首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seven day- and six week-old alfalfa (Medicago sativa L.) plants, susceptible and resistant to bacterial wilt, were inoculated withCorynebacterium michiganense pv.insidiosum (McCulloch) Dye & Kemp. Leakage of solutes absorbing UV light from leaf discs into distilled water was investigated. The bacterial infection did not affect solute leakage rate from unifoliate and trifoliate leaves of either susceptible or resistant plants at an early stage of the disease. This may indicate that cell membrane integrity in alfalfa leaf tissues was not impaired.  相似文献   

2.
Alfalfa (Medicago sativa; L.) plants susceptible (S) and resistant (R) to the bacterial wilt were fedvia roots with a nutrient solution labelled with86Rb+, at different times after inoculating them withCorynebacterium insidiosum (McCull.) H. L. Jens. The infection did not influence86Rb+ uptake per plant in the course of a 14-day-period following inoculation, however it did affect its distribution differentially in the S- and the R-plants.86Rb+ uptake was significantly decreased due to the infection in the S-plants on the day 49 after the inoculation (a 4-h-exposure to86Rb+), with the iona also being more slowly translocated to the shoots in diseased S-plants than in diseased R-plants. Likely factors causing these effects and their relationship to alfalfa resistance to the bacterial wilt are discussed.  相似文献   

3.
Higher32P uptake per plant was found in the healthy resistant (R) alfalfa (Medicago saliva L.) plants when compared with the healthy plants susceptible (S) to the bacterial wilt, following the exposure of the roots of intact plants to the radiophosphate solution. The bacterial infection markedly decreased32P uptake and radioactivity levels per dry matter in most organs of the R-plants on the day 8 and 14 after inoculation withCorynebacterium insidiosum whereas in the S-plants a decrease in32P uptake was only found on the day 8.32P leakage rate from the infected R-plant roots to the nonradioactive nutrient solution was higher than from the healthy ones on the day 8. At the same time32P content in the organic P fraction was somewhat increased due to the infection in the R-plant roots, whereas32P content in DNA was decreased. After foliar application,32P distribution pattern was similar in the tissues of both the S- and the R-plants and was not affected due to the infection in the course of the 3rd week after inoculation. However, the bacterial infection markedly increased32P translocation from the primary leaf to the rest of the R-plant. An erratum to this article is available at .  相似文献   

4.
7 days or 7 weeks old alfalfa plants (Medicago sativa L.), susceptible (S) and resistant (R) to bacterial wilt, were inoculated withCorynebacterium michiganense pv.insidiosum and on day 8 and 15 after inoculation the levels of acid-soluble phosphate esters (P-esters) were determinated by means of32P labelling in the shoots or roots. The most significant changes were recorded in the roots of the older R plants grown in full Knop nutrient solutions on day 8 after inoculation. The marked reduction of inorganic phosphate (P1) uptake by whole R plants is accompanied by a decrease in the levels of fructose-l, 6-bisphosphate (Fru-P2), glucose-6-phosphate (Glc-6-P), fructose-6-phosphate (Fru-6-P), adenosine mono-, and diphosphate (AMP and ADP), phosphorylcholine (P-choline) and a proportional increase in the level of P1. In the S plants, infection affected neither P1 uptake nor P1 proportions. In the plants grown after inoculation in diluted Knop’s solutions (0.147 mM KH2PO4), infection induced a reduction of the radial transport of P1 to the segments of R roots whereas a reduction of the levels was only recorded in some P-esters [AMP, ADP, dihydroxyacetone phosphate (DHAP), and P-choline, but no decrease of Fru-P2, Glc-6-P and Fru-6-P]. In the S plants, P1 transport and the levels of P-esters were increased by the infection. P1 transport exhibited considerable metabolic dependence (DNP, DCCD). Bacterial infection probably had no influence on the activity of the plasma membrane ATPases.  相似文献   

5.
Radioactive phosphate was applied to the roots of intact alfalfa plants (Medicago sativa L.) on the 49th day after inoculation withCorynebacterium insidiosum (Me Culloch) Jensen and the32P contents in different fractions of phosphoric compounds were determined. In inoculated plants, susceptible to bacterial wilt, the inorganio phosphate contents (32Pinorg) was increased markedly and the32P bound in organic compounds soluble in acids (32Porg) decreased as compared with control. In roots of the same plants the32P contents in phospholipid fraction and DNA were decreased. In tolerant inoculated plants the32Pinorg increase and32Porg decrease as compared with those changes in susceptible plants were less expressive. No expressive changes in determined32P fractions have been proved in resistant plants without any visible disease symptoms.  相似文献   

6.
Acid-soluble phosphate esters were determined in extracts of plant material after a 24 h exposure of the roots of intact alfalfa plants to nutrient media labelled with32Pi. Similar phosphate ester patterns were found in 2-, 3-, 8-, and 9-week-old plants with the exception of Gra-P which could be detected only in shoot extracts. However, phosphate ester levels differed in the shoots and roots. Whereas Fru-P2, Glc-6-P, Fru-6-P, and adenine nucleotides were more abundant in the shoots, Grn-P and P-choline levels were higher in the roots. Certain differences in the levels of P-esters were also recorded between plants susceptible and resistant to bacterial wilt.  相似文献   

7.
Zhang  Zekun  Su  Rui  Chang  Chao  Cheng  Xiao  Peng  Qi  Lambers  Hans  He  Honghua 《Plant and Soil》2021,461(1-2):501-515
Plant and Soil - Residues of antibiotics such as oxytetracycline (OTC) in soil can affect microbial compositions and activities, thus affecting soil P availability, and consequently plant P uptake...  相似文献   

8.
The objective of this study was to evaluate the growth and nutrient-uptake characteristics of Fe-deficiency resistant and susceptible subclover (Trifolium subterraneum L., T. yanninicum Katzn. and Morley, T. brachcalycinum Katzn. and Morley) cultivars on a calcareous soil. Ten subclover cultivars showing varying susceptibilities to Fe-deficiency chlorosis (Karridale, Nangeela, Geraldton, Mt. Barker, Woogenellup, Larisa, Trikkala, Rosedale, Koala and Clare) were grown on a low-Fe, calcareous soil (Petrocalcic Paleustoll) under moist (18% water content, 85% of water holding capacity) and water-saturated conditions using a Cone-tainer® culture system. Chlorosis and its correlation with growth traits and mineral nutrition of the 10 cultivars were examined. The Fe-deficiency susceptibilities of the 10 cultivars decreased in the above order under the moist condition, but in slightly different order under the saturated condition. Shoot and root dry weights, total dry weight, and root-to-shoot ratio were each negatively correlated with chlorosis under both soil-moisture conditions, as was total shoot content of P, Ca, Fe, Mn and Zn. Shoot P and Fe concentrations were each positively correlated with chlorosis under the moist soil condition. Iron and Cu utilization efficiencies (biomass per unit weight of nutrient) in the shoot were each negatively correlated with chlorosis under the moist soil condition. These results suggest that there may be several characteristics of Fe-deficiency chlorosis resistance in subclovers, such as a more effective soil-Fe mobilizing mechanism(s), more balanced nutrition, lower required Fe concentration in the shoot, higher shoot-Fe utilization efficiency, and higher root/shoot ratio under Fe-deficiency stress conditions.  相似文献   

9.
Putrescine uptake and translocation were studied by feeding [3H] putrescine to roots of tomato seedlings ( Lycopersicon esculentum Miller, cv. Earlypak 7) at the stage of expanded cotyledons, of maize seedlings ( Zea mais L.) at the coleoptile stage, and of one year old pines ( Pinus pinea L.). Putrescine translocation was rapid as radioactivity appeared in the upper part of the seedlings within 30 min, continuing to increase up to 24 h, while it decreased in roots. The putrescine supplied was partly metabolized to spermidine and spermine in the course of 24 h. The transport was temperature-dependent as it increased with increasing temperature from 4°C to 30°C. In plants kept in 100% relative humidity the transport decreased by 27% compared to controls kept in 50% relative humidity. The existence of basipetal transport was assessed by feeding labeled putrescine to cotyledons or to a primary leaf of tomato plants at different stages of growth. The influence of ringing at the hypocotyl level on polyamine translocation in pine plants was studied in order to exclude cortical parenchyma and phloem from transport. Radioactivity decreased in the hypocotyl just above the ring and in the upper parts (epicotyls with needles), but long-distance transport was low affected indicating xylem transport. It is suggested that polyamine transport is not polar, and that it occurs mainly through xylem vessels.  相似文献   

10.
Selenium uptake,translocation, assimilation and metabolic fate in plants   总被引:24,自引:0,他引:24  
The chemical and physical resemblance between selenium (Se) and sulfur (S) establishes that both these elements share common metabolic pathways in plants. The presence of isologous Se and S compounds indicates that these elements compete in biochemical processes that affect uptake, translocation and assimilation throughout plant development. Yet, minor but crucial differences in reactivity and other metabolic interactions infer that some biochemical processes involving Se may be excluded from those relating to S. This review examines the current understanding of physiological and biochemical relationships between S and Se metabolism by highlighting their similarities and differences in relation to uptake, transport and assimilation pathways as observed in Se hyperaccumulator and non-accumulator plant species. The exploitation of genetic resources used in bioengineering strategies of plants is illuminating the function of sulfate transporters and key enzymes of the S assimilatory pathway in relation to Se accumulation and final metabolic fate. These strategies are providing the basic framework by which to resolve questions relating to the essentiality of Se in plants and the mechanisms utilized by Se hyperaccumulators to circumvent toxicity. In addition, such approaches may assist in the future application of genetically engineered Se accumulating plants for environmental renewal and human health objectives.  相似文献   

11.
12.
The uptake,translocation and release of phosphorus by Elodea densa   总被引:2,自引:2,他引:0  
Short-term (16 h) laboratory studies of 32P uptake by Elodea densa rooted in sediment demonstrated both foliar and root uptake, and that translocation occurred acropetally and basipetally. Root absorption is projected to provide 83–85% of total phosphorus uptake during 12–16 h photoperiod days. Measured foliar uptake and excretion rates suggest that there would be no net leakage of phosphorus into the water by undamaged actively-growing E. densa. Foliar uptake decreased and root uptake increased in the dark relative to rates under light.  相似文献   

13.
Race 1 of Pseudomonas phaseolicola introduced into leaves of susceptible Canadian Wonder bean plants multiplied logarithmically for 3–5 days, reaching final populations about 105–106 times the original. In resistant Red Mexican, Race 1 multiplied less rapidly to give final populations about 102–103 times the original. Race 2 behaved in susceptible Red Mexican as did Race 1 in Canadian Wonder. Macroscopic symptoms appeared in leaves when bacterial numbers reached their maxima. When introduced into the cotyledonary node Race 1 moved more rapidly upwards than downwards, and more rapidly and farther in Canadian Wonder than in Red Mexican. But even in Canadian Wonder the bacterium appeared only sporadically above the node of the first compound leaf. It could be isolated only rarely from chlorotic haloes around necrotic areas in leaves, or from chlorotic leaves not carrying lesions. Fewer lesions developed and the bacteria multiplied less in older than in younger leaves. Addition of glucose and casein hydrolysate to inocula of Race 1, separately or together, had little effect on growth in Canadian Wonder or Red Mexican, and the bacterium grew equally well in extracts of susceptible and of resistant plants. Preinoculation of leaves with an avirulent race reduced the number of lesions caused by a virulent race inoculated later, and also reduced growth of this race in leaves of a susceptible variety.  相似文献   

14.
Melon seedlings (Cucumis melo L. cv.Galia) were grown hydroponically to study the effect of salinity (80 mmol/LNaCl) on phosphate (Pi) uptake and translocation at two levels of Pi (25 μmol/L and 1 mmol/L). Net uptake rates of Pi were determined by depletionof the medium and by plant content. Salinity decreased Pi uptake at low Pi (high affinity uptake mechanism), 25 μmol/L, although no specific competitive inhibition of Pi uptake by Cl was observed. When plants were grown with high Pi (1 mmol/L), the uptake of Pi through the low affinity system was increased by 80 mmol/L NaCl. Salinity also reduced the phosphorus flux, as Pi, through the xylem. It is hypothesised that high levels of NaCl decrease the mobility of Pi stored in vacuoles, and as a result, inhibit export from this storage compartment to other parts of the plant.  相似文献   

15.
Interactions between biotype E greenbugs, Schizaphis graminum (Rodani), and two near isogenic lines of the greenbug resistance gene Gb3 of wheat, Triticum aestivum L., were examined for 62 d after infestation. By comparing aphid performance and host responses on control and greenbug-preconditioned plants, we demonstrated that systemic resistance to greenbug herbivory was inducible in the resistant genotype with varying intensities and effectiveness in different parts of the plants. Preconditioning of susceptible plants resulted in modification of within-plant aphid distribution and reduction of cumulative greenbug densities, but it showed no effect on reducing greenbug feeding damage to host plant. Preconditioning of resistant plants altered greenbug population dynamics by reducing the size and buffering the fluctuation of the aphid population. Preconditioning in the first (oldest) leaf of the resistant plant had no phenotypically detectable effect in the stem and induced susceptibility locally in the first leaf within the first 2 d after infestation. The preconditioning-induced resistance reduced greenbug density, delayed aphid density peaks and extended the life of younger leaves in resistant plants. Expression of induced resistance was spatially and temporally dynamic within the plant, which occurred more rapidly, was longer in duration, and stronger in intensity in younger leaves. Host resistance gene-mediated induced resistance was effective in lowering greenbug performance and reducing damage from greenbug herbivory in host plants. Results from this study supported the optimal defense theory regarding within-plant defense allocation.  相似文献   

16.
Bean, corn, and tomato plants were grown in a nutrient solution labeled with 32P, 45Ca, or 35S and varying concentrations of AgNO3. Following a 6-hour treatment period, plants were harvested and analyzed. A low Ag+ concentration (50 nanomolar) inhibited the shoot uptake of the ions investigated. In the roots, Ca uptake increased whereas P and S uptake decreased.  相似文献   

17.
Qifu Ma  Zed Rengel  Bill Bowden 《Plant and Soil》2007,291(1-2):301-309
Heterogeneous distribution of mineral nutrients in soil profiles is a norm in agricultural lands, but its influence on nutrient uptake and crop growth is poorly documented. In this study, we examined the effects of varying phosphorus (P) and potassium (K) distribution on plant growth and nutrient uptake by wheat (Triticum aestivum L.) grown in a layered or split soil culture in glasshouse conditions. In the layered pot system the upper soil was supplied with P and either kept watered or allowed to dry or left P-deficient but watered, whereas the lower soil was watered and fertilised with K. Greater reductions in shoot growth, root length and dry weight in the upper soil layer occurred in −P/wet than in +P/dry upper soil treatment. Shoot P concentration and total P content were reduced by P deficiency but not by upper soil drying. Genotypic responses showed that K-efficient cv. Nyabing grew better and took up more P and K than K-inefficient cv. Gutha in well-watered condition, but the differences decreased when the upper soil layer was dry. In the split-root system, shoot dry weight and shoot P and K contents were similar when P and K were applied together in one compartment or separated into two compartments. In comparison, root growth was stimulated and plants took up more P and K in the treatment with the two nutrients supplied together compared with the treatment in which the two nutrients were separated. Roots proliferated in the compartment applied with either P or K at the expense of root growth in the adjoining compartment with neither P nor K. Heterogeneous nutrient distribution has a direct decreasing effect on root growth in deficient patches, and nutrient redistribution within the plant is unlikely to meet the demand of roots grown in such patches.  相似文献   

18.
Activity of redox-enzymes of AA system and of catalase was measured in two near-isogenic tomato lines, respectively resistant and susceptible to Tobacco Mosaic Virus infection. AFR reductase, DHA reductase and catalase showed quite similar activities in both lines, whereas AA peroxidase activity in resistant plants was 75% higher than in susceptible ones, with Km values about 4-fold lower. These data suggest that hydrogen peroxide scavenging operated by AA peroxidase could play an important role in the development of biological defence mechanisms against pathogens.  相似文献   

19.
Zinc (Zn) is an essential micronutrient for plants and animals. Unfortunately, deficiency of Zn in humans has increased on a global scale. The main reason of this micronutrient deficiency is dietary intakes of food with low Zn levels. Adoption of biofortification approaches would result in Zn enrichment of target tissue to a considerable extent. However, there is a basic need to understand Zn absorption mechanisms in plants prior to exploitation of such practical approaches. Zn absorption is a complex physiological trait which is mainly governed by Zn transporters and metal chelators of plant system. Plant growth stage, edaphic factors, season etc. also influence Zn efficiency of particular species. Molecular studies in Zn hyperaccumulators have already demonstrated the participation of specific Zn transporters, vacuolar sequestration and detoxification mechanisms in maintenance of Zn homeostasis. These have been described in detail in present review and provide opportunities for utilization in biofortification programmes. However, issues such as lesser bioavailability of Zn in target organ, uptake of toxic divalent cations (Cd, Ni, Pb, As etc.) along with Zn, sink activity and dilution in Zn concentration in response to sink number etc. in biofortified crops need further investigation. In order to design novel strategy in biofortification programmes, future researches should focus on physiological performance and yield penalties in concerned crop, metabolic load in term of organic acid production and crosstalk of Zn with other mineral nutrients under low and high Zn conditions.  相似文献   

20.
Waterlogging frequently reduces plant biomass allocation to roots. This response may result in a variety of alterations in mineral nutrition, which range from a proportional lowering of whole-plant nutrient concentration as a result of unchanged uptake per unit of root biomass, to a maintenance of nutrient concentration by means of an increase in uptake per unit of root biomass. The first objective of this paper was to test these two alternative hypothetical responses. In a pot experiment, we evaluated how plant P concentration of Paspalum dilatatum, (a waterlogging-tolerant grass from the Flooding Pampa, Argentina) was affected by waterlogging and P supply and how this related to changes in root-shoot ratio. Under both soil P levels waterlogging reduced root-shoot ratios, but did not reduce P concentration. Thus, uptake of P per unit of root biomass increased under waterlogging. Our second objective was to test three non-exclusive hypotheses about potential mechanisms for this increase in P uptake. We hypothesized that the greater P uptake per unit of root biomass was a consequence of: (1) an increase in soil P availability induced by waterlogging; (2) a change in root morphology, and/or (3) an increase in the intrinsic uptake capacity of each unit of root biomass. To test these hypotheses we evaluated (1) changes in P availability induced by waterlogging; (2) specific root length of waterlogged and control plants, and (3) P uptake kinetics in excised roots from waterlogged and control plants. The results supported the three hypotheses. Soil P avail-ability was higher during waterlogging periods, roots of waterlogged plants showed a morphology more favorable to nutrient uptake (finer roots) and these roots showed a higher physiological capacity to absorb P. The results suggest that both soil and plant mechanisms contributed to compensate, in terms of P nutrition, for the reduction in allocation to root growth. The rapid transformation of the P uptake system is likely an advantage for plants inhabiting frequently flooded environments with low P fertility, like the Flooding Pampa. This advantage would be one of the reasons for the increased relative abundance of P. dilatatum in the community after waterlogging periods. Received: 15 February 1997 / Accepted: 20 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号