首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calamagrostis villosa stands occurring in areas deforested by air-pollution impact in the Moravian-Silesian Beskydy Mountains were characterized by a high dry mass of total underground biomass (3 300 g. m?2—the slope site, 2 850 g. m?2—the flat site). The percentage of living roots and rhizomes in total underground biomass was very high (about 70%). The total aboveground biomass was respectively, 321 g.m?2 (the slope site) and 726 g. m?2 (the flat site). In unstabilized habitats on steep slope, the higher plant biomass produced was allocated to a more developed root system.  相似文献   

2.
An ecological study of dry matter production was made in a dwarf forest dominated byAlnus maximowiczii at the timberline of Mt. Fuji. Annual gross production was estimated by two methods, namely the summation method using stem analysis and total photosynthesis calculated from leaf area and photosynthetic rate per leaf area. Seasonal changes in relative light intensity and in leaf area were measured in a quadrat. Photosynthesis and respiration rates of samples were measured in temperature-regulated assimilation chambers. The phytomass was 2,989 g d.w.m?2, and those of stems and branches, leaves, and roots were 1,672 g, 293 g, and 1,024 g respectively. The growing period of this plant was about four months and this plant expanded leaves quickly. The maximum gross photosynthetic rate was 21 mg CO2dm?2 h?1 on September 1. Annual net production estimated by examining the annual rings was 922 g d.w.m?2 year?1 and annual respiration was 735 g. Annual gross production estimated from photosynthetic rates was 1,747 g d.w.m?2 year?1. The sum of annual net production by stem analysis and respiration agree closely with gross production estimated from photosynthetic rate. Gross production of this dwarf forest is comparable to the beech forest of the upper cool temperate zone owing to the high photosynthetic rate ofAlnus maximowiczii.  相似文献   

3.
Seasonal growth characteristics and biomass yield potential of 4 small-leaf, floating, aquatic macrophytes cultured in nutrient nonlimiting conditions were evaluated for central Florida’s climatic conditions. Biomass yields were found to be 10.6, 11.3, 16.1, and 32.1 t (dry wt) har?1 yr?1, respectively, for azolla (Azolla caroliniana), giant duckweed (Spirodela polyrhiza), common duckweed (Lemna minor), and salvinia (Salvinia rotundifolia). Operational plant density was in the range of 10–80 g dry wt m?2 for azolla, 10–88 g dry wt m?2 for giant duckweed, 10–120 g dry wt m?2 for common duckweed, and 35–240 g dry wt m?2 for salvinia. Specific growth rate (% increase per day) was maximum at low plant densities and decreased as the plant density increased. Results suggest that small-leaf, floating plants may not be suitable in monoculture biomass production systems because of low biomass yields, but they may be suitable for inclusion in poly culture systems with larger aquatic plants. The high N content (crude protein = 20–33%) of small-leaf,floating plants suggests the use of biomass as animal feed.  相似文献   

4.
Fluctuations in plant and frond characteristics are described for Macrocystis pyrifera (L.) C. Agardh (Laminariales, Phaeophyta) forming a fringing zone in the Falkland Islands. Giant kelp plants were sampled along a transect in the austral autumn (May 1986) and late spring (December 1986) which, according to previous frond weight analysis, were the times when extremes in population parameters were expected. Plant density and holdfast wet weights were similar for both seasons, but plants had more fronds and the fronds weighed more in spring than in autumn. Consequently, in autumn the frond biomass (1·1 wet kg m?2) and productivity (34·1 wet g m?2 d?1) were lower than in spring, when a biomass of 5·0 wet kg m?2 and a productivity of 72·4 wet g m?2 d?1 were recorded. Production of new fronds and loss of old fronds were determined at monthly intervals between April 1986 and March 1987. New frond production rates followed fluctuations in the quantity of light and varied between 0·08 and 0·48 fronds per plant per day. Frond loss rates did not show a seasonal pattern and fluctuated between 0·05 and 0·42 fronds per plant per day. It is suggested that the Falkland Islands Macrocystis population is more stable than most other giant kelp beds at high latitudes, because of the absence of winter storms.  相似文献   

5.
The seaweed Ulva lactuca L. was spray cultured by mariculture effluents in a mattress‐like layer, held in air on slanted boards by plastic netting. Air‐agitated seaweed suspension tanks were the reference. Growth rate, yield, and ammonia‐N removal rate were 11.8% · d?1, 171 g fresh weight (fwt) · m?2 · d?1, and 5 g N · m?2 · d?1, respectively, by the spray‐cultured U. lactuca, and 16.9% · d?1, 283 g fwt · m?2 · d?1, and 7 g N · m?2 · d?1, respectively, by the tank U. lactuca. Biomass protein content was similar in both treatments. Dissolved oxygen in the fishpond effluent water was raised by >3 mg · L?1 and pH by up to half a unit, upon passage through both culture systems. The data suggest that spray‐irrigation culture of U. lactuca in this simple green‐mattress‐like system supplies the seaweed all it needs to grow and biofilter at rates close to those in standard air‐agitated tank culture.  相似文献   

6.
The productivity of three plant communities differeing in moisture conditions was studied in the river basin of the Dyje near the village of Lan?hot (Southern Moravia). The communities were as follows:Serratuleto-Festucetum commutatae Balátová-Tulá?ková 1963,Gratiola officinalis—Carex praecox-suzae subass.Galium boreale Balátová-Tulá?ková 1963, andGratiola officinalis—Carex praecox-suzae subass.Rorippa silvestris Balátová-Tulá?ková 1963. The associationGratiola officinalis—Carex praecox-suzae subass.Galium boreale appeared as the most productive one, its biomass maximum W=400 g . m?2 and the maximum R=0.042 g . g?1 . day?1 C=4.84 g . m?2 . day?1. Owing to extreme moisture conditions in the year 1966, the associationSerratuleto-Festucetum commutatae was also highly productive, as it reached the following maximum of dry matter production: 240 g . m?2, R=0.0388g . g?1 . day?1 C=4.64 g . m?2 . day?1. The maximum value of dry matter in the associationGratiola officinalis—Carex praecox-suzae subass.Rorippa silvestris was 220 g.m?2. Changes in dry matter production of shoots were evaluated statistically. The dry matter in the underground parts of plants in 1 square metre, collected from the 0–25 cm layer varied from 1,000 to 2,000 g.m?2. Together with records of the increasing dry matter in the shoots the author kept records of the properties of dead material.  相似文献   

7.
The growth of 22 strains of Azolla pinnata R. Br., 3 strains of A. filiculoides Lam. and one strain each of A. mexicana Presl and A. caroliniana Willd. was tested separately in liquid culture media kept in controlled, artificial light (30 klux) growth cabinets. Three temperature levels were used: 33°C (37/29°C day/night), 29°C (33/25°C) and 22°C (26/18°C)/ Photoperiod was 12 h a day.For most A. pinnata strains (except three) and an A. mexicana strain the maximum weekly relative growth rate was higher at 33°C than at 22°C, but not for A. filiculoides and A. caroliniana. The highest value of maximum relative growth rate corresponded to 1.9 doubling days and in most strains this occurred in the first week. As the plants grew, the growth rate slowed down more severely at higher temperatures. The maximum biomass was higher at 22°C than at 33°C in all strains. At 22°C, it took 30–50 days to attain maximum biomass and the highest value was 14 g N m?2 or 320 g dry m?2 by A. caroliniana, followed by 12 g N m?2 or 290 g dry wt. m?2 by one strain of A. filiculoides. At 29°C, the maximum biomass was attained in 20–35 days. The highest value was 6.3 g N m?2 or 154 g dry wt. m?2 by A. caroliniana. At 33°C, most A. pinnata strains gave a maximum biomass of less than 4 g N m?2 after 13–23 days, while some strains grew up to 30 days, resulting in a higher maximum biomass. The highest maximum biomass at 33°C was 5.5 g N m?2 or 140 g m?2 dry wt. by A. pinnata from Cheng Mai while the maximum biomass of A. filiculoides and A. caroliniana was much less. Azolla filiculoides requires lower temperature than other species for its growth. Azolla pinnata has the best tolerance to high temperatures among the four species. Azolla mexicana could not be discriminated from A. pinnata in its response to temperature. Azolla caroliniana may keep an intermediate position between A. filiculoides and A. pinnata in temperature response.The formation of ammonia in the medium was examined and it occurred mostly under stationary growth conditions, but, at 33°C, some strains of A. pinnata and A. mexicana released or formed ammonia at 0.3–0.8 μg N ml?1 per week during their initial exponential growth stage.  相似文献   

8.
The keystone role of leaf-removing crabs in mangrove forests of North Brazil   总被引:11,自引:4,他引:7  
Principle factors which influence mangroveleaf litter turnover, in particular therole of leaf-removing crabs, were evaluatedin a riverine mangrove site nearBragança (Pará, North Brazil). Ourspecial interest was focussed on the roleof the leaf-removing crab Ucidescordatus. Leaf litter fluxes between themangrove forest and the adjacent estuarywere investigated by estimating the biomassand fate of leaf litter material and propagules. Vegetation is dominated by Rhizophora mangle, with Avicenniagerminans trees, both up to 25 m high,found intermittently. During 1997, Rhizophora trees produced around 1.40 gDW m-2 d-1 of leave fall and0.75 g DW m-2 d-1 of propagules.Leaf decomposition rates on the ground wereabout 0.06 g DW m-2 d-1,irrespective of species, habitat or siteexposure. This amount accounts for <3%of total leaf fall. Average leaf litterbiomass present on the ground was 0.01 gDW m-2 d-1. When the mangroveforest was flooded (on average 10 days permonth) the quantity of leaf litterand propagules washed out with the springtide was 10 and 17 times greater thanduring neap tide. Nevertheless, tidalexport and decomposition together made upless than 39 percent of annual leaf litterfall. The bulk of the remaining amount isapparently removed by Ucides. Eachcrab consumed about 1.30 g DW of leaflitter material and propagules per day.Since the average density of these crabswas 1.38 crabs m-2, it is proposedthat Ucides is a keystone species inBragantinian mangroves.  相似文献   

9.
An experimental study was carried out to compare the performance of selected anaerobic high rate reactors operated simultaneously at 37?°C. The three reactors, namely upflow anaerobic sludge bed reactor (UASB), hybrid of UASB reactor and anaerobic filter (anaerobic hybrid reactor – AHR) and anaerobic baffled reactor (ABR), were inoculated with the anaerobic digested sludge from municipal wastewater treatment plant and tested with synthetic wastewater. This wastewater contained sodium acetate and glucose with balanced nutrients and trace elements (COD 6000?mg?·?l?1). Organic loading rate (B v ) was increased gradually from an initial 0.5?kg?·?m?3?·?d?1 to 15?kg?·?m?3?·?d?1 in all the reactors. From the comparison of the reactors' performance, the lowest biomass wash-out resulted from ABR. In the UASB, significant biomass wash-out was observed at the B v 6?kg?·?m?3?·?d?1, and in the AHR at the B v 12?kg?·?m?3?·?d?1. The demand of sodium bicarbonate for pH maintenance in ABR was two times higher as for UASB and AHR. The efficiency of COD removal was comparable for all three reactors – 80–90%. A faster biomass granulation was observed in the ABR than in the other two reactors. This fact is explained by the kinetic selection of filamentous bacteria of the Methanotrix sp. under a high (over 1.5?g?·?l?1) acetate concentration.  相似文献   

10.
This study determined the rate at which nitrogen accumulated in seaweeds is released during decomposition and the effect of temperature on their rates of decomposition and nitrogen release. Gracilaria verrucosa and Ulva lactuca decomposed rapidly in outdoor mesocosms. Ulva, but not Gracilaria, became nitrogen-enriched during decomposition. Maximal weekly rates of nitrogen release were 5.91 ± 2.23 and 6.37 ± 2.59 g N m?2 d?1, respectively for Gracilaria and Ulva. Temperature had a significant effect on the decomposition rate of Gracilaria in a laboratory experiment: decomposition was greater at 30 °C than at 25 °C. No net decomposition was observed at 16 °C. Gracilaria became nitrogen enriched at 30 °C, but not at 16° or 25°. The release of stored nutrients from decaying seaweeds should be included in nutrient budgets and models when seaweed standing stocks are significant. Seaweed source-sink relationships are important ecologically and can be applied to attempts at using seaweeds as environmental monitors of anthropogenic eutrophication and to efforts of cultivating seaweeds for the improvement of water quality.  相似文献   

11.
Photosynthetic activity and temperature regulation of microalgal cultures (Chlorella vulgaris and Scenedesmus obliquus) under different irradiances controlled by a solar tracker and different cell densities were studied in outdoor flat panel photobioreactors. An automated process control unit regulated light and temperature as well as pH value and nutrient concentration in the culture medium. CO2 was supplied using flue gas from an attached combined block heat and power station. Photosynthetic activity was determined by pulse amplitude modulation fluorometry. Compared to the horizontal irradiance of 55 mol photons m?2 d?1 on a clear day, the solar tracked photobioreactors enabled a decrease and increase in the overall light absorption from 19 mol photons m?2 d?1 (by rotation out of direct irradiance) to 79 mol photons m?2 d?1 (following the position of the sun). At biomass concentrations below 1.1 g cell dry weight (CDW) L?1, photoinhibition of about 35 % occurred at irradiances of ≥1,000 μmol photons m?2 s?1 photosynthetic active radiation (PAR). Using solar tracked photobioreactors, photoinhibition can be reduced and at optimum biomass concentration (≥2.3 g CDW L?1), the culture was irradiated up to 2,000 μmol photons m?2 s?1 to overcome light limitation with biomass yields of 0.7 g CDW mol photons?1 and high photosynthetic activities indicated by an effective quantum yield of 0.68 and a maximum quantum yield of 0.80 (F v/F m). Overheating due to high irradiance was avoided by turning the PBR out of the sun or using a cooling system, which maintained the temperature close to the species-specific temperature optima.  相似文献   

12.
The present work evaluated biomass productivity, carbon dioxide fixation rate, and biochemical composition of two microalgal species, Phaeodactylum tricornutum (Bacillariophyta) and Tetradesmus obliquus (Chlorophyta), cultivated indoors in high-technology photobioreactors (HT-PBR) and outdoors both in pilot ponds and low-technology photobioreactors in a greenhouse in southern Italy. Microalgae were grown in standard media, under nitrogen starvation, and in two liquid digestates obtained from anaerobic digestion of agro-zootechnical and vegetable biomass. P. tricornutum, cultivated in semi-continuous mode in indoor HT-PBRs with standard medium, showed a biomass productivity of 21.0?±?2.3 g m?2 d?1. Applying nitrogen starvation, the lipid productivity increased from 2.3 up to 4.5?±?0.5 g m?2 d?1, with a 24 % decrease of biomass productivity. For T. obliquus, a biomass productivity of 9.1?±?0.9 g m?2 d?1 in indoor HT-PBR was obtained using standard medium. Applying liquid digestates as fertilizers in open ponds, T. obliquus gave a biomass productivity (10.8?±?2.0 g m?2 d?1) not statistically different from complete medium such as P. tricornutum (6.5?±?2.2 g m?2 d?1). The biochemical data showed that the fatty acid composition of the microalgal biomass was affected by the different cultivation conditions for both microalgae. In conclusion, it was found that the microalgal productivity in standard medium was about doubled in HT-PBR compared to open ponds for P. tricornutum and was about 20 % higher for T. obliquus.  相似文献   

13.
Light intensity and temperature interactions have a complex effect on the physiological process rates of the filamentous bluegreen alga Anabaena variabilis Kütz. The optimum temperature for photosynthesis increased with increasing light intensity from 10°C at 42 μE·m?2·s?1 to 35°C at 562 μE·m?2·s?1. The light saturation parameter, IK, increased with increasing temperatures. The maximum photosynthetic rate (2.0 g C·g dry wt.?1·d?1) occurred at 35°C and 564 μE·m?2·s?1. At 15°C, the maximum rate was 1.25 g C·g dry wt.?1·d?1 at 332 μE·m?2·s?1. The dark respiration rate increased exponentially with temperature. Under favorable conditions of light intensity and temperature the percent of extracellular release of dissolved organic carbon was less than 5% of the total C fixed. This release increased to nearly 40% under combinations of low light intensity and high temperature. A mathematical model was developed to simulate the interaction of light intensity and temperature on photosynthetic rate. The interactive effects were represented by making the light-saturation parameters a function of temperature.  相似文献   

14.
Diel and monthly variations in abundance, stage composition, biomass, production and feeding rates of the chaetognath Sagitta friderici were studied in the Cananéia Lagoon Estuarine System, São Paulo, Brazil. Plankton samples were collected at intervals of 4 h over several 24-h periods from February 1995 to January 1996. Sagitta friderici occurred throughout the year. Abundance of S. friderici showed considerable diel and monthly variations, ranging from 2 to 373 ind. m?3. During the low-salinity period of February and March, higher abundance was found when salinity was higher, but from May to January abundance did not show consistent pattern in relation to time of day and tidal cycle. Seasonal variation in total body length was related to temperature variations. Mean biomass ranged from 10.593 to 57.533 mgDW m?3. The daily production rate of S. friderici ranged from 0.009 to 4.488 mgC m?3 d?1. Sagitta friderici preyed mainly upon copepods (63.2%) such as Acartia (8.3%), Oncaea (7.4%) and Corycaeus (6.7%), among other prey. The daily mean feeding rate was 1.33 prey d?1 and it was related to the water temperature.  相似文献   

15.
To improve the removal efficiency of subsurface wetlands vegetated mainly by Phragmites, pilot‐scale gravel‐based wetlands were used to treat sewage characterized by chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) pollution. For Phragmites vegetation, COD, TP and TN removal loads of wetland vegetation with Phragmites australisTypha angustataScirpus validus as main species reached 0.517 g m?2 d?1, 0.277 g P m?2 d?1 and 0.023 g N m?2 d?1. The COD removal loads in pilot‐scale and medium‐scale (260 m2 in area) wetlands with Phragmites‐monoculture vegetation were 0.62–0.64 g m?2 d?1, while that of P. australis–T. angustata–S. validus wetland reached 0.974 g m?2 d?1. Thus, the preferable poly‐culture model for Phragmites wetland vegetation was P. australis, T. angustata, S. validus and Zizania latifolia with stem density ratio of 8:1:5:1. After harvest, nitrogen and phosphorus standing stocks of wetland vegetations ranged only 2.2–9.93 g N m?2 and 5.39–13.5 g P m?2, respectively, as both the above ground biomass and the nitrogen and phosphorus contents of the wetland vegetation harvested in late autumn were low.  相似文献   

16.
The kinetic study of Arthrospira platensis extracellular polymeric substances (EPS) production under different trophic modes??photoautotrophy (100???mol photons m?2?s?1), heterotrophy (1.5?g/L glucose), and mixotrophy (100???mol photons m?2?s?1 and 1.5?g/L glucose)??was investigated. Under photoautotrophic and heterotrophic conditions, the maximum EPS production 219.61?±?4.73 and 30.30?±?1.97?mg/L, respectively, occurred during the stationary phase. Under a mixotrophic condition, the maximum EPS production (290.50?±?2.21?mg/L) was observed during the early stationary phase. The highest specific EPS productivity (433.62?mg/g per day) was obtained under a photoautotrophic culture. The lowest specific EPS productivity (38.33?mg/g per day) was observed for the heterotrophic culture. The effects of glucose concentration, light intensity, and their interaction in mixotrophic culture on A. platensis EPS production were evaluated by means of 32 factorial design and response surface methodology. This design was carried out with a glucose concentration of 0.5, 1.5, and 2.5?g/L and at light levels of 50, 100, and 150???mol photons m?2?s?1. Statistical analysis of the model demonstrated that EPS concentration and EPS yield were mainly influenced by glucose concentration and that conditions optimizing EPS concentration were dissimilar from those optimizing EPS yield. The highest maximum predicted EPS concentration (369.3?mg/L) was found at 150???mol photons m?2?s?1 light intensity and 2.4?g/L glucose concentration, while the highest maximum predicted EPS yield (364.3?mg/g) was recorded at 115???mol photons m?2?s?1 light intensity and 1.8?g/L glucose concentration.  相似文献   

17.
Standing crop, density and leaf growth rate of Heterozostera tasmanica (Martens ex Aschers.) den Hartog along with light, temperature, nutrient and sediment characteristics were determined monthly for fifteen months at three study sites in Western Port and one site in Port Phillip Bay, Victoria, Australia. Erect vegetative stems of H. tasmanica were frequently branched, were present throughout the year and accounted for 25–60% of the above-sediment biomass, with the stem proportion higher during winter than summer. At three of the four sites there was a unimodal seasonal pattern in which minimum leaf standing crop (27–61 g dry wt. m?2), density (600–2000 leaf cluster m?2) and leaf productivity (0.34–0.77 g dry wt. m?2 day?1) generally occurred during winter (June–August) and maximum leaf standing crop (105–173 g dry wt. m?2), density (2700–5000 leaf cluster m?2) and leaf productivity (2.6–4.2 g dry wt. m?2 day?1) occurred during summer (December–February). A bimodal seasonal pattern with minimum standing crop and density during midsummer occurred at one site. This anomalous seasonal pattern may be due to exposure and desiccation stress during spring low tides. At the site receiving the lowest irradiance, standing crop, density and annual leaf production also were lowest, but length and width of leaves, shoot height and leaf growth rate per leaf cluster were the highest of the four study sites. On average, each leaf cluster at any one of the study sites produced 30–31 leaves per year with mean leaf turnover rates of 1.3–1.7% day?1. Annual leaf production of H. tasmanica ranged from 410 to 640 g dry wt.m?2 at the four sites.  相似文献   

18.

Background

This study aims to assess suitability of hydroponic technology for treatment of brewery wastewater in a hydroponic bioreactor using Typha latifolia. Triplicated hydroponic bioreactor treatment units were designed, constructed and operated at a hydraulic retention time of 5?days with different surface loadings and mean hydraulic loading rate 0.023?m3 m?2d??1. Young T. latifolia shoots were collected in the vicinity of study site. Wastewater characteristics, plant growth and nutrient accumulation during experiment were analyzed as per APHA standard methods and nutrient removal efficiency was evaluated based on inlet and outlet values.

Results

T. latifolia established and grew well in the hydroponics under fluctuations of wastewater loads and showed a good phytoremedial capacity to remove nutrients. Significant removal efficiencies (p?<?0.05) varied between 54 and 80% for Total Kjeldahl Nitrogen, 42 and 65% for NH4+ -N, 47 and 58% for NO3? -N, and 51 and 70% for PO43?-P. The system improved the removal up to 29% compared to control and produced biomass of 0.61–0.86?kg dry weight (DW) m??2. Nutrients retained were up to 21.17?g?N?kg??1 DW and 2.87?g P kg??1 DW.

Conclusion

The significant nutrients reduction obtained and production of biomass led us to conclude that hydroponics technology using T. latifolia has suitability potential for treatment of brewery wastewater and similar agro-industrial wastewaters. Thus it could be considered as a promising eco-friendly option for wastewater treatment to mitigate water pollution. Integration of treatment and production of biomass needs further improvement.
  相似文献   

19.
In the present study, the daily relative growth rates (DRGR, in percent per day) of the red macroalga Gracilaria domingensis in synthetic seawater was investigated for the combined influence of five factors, i.e., light (L), temperature (T), nitrate (N), phosphate (P), and molybdate (M), using a statistical design method. The ranges of the experimental cultivation conditions were T, 18–26°C; L, 74–162?μmol photons m?2?s?1; N, 40–80?μmol?L?1; P, 8–16?μmol?L?1; and M, 1–5?nmol?L?1. The optimal conditions, which resulted in a maximum growth rate of ≥6.4% d?1 from 7 to 10?days of cultivation, were determined by analysis of variance (ANOVA) multivariate factorial analysis (with a 25 full factorial design) to be L, 74?μmol photons m?2?s?1; T, 26°C; N, 80?μmol?L?1; P, 8?μmol?L?1; and M, 1?nmol?L?1. In additional, these growth rate values are close to the growth rate values in natural medium (von Stosch medium), i.e., 6.5–7.0% d?1. The results analyzed by the ANOVA indicate that the factors N and T are highly significant linear terms, X L, (α?=?0.05). On the other hand, the only significant quadratic term (X Q) was that for L. Statistically significant interactions between two different factors were found between T vs. L and N vs. T. Finally, a two-way (linear/quadratic interaction) model provided a quite reasonable correlation between the experimental and predicted DRGR values (R adjusted 2 ?=?0.9540).  相似文献   

20.
Gametophytes of Macrocystis pyrifera (L.) C. Ag. were cultured under a series of quantum irradiances in three photoperiod regimes. The quantum irradiances in each photoperiod were adjusted to provide equal daily irradiation dosages between photoperiods which allowed a critical examination of the interactions between quantum irradiance and quantum dose in determining gametophyte fertility. The lowest quantum irradiance which stimulated gametogenesis in more than 50% of the female gametophytes was 5 μE·m?2·s?1. The saturating irradiance was ca. 10 μE·m?2·s?1 at photoperiods of 12 h or greater. In terms of daily quantum dose, the lowest dose at which greater than 50% gametogenesis occurred was 0.2 E·m?2·d?1. However, this critical quantum dose was higher (0.4 E·m?2·d?1) when instantaneous irradiances were less than 5 μE·m?2·s?1. The saturation quantum dose was also affected by the rate at which the quantum dose was received and varied from 0.4 to 0.8 E·m?2·d?1. Gametophytes in all three photoperiods reached 100% fertility at quantum irradiances above 5 μE·m?2·s?1. Photoperiod effects were small and could be accounted for by quantum dosage effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号