首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrins are heterodimeric type I transmembrane cell-adhesive receptors whose affinity for ligands is regulated by tertiary and quaternary conformational changes that are transmitted from the cytoplasmic tails to the extracellular ectodomains during the transition from the inactive to the active state. Receptor occupancy initiates further structural alterations that transduce signals across the plasma membrane and result in receptor clustering and recruitment of signaling molecules and cytoskeletal rearrangements at the integrin's cytoplasmic domains. The large distance between the intracellular cytoplasmic domains and the ligand-binding site, which in an extended conformation spans more that 200 A, imposes a complex mechanism of interdomain communication for the bidirectional information flow across the plasma membrane. Significant progress has recently been made in elucidating the crystal and electron microscopy structures of integrin ectodomains in its unliganded and liganded states, and the nuclear magnetic resonance solution structures of stalk domains and the cytoplasmic tails. These structures revealed the location of sites that are functionally important and provided the basis for defining new models of integrin activation and signaling through bidirectional conformational changes, and for understanding the structural basis of the cation-dependent ligand-binding specificity of integrins. Platelet integrin alphaIIbbeta3 has served as a paradigm for many aspects of the structure and function of integrins The aim of this minireview is to combine recent structural and biochemical studies on integrin receptors that converge into a model of the tertiary and quaternary conformational changes in alphaIIbbeta3 and other homologous integrins that propagate inside-out and outside-in signals.  相似文献   

2.
Integrins are cell adhesion receptors that transmit bidirectional signals across plasma membrane and are crucial for many biological functions. Recent structural studies of integrin transmembrane (TM) and cytoplasmic domains have shed light on their conformational changes during integrin activation. A structure of the resting state was solved based on Rosetta computational modeling and experimental data using intact integrins on mammalian cell surface. In this structure, the αIIb GXXXG motif and their β3 counterparts of the TM domains associate with ridge‐in‐groove packing, and the αIIb GFFKR motif and the β3 Lys‐716 in the cytoplasmic segments play a critical role in the α/β association. Comparing this structure with the NMR structures of the monomeric αIIb and β3 (represented as active conformations), the α subunit helix remains similar after dissociation whereas β subunit helix is tilted by embedding additional 5–6 residues into the lipid bilayer. These conformational changes are critical for integrin activation and signaling across the plasma membrane. We thus propose a new model of integrin TM activation in which the recent NMR structure of the αIIbβ3 TM/cytoplasmic complex represents an intermediate or transient state, and the electrostatic interaction in the cytoplasmic region is important for priming the initial α/β association, but not absolutely necessary for the resting state. J. Cell. Biochem. 109: 447–452, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Integrins are heterodimeric membrane-spanning adhesion receptors that are essential for a wide range of biological functions. Control of integrin conformational states is required for bidirectional signalling across the membrane. Key components of this control mechanism are the transmembrane and cytoplasmic domains of the alpha and beta subunits. These domains are believed to interact, holding the integrin in the inactive state, while inside-out integrin activation is accompanied by domain separation. Although there are strong indications for domain interactions, the majority of evidence is insufficient to precisely define the interaction interface. The current best model of the complex, derived from computational calculations with experimental restraints, suggests that integrin activation by the cytoplasmic protein talin is accomplished by steric disruption of the alpha/beta interface. Better atomic-level resolution structures of the alpha/beta transmembrane/cytoplasmic domain complex are still required for the resting state integrin to corroborate this. Integrin activation is also controlled by competitive interactions involving the cytoplasmic domains, particularly the beta-tails. The concept of the beta integrin tail as a focal adhesion interaction 'hub' for interactions and regulation is discussed. Current efforts to define the structure and affinity of the various complexes formed by integrin tails, and how these interactions are controlled, e.g. by phosphorylation and localization, are described.  相似文献   

4.
Integrin transmembrane (TM) and/or cytoplasmic domains play a critical role in integrin bidirectional signaling. Although it has been shown that TM and/or cytoplasmic α and β domains associate in the resting state and separation of these domains is required for both inside-out and outside-in signaling, the role of TM homomeric association remains elusive. Formation of TM homo-oligomers was observed in micelles and bacterial membranes previously, and it has been proposed that homomeric association is important for integrin activation and clustering. This study addresses whether integrin TM domains form homo-oligomers in mammalian cell membranes using cysteine scanning mutagenesis. Our results show that TM homomeric interaction does not occur before or after soluble ligand binding or during inside-out activation. In addition, even though the cysteine mutants and the heterodimeric disulfide-bounded mutant could form clusters after adhering to immobilized ligand, the integrin TM domains do not form homo-oligomers, suggesting that integrin TM homomeric association is not critical for integrin clustering or outside-in signaling. Therefore, integrin TM homo-oligomerization is not required for integrin activation, ligand binding, or signaling.  相似文献   

5.
Integrins are heterodimeric membrane-spanning adhesion receptors that are essential for a wide range of biological functions. Control of integrin conformational states is required for bidirectional signalling across the membrane. Key components of this control mechanism are the transmembrane and cytoplasmic domains of the α and β subunits. These domains are believed to interact, holding the integrin in the inactive state, while inside-out integrin activation is accompanied by domain separation. Although there are strong indications for domain interactions, the majority of evidence is insufficient to precisely define the interaction interface. The current best model of the complex, derived from computational calculations with experimental restraints, suggests that integrin activation by the cytoplasmic protein talin is accomplished by steric disruption of the α/β interface. Better atomic-level resolution structures of the α/β transmembrane/cytoplasmic domain complex are still required for the resting state integrin to corroborate this. Integrin activation is also controlled by competitive interactions involving the cytoplasmic domains, particularly the β-tails. The concept of the β integrin tail as a focal adhesion interaction ‘hub’ for interactions and regulation is discussed. Current efforts to define the structure and affinity of the various complexes formed by integrin tails, and how these interactions are controlled, e.g. by phosphorylation and localization, are described.  相似文献   

6.
Cell surface receptors of the integrin family are pivotal to cell adhesion and migration. The activation state of heterodimeric αβ integrins is correlated to the association state of the single-pass α and β transmembrane domains. The association of integrin αIIbβ3 transmembrane domains, resulting in an inactive receptor, is characterized by the asymmetric arrangement of a straight (αIIb) and tilted (β3) helix relative to the membrane in congruence to the dissociated structures. This allows for a continuous association interface centered on helix-helix glycine-packing and an unusual αIIb(GFF) structural motif that packs the conserved Phe-Phe residues against the β3 transmembrane helix, enabling αIIb(D723)β3(R995) electrostatic interactions. The transmembrane complex is further stabilized by the inactive ectodomain, thereby coupling its association state to the ectodomain conformation. In combination with recently determined structures of an inactive integrin ectodomain and an activating talin/β complex that overlap with the αβ transmembrane complex, a comprehensive picture of integrin bi-directional transmembrane signaling has emerged.  相似文献   

7.
Evidence for hetero-association of transmembrane helices of integrins   总被引:2,自引:0,他引:2  
Gottschalk KE  Kessler H 《FEBS letters》2004,557(1-3):253-258
Integrins are important transmembrane cell-surface receptors, which mediate interactions of the cell with other cells or the extracellular matrix. Integrins are heterodimers composed of an alpha- and a beta-subunit. They can switch between different activation states depending on intra- or extracellular signals. Inside/out and outside/in signaling is mediated via integrins across the membrane. A biologically important and yet still unanswered question is the role of the transmembrane domains in the signaling event. Here it is shown by simulated annealing/molecular dynamics calculations that recently published structural data of the cytoplasmic domains of integrin alphaIIbbeta3 are supporting a structure with interacting transmembrane helices. This corroborates a model of transmembrane domains that are actively involved in the transmembrane signaling event.  相似文献   

8.
Conformational communication across the plasma membrane between the extracellular and intracellular domains of integrins is beginning to be defined by structural work on both domains. However, the role of the α and β subunit transmembrane domains and the nature of signal transmission through these domains have been elusive. Disulfide bond scanning of the exofacial portions of the integrin αIIβ and β3 transmembrane domains reveals a specific heterodimerization interface in the resting receptor. This interface is lost rather than rearranged upon activation of the receptor by cytoplasmic mutations of the α subunit that mimic physiologic inside-out activation, demonstrating a link between activation of the extracellular domain and lateral separation of transmembrane helices. Introduction of disulfide bridges to prevent or reverse separation abolishes the activating effect of cytoplasmic mutations, confirming transmembrane domain separation but not hinging or piston-like motions as the mechanism of transmembrane signaling by integrins.  相似文献   

9.
Glycoprotein (GP) IIb/IIIa complex (integrin alphaIIbbeta3) is the most abundant platelet receptor. It serves as an inducible receptor for adhesive proteins and is the best-studied member of the integrin family. Its major global structural features have been elucidated mainly during the last decade. Since 1995, there has been a substantial increase in structural information on adhesion molecule domains. The crystal structures of isolated integrin I domains have been solved. Although a high resolution picture of a whole integrin molecule is not yet available, the crystal structures together with biochemical, mutagenesis and modeling data provide a useful framework for interpreting current experimental evidence on structure-function correlations of integrin molecules and for guiding further experiment. The aim of this minireview is to update a previous one summarizing recent (1995-98) functional and structural data of GPIIb/IIIa and other integrins in the perspective of an emerging model of the structure, and bidirectional signaling mechanism through, integrin alphaIIbbeta3.  相似文献   

10.
The presented work describes a structural model for integrin homooligomerization, focusing on the transmembrane domains. The two noncovalently linked integrin subunits, alpha and beta, were previously shown to homodimerize or homotrimerize, respectively. Our work is based on published mutational work that induced homotrimerization of beta3 integrins. The mutations provided structural restraints for the creation of a structural model of the beta3 homotrimer by a computational search of the conformational space of homomeric interactions of the beta3 integrin. Additionally, we explored possible conformations of the alphaIIb integrin homodimer, for which no unique solution was found. Two possible models of signal transduction, involving two different alphaIIb conformations, are discussed. One of the possible homodimeric alphaIIb conformations is GpA like, which is in line with experimental evidence. Based on our here-presented structural models and on recent experiments, we will argue that most probably the heteromeric alpha/beta transmembrane complex separates in the course of clustering.  相似文献   

11.
Vinogradova O  Velyvis A  Velyviene A  Hu B  Haas T  Plow E  Qin J 《Cell》2002,110(5):587-597
Activation of the ligand binding function of integrin heterodimers requires transmission of an "inside-out" signal from their small intracellular segments to their large extracellular domains. The structure of the cytoplasmic domain of a prototypic integrin alpha(IIb)beta(3) has been solved by NMR and reveals multiple hydrophobic and electrostatic contacts within the membrane-proximal helices of its alpha and the beta cytoplasmic tails. The interface interactions are disrupted by point mutations or the cytoskeletal protein talin that are known to activate the receptor. These results provide a structural mechanism by which a handshake between the alpha and the beta cytoplasmic tails restrains the integrin in a resting state and unclasping of this interaction triggers the inside-out conformational signal that leads to receptor activation.  相似文献   

12.
Integrins are adhesion molecules that convey signals both to and from the cytoplasm across the plasma membrane. In resting cells, integrins in a low affinity state can be activated by 'inside-out signaling', in which signals affecting integrin heterodimer cytoplasmic domains cause a conformational change in the integrin ligand-binding headpiece connected to the membrane by two long, approximately 16 nm stalks. Here we demonstrate a mechanism for conveying a conformational change over the long distance from the plasma membrane to the headpiece. We prepared soluble, alpha5beta1 integrin heterodimer extracellular fragments in which interactions between alpha- and beta-subunit cytoplasmic domains were replaced with an artificial clasp. Release of this C-terminal clasp by specific protease cleavage resulted in an approximately 14 nm separation of the stalks coupled to increased binding to fibronectin. This activation did not require any associated molecules or clustering and was observed with physiological concentrations of divalent cations. These findings suggest that the overall mechanism for integrin inside-out activation involves the spatial separation of the cytoplasmic and/or transmembrane domains.  相似文献   

13.
The alpha and beta subunits of alpha/beta heterodimeric integrins function together to bind ligands in the extracellular region and transduce signals across cellular membranes. A possible function for the transmembrane regions in integrin signaling has been proposed from structural and computational data. We have analyzed the capacity of the integrin alpha(2), alpha(IIb), alpha(4), beta(1), beta(3), and beta(7) transmembrane domains to form homodimers and/or heterodimers. Our data suggest that the integrin transmembrane helices can help to stabilize heterodimeric integrins but that the interactions do not specifically associate particular pairs of alpha and beta subunits; rather, the alpha/beta subunit interaction constrains the extramembranous domains, facilitating signal transduction by a promiscuous transmembrane helix-helix association.  相似文献   

14.
Human filamins are large actin-crosslinking proteins composed of an N-terminal actin-binding domain followed by 24 Ig-like domains (IgFLNs), which interact with numerous transmembrane receptors and cytosolic signaling proteins. Here we report the 2.5 A resolution structure of a three-domain fragment of human filamin A (IgFLNa19-21). The structure reveals an unexpected domain arrangement, with IgFLNa20 partially unfolded bringing IgFLNa21 into close proximity to IgFLNa19. Notably the N-terminus of IgFLNa20 forms a beta-strand that associates with the CD face of IgFLNa21 and occupies the binding site for integrin adhesion receptors. Disruption of this IgFLNa20-IgFLNa21 interaction enhances filamin binding to integrin beta-tails. Structural and functional analysis of other IgFLN domains suggests that auto-inhibition by adjacent IgFLN domains may be a general mechanism controlling filamin-ligand interactions. This can explain the increased integrin binding of filamin splice variants and provides a mechanism by which ligand binding might impact filamin structure.  相似文献   

15.
Integrins play an essential role in hemostasis, thrombosis, and cell migration, and they transmit bidirectional signals. Transmembrane/cytoplasmic domains are hypothesized to associate in the resting integrins; whereas, ligand binding and intracellular activating signals induce transmembrane domain separation. However, how this conformational change affects integrin outside-in signaling and whether the α subunit cytoplasmic domain is important for this signaling remain elusive. Using Chinese Hamster Ovary (CHO) cells that stably expressed different integrin αIIbβ3 constructs, we discovered that an αIIb cytoplasmic domain truncation led to integrin activation but not defective outside-in signaling. In contrast, preventing transmembrane domain separation abolished both inside-out and outside-in signaling regardless of removing the αIIb cytoplasmic tail. Truncation of the αIIb cytoplasmic tail did not obviously affect adhesion-induced outside-in signaling. Our research revealed that transmembrane domain separation is a downstream conformational change after the cytoplasmic domain dissociation in inside-out activation and indispensable for ligand-induced outside-in signaling. The result implicates that the β TM helix rearrangement after dissociation is essential for integrin transmembrane signaling. Furthermore, we discovered that the PI3K/Akt pathway is not essential for cell spreading but spreading-induced Erk1/2 activation is PI3K dependent implicating requirement of the kinase for cell survival in outside-in signaling.  相似文献   

16.
Integrin cell-adhesion receptors transduce signals bidirectionally across the plasma membrane via the single-pass transmembrane segments of each alpha and beta subunit. While the beta3 transmembrane segment consists of a linear 29-residue alpha-helix, the structure of the alphaIIb transmembrane segment reveals a linear 24-residue alpha-helix (Ile-966 -Lys-989) followed by a backbone reversal that packs Phe-992-Phe-993 against the transmembrane helix. The length of the alphaIIb transmembrane helix implies the absence of a significant transmembrane helix tilt in contrast to its partnering beta3 subunit. Sequence alignment shows Gly-991-Phe-993 to be fully conserved among all 18 human integrin alpha subunits, suggesting that their unusual structural motif is prototypical for integrin alpha subunits. The alphaIIb transmembrane structure demonstrates a level of complexity within the membrane that is beyond simple transmembrane helices and forms the structural basis for assessing the extent of structural and topological rearrangements upon alphaIIb-beta3 association, i.e. integrin transmembrane signaling.  相似文献   

17.
Integrins are bidirectional signaling molecules on the cell surface that have fundamental roles in regulating cell behavior and contribute to cell migration and adhesion. Understanding of the mechanism of integrin signaling and activation has been advanced with truncated ectodomain preparations; however, the nature of conformational change in the full-length intact integrin molecule remains an active area of research. Here we used small angle x-ray scattering and electron microscopy to study detergent-solubilized, intact platelet integrin α(IIb)β(3). In the resting state, the intact α(IIb)β(3) adopted a compact, bent conformation. Upon activation with Mn(2+), the average integrin extension increased. Further activation by addition of ligand led to stabilization of the extended state and opening of the headpiece. The observed extension and conformational rearrangement upon activation are consistent with the extension and headpiece opening model of integrin activation.  相似文献   

18.
The glycosylphosphatidylinositol-linked urokinase-type plasminogen activator receptor (uPAR) interacts with the heterodimer cell adhesion molecules integrins to modulate cell adhesion and migration. Devoid of a cytoplasmic domain, uPAR triggers intracellular signaling via its associated molecules that contain cytoplasmic domains. Interestingly, uPAR changes the ectodomain conformation of one of its partner molecules, integrin alpha(5)beta(1), and elicits cytoplasmic signaling. The separation or reorientation of integrin transmembrane domains and cytoplasmic tails are required for integrin outside-in signaling. However, there is a lack of direct evidence showing these conformational changes of an integrin that interacts with uPAR. In this investigation we used reporter monoclonal antibodies and fluorescence resonance energy transfer analyses to show conformational changes in the alpha(M)beta(2) headpiece and reorientation of its transmembrane domains when alpha(M)beta(2) interacts with uPAR.  相似文献   

19.
Integrins mediate cell adhesion in response to activation signals that trigger conformational changes within their ectodomain. It is thought that a compact bent conformation of the molecule represents its physiological low affinity state and extended conformations its active state. We have determined the structure of two integrin fragments of the beta2 subunit. The first structure, consisting of the plexin-semaphorin-integrin domain, hybrid, integrin-epidermal growth factor 1 (I-EGF1), and I-EGF2 domains (PHE2), showed an L-shaped conformation with the bend located between the I-EGF1 and I-EGF2 domains. The second structure, which includes, in addition, the I-EGF3 domain, showed an extended conformation. The major reorientation of I-EGF2 with respect to the other domains in the two structures is accompanied by a change of torsion angle of the disulfide bond between Cys(461)-Cys(492) by 180 degrees and the conversion of a short alpha-helix (residues Ser(468)-Cys(475)) into a flexible coil. Based on the PHE2 structure, we introduced a disulfide bond between the plexin-semaphorin-integrin domain and I-EGF2 domains in the beta2 subunit. The resultant alphaLbeta2 integrin (leukocyte function-associated antigen-1) variant was locked in a bent state and could not be detected with the monoclonal antibody KIM127 in Mg(2+)/EGTA. However, it retained the binding activity to ICAM-1. These results provide a structural hypothesis for our understanding of the transition between the resting and active states of leukocyte function-associated antigen-1.  相似文献   

20.
Although integrins are known to mediate connections between extracellular adhesion molecules and the intracellular actin cytoskeleton, the mechanisms that are responsible for coupling ligand binding to intracellular signaling, for generating diversity in signaling, and for determining the efficacy of integrin signaling in response to ligand engagement are largely unknown. By characterizing the class of anti-integrin monoclonal antibodies (mAbs) that stimulate integrin activation and ligand binding, we have identified integrin-ligand-mAb complexes that exhibit differential signaling properties. Specifically, addition of 12G10 mAb to cells adhering via integrin alpha4beta1 was found to trigger disruption of the actin cytoskeleton and prevent cell attachment and spreading, whereas mAb addition to cells adhering via alpha5beta1 stimulated all of these processes. In contrast, soluble ligand binding to either alpha4beta1 or alpha5beta1 was augmented or unaffected by 12G10. The regions of the integrin responsible for differential signaling were then mapped using chimeras. Surprisingly, a chimeric alpha5 integrin containing the beta-propeller domain from the ligand binding pocket of alpha4 exhibited the same signaling properties as the full-length alpha4 integrin, whereas exchanging or removing cytoplasmic domains had no effect. Thus the mAb 12G10 demonstrates dual functionality, inhibiting cell adhesion and spreading while augmenting soluble ligand binding, via a mechanism that is determined by the extracellular beta-propeller domain of the associating alpha-subunit. These findings therefore demonstrate a direct and variable agonistic link between the ligand binding pocket of integrins and the cell interior that is independent of the alpha cytoplasmic domains. We propose that either ligand-specific transmembrane conformational changes or ligand-specific differences in the kinetics of transmembrane domain separation underlie integrin agonism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号