首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to investigate quantitatively the interesterification reaction, triolein and stearic acid were used as substrates and eight commercially available lipases were tested for their suitability for the reaction. Three fungal lipase preparations were found to be suitable. The hydrolytic activity of the commercial lipases was tested with olive oil, and it 2was noted that there was no correlation between their hydrolytic and interesterification activities. Among the lipases tested, Mucor miehei lipase was chosen for further study because of it high protein content and its relatively high hydrolytic and interesterification activities, both of which are required for effective interesterification. The effect of water activity of the interesterification reaction was investigated. interesterification activity was shown to be maximum at the water activity of 0.25. As the water activity of the lipase increased, hydrolysis of triglyceride was accelerated. At zero water activity, high conversion was achieved, although interesterification activity was relatively lower than that at the water activity of 0.25. A new and simple immobilization method was developed in order to render hydrophobicity to the lipase and hence to improve the interesterification activity of the lipase. The lipase was immobilized covalently with glutaraldehyde or with six alkyl chains as spacers onto Florisil (magnesium silicate, a inorganic matrix). Interesterification activity of the immobilized lipase with the hydrophobic spacers were increased against that of re lipase. The increase of activity was up to 8-fold that of the original activity of free lipase when the spacer was 7-aminoheptanoic acids. Relatively high stability of the immobilized lipase was shown in a continuous packed bed column reactor with a half-life of 97 days. (c) 1993 John Wiley & Sons, Inc.  相似文献   

2.
An immobilized lipase suitable for fat interesterification has been prepared by precipitation with acetone of a commercial lipase from Rhizopus arrhizus onto diatomaceous earth. As observed previously with a less active enzyme from Aspergillus sp., the interesterification activity was enhanced by addition of purified lipase or by high loadings of commercial enzyme. The interesterification activities reached maximum values in both cases. For immobilized preparations with purified enzyme, interesterification activity was also enhanced by the presence of a precoat of glutaraldehyde cross-linked commercial lipase. A 2.9-L column of immobilized lipase was used to interesterify batches of shea oleine (67 kg) and shea oil (40 kg). Little activity was lost processing shea oleine, but slow poisoning of the bed occurred when shea oil was fed to the column.  相似文献   

3.
Kinetic data for lipase-catalyzed interesterification reactions between free fatty acids and triglycerides were collected and the dynamics of the interesterification reactions were successfully modeled using tow rate experssions requiring a total of five adjustable parameters. One rate expression describes the disappearance of the free fatty acid (octanoic or linolenic acid), and the second describes the rate of release of fatty acid residues from the triglycerides (olive oil or milkfat). This model is able to account for the effects of the concentration of all chemical species participating in interesterification throughout the entire reaction. When the data for both milkfat and olive oil were subjected to nonlinear regression analyses using the same mathematical model, the parameter estimates for both systems were comparable. In addition to reproducing the tendencies observed experimentally, simulations of the interesterification system under a variety of initial conditions provided insight into the effects of several reaction variables which could not be examined experimentally. Among the most significant findings of the simulation work are (1) there is a limit beyond which increasing the initial concentration of water produces no further increase in the initial rate of the interesterification reaction; (2) an increase in the initial concentration of lower glycerides produces a concomitant increase in the rate of the interesterification reaction; (3) the free fatty acids inhibit the rate of hydrolysis of the fatty acid residues of the triglycerides; (4) there is a limit beyond which increasing the initial concentration of triglycerides produces no significant increase in the rate of either the hydrolysis reaction or the interesterification reaction. (c) 1994 John Wiley & Sons, Inc.  相似文献   

4.
The kinetics of enzymatic interesterification of oils and fats, using acetone-dried cells of Rhizopus chinensis immobilized on biomass support particles as a lipase catalyst, were investigated in batch operations at several constant water concentrations.Even under microaqueous (i.e., low-water-content) conditions, not only interesterification but also hydrolysis occured, and the water content in the reaction system decreased. The reaction rates of interesterification and hydrolysis at constant water concentrations were determined.For the reactions between olive oil and methyl stearate at several water concentrations, the parameters involved in the reaction model were determined by a trial-and-error method so as to make the calculated results correlate with the experimental data. The relationship between the parameters obtained and water concentration were examined.The rate constants involved in the reaction model of both interesterification and hydrolysis increased or decreased monotonically with the increasing water content, while the apparent activity of the lipase catalyst for interesterification had a maximum value at a water concentration of about 50 ppm. This suggests that when the water content is excessive the hydrolysis activity of lipase is accelerated more than its interesterification activity, and that when the water content is too little lipase activity can not be activated for either hydrolysis or interesterification.  相似文献   

5.
An immobilized lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) suitable for fat interesterification has been prepared by precipitation onto diatomaceous earth (Celite) with acetone of a crude lipase preparation from an Aspergillus. Non-lipase material present in the preparation which precipitated at high acetone concentrations or ovalbumin added prior to the immobilization reduced the measured interesterification activity without affecting lipolytic activity. The non-lipase material reduced the interesterification activity by as much as 50%. The interesterification activity of immobilized preparations was enhanced by the use of higher concentrations of the crude lipase or, more substantially, by admixture of purified lipase.  相似文献   

6.
Several surfactant-coated enzymes have been prepared by coating lipases of various origins with a nonionic surfactant, glutamic acid dioleylester ribitol (2C(18)Delta(9)GE). Enzymatic interesterification of tripalmitin with oleic acid using the surfactant-coated lipase was carried out in organic media. The surfactant-coated lipases could effectively catalyze the interesterification of glycerides better than did the powder lipases. A suitable organic solvent was an aliphatic hydrocarbon such as isooctane. The enzymatic activity for the interesterification strongly depended on the origin of the lipase. The surfactant-coated lipase prepared by Mucor javanicus showed the highest enzymatic activity for the interesterification of glycerides, although its powder lipase did not show enzymatic activity. Selective interesterification of glycerides could be performed by adjusting the concentration ratio of oleic acid to tripalmitin in isooctane. Di-substituted glyceride could be selectively produced when the concentration ratio of carboxylic acid to glycerides was 7. (c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
The interesterification of triacylglycerol with fatty acid was done to prepare triacylglycerol molecular species. Optimum operating conditions for the interesterification using a 1,3-positional specific endocellular lipase from Rhizopus japonicus NR400 in a batch system were investigated. The reaction was done at 40°C for 5 hr in the following system: Trioleoylglycerol-palmitic acid = 1:3.5 (mol/mol), 10 ml n-hexane/g trioleoylglycerol, and 2500 units of enzyme/g trioleoylglycerol. Under these conditions, the content of palmitoyl groups in 1,3-positions of triacylglycerol was about 60 mol%. Additional interesterification (2-cycle reaction) using palmitic acid and the novel triacylglycerol prepared by one-step interesterification (1-cycle reaction) resulted in a preparation of highly pure 1,3-dipalmitoyl-2-oleoylglycerol.  相似文献   

8.
Lipases have bio-imprinted with common substrate-interfaces and interesterification activities compared with amphiphile bio-imprinted counterparts. Bio-imprinting has yielded a 3.5- to 4.5-fold activity enhancement. Solvent-free medium was equally effective as hexane medium. Water addition erased the bio-imprinting effect. Bio-imprinting caused rate acceleration in the interesterification reaction and increased thermostability of the enzyme.  相似文献   

9.
Enzymatic interesterification of the chiral triacylglycerol, 1-butyroyl-2-stearoyl-3-palmitoyl-sn-glycerol (sn-BSP) with trimyristin indicated that the lipase present in Carica papaya latex exhibits an sn3 stereoselectivity. Other interesterification experiments with homogeneous triacylglycerols of varying chain length with tricaprylin showed that this enzyme also has a typoselectivity for short chain fatty acids.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

10.
Immobilized lipases were used to catalyze batch-directed interesterification of tallow, resulting in oleins containing significantly higher levels of unsaturated fatty acids than obtained by fractionation without lipase. After 14 days, a reaction catalyzed by 2% Novozym 435 yielded 57% olein unsaturation, compared with 45% in a no-enzyme control. Free fatty acid levels increased to 2-3% during reactions. Incubation of the enzyme in multiple batches of melted fat caused a gradual loss of interesterification activity, apparently due to progressive dehydration. The activity could be restored by addition of water to the reaction medium. Immobilized lipase was also used to catalyze directed interesterification in a continuous flow reactor. Melted tallow was circulated through a packed bed enzyme reactor and a separate crystallization vessel. The temperatures of the two parts of the apparatus were controlled separately to allow crystallization to occur separately from interesterification. Operation of the reactor with conventionally dry, prefractionated tallow allowed the formation of an olein consisting of up to 60% unsaturated fatty acids. The greatest changes in olein fatty acid composition were achieved when the fractionation temperature was kept constant at a value that promoted selective crystallization of trisaturated triglycerides that were continuously produced by enzymic interesterification. The enzyme could be reused without apparent loss of activity, and its activity was apparently enhanced by preincubation in melted tallow for up to several days. Control of both the water activity of the enzyme and tallow feedstock and of the absorption of atmospheric water vapor were required to maintain enzyme activity, during multiple reuse and minimize free fatty acid formation. This method may form the basis for a process to produce highly mono-unsaturated tallow fractions for use in food applications (e.g. frying) where a "healthy" low saturated fat product is required.  相似文献   

11.
A new route for biodiesel production using methyl acetate instead of methanol as the acyl acceptor was proposed in our previous research, and it has been found that this novel route could enhance the stability of the immobilized lipase greatly. In this paper, the kinetics of lipase-catalyzed interesterification of triglycerides for biodiesel production with methyl acetate as the acyl acceptor was further studied. First, a simplified model based on Ping Pong Bi Bi with substrate competitive inhibition mechanism was proposed to describe the reaction kinetics of the interesterification. During our further study, it was observed that three consecutive and reversible reactions occurred in the interesterification of triglycerides and methyl acetate. So, a kinetic model based on mass balance of three second-order reversible reactions was developed and the reaction rate constant, k, was determined by solving the differential rate equations of the reaction system. The results showed that kDG–MG (0.1124) and kMG–TA (0.1129) were much higher than kTG–DG (0.0311), which indicated that the first step reaction was the limit step for the overall interesterification.  相似文献   

12.
The lipase-catalyzed intresterification of triglycerides and fatty acids in n-hexane was studied. Initially, lipase Saiken was modified with a surfactant of sorbitan esters so that its dispersibility in hydrophobic organic media was improved. The surfactant-modified lipase formed in the modification process carried out in a buffer solution has 1,3-positional specificity and predominantly catalyzed the interesterification reaction in a microaqueous n-hexane system. The modification technique converted inactive lipases to very active biocatalysts for the interesterification of triglycerides and fatty acids. The pH and the weight ratio of surfactant to enzyme used during the lipase modification process have shown significant effects in determining the recoveries of the protein and enzyme activity from the buffer solution, the protein content of the modified lipase complex after being freeze dried, and the interesterification activity of the complex. The water content in the reaction solution has strongly influenced the enzyme activity as well as the distribution of the products. (c) 1995 John Wiley & Sons, Inc.  相似文献   

13.
Summary Lipases were investigated with respect to their ability to catalyse the incorporation of fatty acids into phosphatidylcholine (PC) by interesterification reactions. The enzymes were dried onto solid support materials and the conversions were carried out in water-saturated toluene. Three lipases (two fungal and one plant enzyme) had the desired activity; immobilized lipase from Mucor miehei (Lipozyme) was the most active enzyme. The Lipozyme-catalysed interesterification was selective for the sn-1 position of PC and during 48 h of reaction around 50% of the fatty acids in this position were replaced with heptadecanoic acid, a fatty acid which was practically absent in the original phospholipid. Due to adsorption on the support material and the competing hydrolysis reaction the total amount of PC in the reaction solution decreased to about 40% of the original amount. Higher interesterification rates were obtained with free fatty acids as acyl donors than with fatty acid esters. Offprint requests to: I. Svensson  相似文献   

14.
Three grades of diatomaceous earth (Celite 560, Filtercel and Hyflo Supercel) and a controlled-pore silica have been examined for their suitability as support materials for lipase (triacyglycerol acylhydrolase, EC 3.1.1.3) catalysing the interesterification of fats. The controlled-pore silica gave a preparation with a low activity. Although all three Celites gave preparations with similar lipolytic activities, Hyflo Supercel gave the highest interesterification activity. The distribution of enzyme protein in Hyflo Supercel was examined by transmission electron microscopy.  相似文献   

15.
The industrial feasibility of an interesterification process using acetone-dried fungus (as a lipase catalyst) immobilized in biomass support particles (BSPs) was examined by continuous interesterification between olive oil and methyl stearate, where the water content of the reaction mixture (Cw) was controlled at a given value. The Cw affected not only the inactivation rate of lipase in the cells but also the production rate of the by-product (diglycerides). The optimal Cw was determined as about 100 ppm. The half-life of lipase in the cells was about 1200 h at the optimal Cw, suggesting that the interesterification process using the immobilized fungus is industrially feasible.  相似文献   

16.
In this paper a predictive model for the lipase-catalyzed resolution of racemic alcohols by reversible interesterification is presented. The approach takes into account the acyl transference from the acyl donor to the enzyme and from the acyl-enzyme complex to the acyl acceptor. Resolution of (R,S)-2-phenyl-l-propanol by interesterification using n-butyl-butyrate as acyl donor has been experimentally studied. The reaction mechanism was determined as ping-pong with inhibition by n-butanol. The model is based on reaction constants which can be calculated from a few long term experiments. The reaction constants calculated in this way were able to reproduce the results made in other experimental conditions. The extension of this technique to other reaction systems is straight forward.  相似文献   

17.
The emulsification capacity of several edible oils was determined in an aqueous system of bovine serum albumin. The relative emulsification capacity of corn, soybean, sesame, palm, palm kernel and coconut oils was 1.00, 0.99, 0.93, 0.90, 0.82 and 0.77, respectively. The emulsification capacity of straight mixed oils lay close to the mean value of that of the component oils. The capacity of mixed oils was decreased by 30~60% by interesterification. Monoacid triacylglycerols had a very low capacity in comparison with edible oils. By interesterification, the emulsification capacity of a mixture of trioleoylglycerol and trioctanoylglycerol was increased and approached the level of interesterified mixed edible oils.  相似文献   

18.
Abstract

Enzymatic interesterification was carried out between high-oleic canola oil and fully hydrogenated soybean oil using indigenously immobilized Thermomyces lanuginosus lipas substrate concentration, moisture content of enzyme, and enzyme load. Interesterification resulted in a decrease in the concentration of tri-unsaturated and trisaturated TAG and an increase of mono- and di-saturated TAG as observed by reversed-phase HPLC. The alteration in TAG composition and the presence of new TAG species after interesterification was correlated with extended plasticity characterized by lower slip melting point with a significant change in functionality and consistency of the interesterified product. Thermal and structural properties of the blends before and after interesterification were assessed by differential scanning calorimetry (DSC), X-ray diffraction and polarized light microscopy. Trans-fat analysis indicated the absence of any trans fatty acid in the final interesterified product. The resultant interesterified products with varying slip melting points can be used in the formulation of healthier fat and oil products and address a critical industrial demand for trans free formulations for base-stocks of spreads, margarines, and confectionary fats.  相似文献   

19.
To reduce the freezing point of sesame oil, the lipase-catalyzed interesterification of sesame oil in a solvent free system was studied. The lipase was immobilized on Celite and refined sesame oil was used as the only substrate for the reaction. After interesterification, the oil did not solidify at 0 degrees C even after 24 h, and even longer storage at 2-4 degrees C did not result in solidification. The change of physical behavior was investigated with a differential scanning calorimeter and X-ray diffraction, and reduction in the thermodynamic and crystallographic stability of the interesterified oil was demonstrated. The change in triacylglycerol species composition after the reaction was analyzed, showing that content of trisaturated acylglycerol was decreased.  相似文献   

20.
The use of solvent-free systems in the oil and fats industry is commonplace. Initial studies on interesterification were carried out in solvent systems because the lipase was immobilized solely by adsorption onto particles of diatomaceous earth. In this study, the mass transfer characteristics associated with the continuous interesterification of olive oil in a solvent-free system have been examined, for lipase immobilized on the three ion-exchange materials: Duolite ES562, Duolite ES568, and Spheroil DEA. The process of immobilization is influenced by the internal structure of the material and this in turn influences the interesterification activity of the catalyst. Individually prepared catalysts for the three support materials have shown that external mass transfer limitations are unlikely even at low flowrates.In the case of Spherosil DEA, with a mean pore diameter of 1480 A, the wide pores would be expected to reduce internal mass transfer limitations; however, it is more likely that the reduction in activity with increased catalyst loading is due to the lipase molecules being immobilized in a tightly packed monolayer. In such a situation, some active sites of the lipase molecules would become inaccessible to substrate molecules leading to an observed reduction in activity. For Duolite ES568, the observed results are very similar to those seen for Spherosil DEA, however, the pore structure of this support material indicate that some internal mass transfer limitations may also be occurring. Yet the contribution of the individual effects cannot be determined. The results observed for the support Duolite ES562 are different than those observed for the other materials and reflect the heterogeneity of Duolite ES562. The large proportion of narrow pores in the support mean that, for the catalysts examined, immobilization is most likely to have occurred in the external pores of the particles, and as such no internal mass transfer limitation is observed.It is clear that for interesterification the material chosen for enzyme immobilization will have an important role in determining the catalyst efficiency. External mass transfer limitations are very minor and observed internal mass transfer limitations may be caused by both internal mass transfer and the manner in which the immobilization process occurs. (c) 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号