabolic rate at 16° but a significantly elevated rate at 25°, consistent with the hypothesis that inefficient energy metabolism extends development in this genotype at warmer temperatures. Furthermore, the incompatibility decreases metabolic plasticity of larvae developed at 16°, indicating that cooler development temperatures do not completely mitigate the deleterious effects of this genetic interaction. Our results suggest that the epistatic fitness effects of metabolic mutations may generally be conditional on the thermal environment. The expression of epistatic interactions in some environments, but not others, weakens the efficacy of selection in removing deleterious epistatic variants from populations and may promote the accumulation of incompatibilities whose fitness effects will depend upon the environment in which hybrids occur.  相似文献   

12.
In aerobic tissues, such as cardiac and skeletal muscle, short term increases in energy demand are met primarily by acute regulation of mitochondrial pathways. Chronic increases in time-average metabolic rate of an individual or tissue can lead to modest “physiological adaptations” that may result in increased metabolic capacities and more efficient energy production and utilization. These physiological adaptations differ fundamentally from those which alter metabolic rate acutely. Analysis of the metabolic strategies used by an individual to chronically elevate cardiac metabolic rates may help identify the components of cardiac metabolism which may be constrained or malleable over evolutionary time. While pronounced physiological differences in cardiac energy transduction are apparent across species, the evolutionary origins of such differences are difficult to assess. However, the functional consequences of such differences in homologous tissues across species can be discussed with more certainty. Both chronic hypermetabolic challenges and interspecies comparisons suggest highly oxidative tissues such as heart are restricted to strategies which a) elevate the functional mass b) make more efficient use of intracellular space devoted to mitochondria and c) shift toward more efficient metabolic fuels, primarily fatty acids if oxygen delivery is not a factor.  相似文献   

13.
Consistent individual differences in behaviour, termed personality, are common in animal populations and can constrain their responses to ecological and environmental variation, such as temperature. Here, we show for the first time that normal within-daytime fluctuations in temperature of less than 3°C have large effects on personality for two species of juvenile coral reef fish in both observational and manipulative experiments. On average, individual scores on three personality traits (PTs), activity, boldness and aggressiveness, increased from 2.5- to sixfold as a function of temperature. However, whereas most individuals became more active, aggressive and bold across temperature contexts (were plastic), others did not; this changed the individual rank order across temperatures and thus altered personality. In addition, correlations between PTs were consistent across temperature contexts, e.g. fish that were active at a given temperature also tended to be both bold and aggressive. These results (i) highlight the importance of very carefully controlling for temperature when studying behavioural variation among and within individuals and (ii) suggest that individual differences in energy metabolism may contribute to animal personality, given that temperature has large direct effects on metabolic rates in ectotherms.  相似文献   

14.
The decline of mass specific aerobic metabolic rates with increasinganimal size has a long history of study in zoology. Attemptsto explain this phenomenon have generally been concerned onlywith aerobic metabolism and with estimators of muscle and skeletalstrength. Our finding of tremendous increases in mass-specificglycolytic enzyme activity in locomotory muscle with size insome species of pelagic fishes indicates that this approachhas been too narrow. It is necessary to consider total metabolicpower in any consideration of metabolic scaling in relationto skeletal strength or muscle power, since the anaerobic componentof muscle power is usually greater than the aerobic and oftenscales differently. We show that scaling of glycolytic powerappears to be much more variable among species than is scalingof aerobic power, and we suggest that the different glycolyticpower scaling patterns reflect selection for different sprintswimming abilities in fishes of different habits. The rathernarrow range of variation in aerobic scaling patterns suggeststhat they are the result of natural selection acting in thecontext of geometric constraints on maximum aerobic gas uptakeand transport. The glycolytic scaling data emphasize that therole of natural selection has usually been neglected in considerationsof scaling of metabolism while the role of the scaling of solidshas been overemphasized.  相似文献   

15.
Physiological convergence amongst ant-eating and termite-eating mammals   总被引:4,自引:1,他引:3  
Brian K.  McNab 《Journal of Zoology》1984,203(4):485-510
Ant- and termite-eating are among the few food habits common to monotremes, marsupials, and eutherians. Data are reported on the rate of metabolism and temperature regulation of 14 species of mammals having these food habits, including two monotremes, one marsupial and 11 eutherians. Small mammals with these habits have comparatively high body temperatures and high basal rates of metabolism, but ant- and termite-eaters that weigh more than 1 kg generally have low body temperatures and low basal rates of metabolism. The higher basal rates in small species ensure effective temperature regulation. Low body temperatures in large species principally result from low rates of metabolism. Rates of metabolism are low in these mammals because they use a food that has a limited availability and a low energy density, the density being further decreased in large species by the ingestion of non-nutritive material during feeding. Burrowing habits in some large species also contribute to low rates of metabolism. The combination of body size, food habits, and presence or absence of burrowing behaviour can account for all but about 6% of the range in basal rate in ant- and termite-eaters. Ants and termites, because of their locally clumped distributions, permit a larger mass in terrestrial predators than do other invertebrate prey. The reason why so many "primitive" mammals feed on ants and termites is that, once evolved, mammals with these habits are nearly impossible to displace ecologically, because much of ecological replacement is associated with high rates of reproduction, which are themselves correlated with high rates of metabolism in eutherians. Consequently, the ecological replacement of ant- and termite-eaters is inhibited, because this food habit does not permit high rates of metabolism, except at small masses.  相似文献   

16.
Variation in metabolism affects energy budgets of individuals and may serve as a mechanism that influences variation at whole organism or population levels. For example, sex differences in metabolic expenditure may contribute to bioenergetic sources of sexual size dimorphism. We measured oxygen consumption rates of 48 western diamondback rattlesnakes (Crotalus atrox) from a sexually dimorphic population and tested the effects of body mass, body temperature and time of day, in three groups of snakes: males, non-reproductive females, and vitellogenic females. Metabolic rates of male and non-reproductive female C. atrox were similar to rates reported for other rattlesnakes (mass exponents ranging from 0.645–0.670). Oxygen consumption was affected by body mass, body temperature and time of day, and was approximately 1.4 times greater in vitellogenic females than in non-reproductive females. No differences were found between males and non-reproductive females. Accordingly, differences in metabolic rate apparently do not contribute directly to sexual dimorphism in this population. Nevertheless, estimates of size-dependent maintenance expenditure lead us to hypothesize that adult female body size may represent a compromise between selection for increased litter size (accomplished by increasing body size), and selection for increased reproductive frequency (accomplished by decreasing body size, and, therefore inactive maintenance expenditure); this is a mechanistic scenario suggested previously for some endotherms. Accepted: 20 May 1998  相似文献   

17.
Assessment of embryo potential by visual and metabolic evaluation   总被引:1,自引:0,他引:1  
Morphological evaluation of embryos is essential to the success of embryo transfer procedures and is presumed to reflect embryo metabolic activity. To investigate this assumption, correlations between morphological and metabolic parameters were determined for cultured murine morulae. After 18 h (n = 47) or 36 h (n = 48) of culture in M16, the developmental rate and quality (poor or good) of embryos were estimated, and, then, either their (14)C-glucose utilization or (35)s-methionine uptake and incorporation were measured. Retarded developing, or poor-quality embryos had lower mean glucose utilization, uptake and incorporation rates than normally developing or good-quality embryos (P < 0.05). After 18 h of culture, an association was found between developmental rate and metabolic activity, but this was not evident after 36 h of culture. Similarly, an association was found between embryo quality and metabolic activity. As expected, poor embryo quality was indicative of low metabolism throughout the culture period, but good quality did not necessarily indicate normal metabolic activity. Thus, morphological parameters do not always reflect metabolic competence, and some functional defects were not detectable by visual evaluation alone. Measuring metabolic parameters could complement visual evaluation for a better selection of embryos prior to transfer.  相似文献   

18.
The roles of ultimate and proximate factors in regulating basal and summit metabolic rates of passerine birds during winter have received little study, and the extent to which winter temperatures affect these variables is unknown. To address this question, we measured basal and summit (maximum cold-induced) metabolic rates in black-capped chickadees (Poecile atricapillus), dark-eyed juncos (Junco hyemalis), and American tree sparrows (Spizella arborea) during winters from 1991/1992 to 1997 in southeastern South Dakota. Both temperature and these metabolic rates varied within and among winters. Least-squares regression revealed significant negative relationships for normalized basal and summit metabolism against mean winter temperature for all species pooled (R2=0.62 to 0.69, P相似文献   

19.
The link between variation in species‐specific plant traits, larger scale patterns of productivity, and other ecosystem processes is an important focus for global change research. Understanding such linkages requires synthesis of evolutionary, biogeograpahic, and biogeochemical approaches to ecological research. Recent observations reveal several apparently paradoxical patterns across ecosystems. When compared with warmer low latitudes, ecosystems from cold northerly latitudes are described by (1) a greater temperature normalized instantaneous flux of CO2 and energy; and (2) similar annual values of gross primary production (GPP), and possibly net primary production. Recently, several authors attributed constancy in GPP to historical and abiotic factors. Here, we show that metabolic scaling theory can be used to provide an alternative ‘biotically driven’ hypothesis. The model provides a baseline for understanding how potentially adaptive variation in plant size and traits associated with metabolism and biomass production in differing biomes can influence whole‐ecosystem processes. The implication is that one cannot extrapolate leaf/lab/forest level functional responses to the globe without considering evolutionary and geographic variation in traits associated with metabolism. We test one key implication of this model – that directional and adaptive changes in metabolic and stoichiometric traits of autotrophs may mediate patterns of plant growth across broad temperature gradients. In support of our model, on average, mass‐corrected whole‐plant growth rates are not related to differences in growing season temperature or latitude. Further, we show how these changes in autotrophic physiology and nutrient content across gradients may have important implications for understanding: (i) the origin of paradoxical ecosystem behavior; (ii) the potential efficiency of whole‐ecosystem carbon dynamics as measured by the quotient of system capacities for respiration, R, and assimilation, A; and (iii) the origin of several ‘ecosystem constants’– attributes of ecological systems that apparently do not vary with temperature (and thus with latitude). Together, these results highlight the potential critical importance of community ecology and functional evolutionary/physiological ecology for understanding the role of the biosphere within the integrated earth system.  相似文献   

20.
在食肉目的62种动物中,体重的变异可以解释基础代谢率86.8%的变化。当栖息基底、食性、生境和纬度等4个因素与体重合起来一起分析,则可以解释基础代谢率98.7%的变化,即这些生态和行为因子可以解释代谢率残差变异的81.1%。身体成分也是影响基础代谢率的另一个因素,可以解释一些大型树栖种类的较低的代谢率。除体重因素外,导致真兽类基础代谢率变异的主要原因是:当生态因素适合时,高水平的能量消耗可以促进动物的高繁殖输出,而动物的某些习性和生存环境则会要求低能量消耗,从而使繁殖率降低。当以科为单元进行分析时,对结果没有影响。生理参数与分类单元之间大多数的相关性反映了生态和行为因素与分类系统之间的一种粗略的相关关系。除非系统学可以反映动物的生态学和行为学,否则系统学不能决定动物适应性特征的状态  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号