首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type I sulfatases require an unusual co- or post-translational modification for their activity in hydrolyzing sulfate esters. In eukaryotic sulfatases, an active site cysteine residue is oxidized to the aldehyde-containing C(alpha)-formylglycine residue by the formylglycine-generating enzyme (FGE). The machinery responsible for sulfatase activation is poorly understood in prokaryotes. Here we describe the identification of a prokaryotic FGE from Mycobacterium tuberculosis. In addition, we solved the crystal structure of the Streptomyces coelicolor FGE homolog to 2.1 A resolution. The prokaryotic homolog exhibits remarkable structural similarity to human FGE, including the position of catalytic cysteine residues. Both biochemical and structural data indicate the presence of an oxidized cysteine modification in the active site that may be relevant to catalysis. In addition, we generated a mutant M. tuberculosis strain lacking FGE. Although global sulfatase activity was reduced in the mutant, a significant amount of residual sulfatase activity suggests the presence of FGE-independent sulfatases in this organism.  相似文献   

2.
Sulfatases hydrolytically cleave sulfate esters through a unique catalytic aldehyde, which is introduced by a posttranslational oxidation. To profile active sulfatases in health and disease, activity-based proteomic tools are needed. Herein, quinone methide (QM) traps directed against sulfatases are evaluated as activity-based proteomic probes (ABPPs). Starting from a p-fluoromethylphenyl sulfate scaffold, enzymatically generated QM-traps can inactivate bacterial aryl sulfatases from Pseudomonas aeruginosa and Klebsiella pneumoniae, and human steroid sulfatase. However, multiple enzyme-generated QMs form, diffuse, and non-specifically label purified enzyme. In complex proteomes, QM labeling is sulfatase-dependent but also non-specific. Thus, fluoromethylphenyl sulfates are poor ABPPs for sulfatases.  相似文献   

3.
Benjdia A  Dehò G  Rabot S  Berteau O 《FEBS letters》2007,581(5):1009-1014
To be active all known arylsulfatases undergo a unique post-translational modification leading to the conversion of an active site residue (serine or cysteine) into a C(alpha)-formylglycine. Although deprived of sulfatase activity, Escherichia coli K12 can efficiently mature heterologous Cys-type sulfatases. Three potential enzymes (AslB, YdeM and YidF) belonging to the anaerobic sulfatase maturating enzyme family (an SME) are present in its genome. Here we show that E. coli could mature Cys-type sulfatases only in aerobic conditions and that knocking-out of aslB, ydeM and yidF does not impair Cys-type sulfatase maturation. These findings demonstrate that these putative anSME are not involved in Cys-type sulfatase maturation and strongly support the existence of a second, oxygen-dependent and Cys-type specific sulfatase maturation system among prokaryotes.  相似文献   

4.
A gene encoding the mucin-desulfating sulfatase in Prevotella strain RS2 has been cloned, sequenced, and expressed in an active form. A 600-bp PCR product generated using primers designed from amino acid sequence data was used to isolate a 5,058-bp genomic DNA fragment containing the mucin-desulfating sulfatase gene. A 1,551-bp open reading frame encoding the sulfatase proprotein was identified, and the deduced 517-amino-acid protein minus its signal sequence corresponded well with the published mass of 58 kDa estimated by denaturing gel electrophoresis. The sulfatase sequence showed homology to aryl- and nonarylsulfatases with different substrate specificities from the sulfatases of other organisms. No sulfatase activity could be detected when the sulfatase gene was cloned into Escherichia coli expression vectors. However, cloning the gene into a Bacteroides expression vector did produce active sulfatase. This is the first mucin-desulfating sulfatase to be sequenced and expressed. A second open reading frame (1,257 bp) was identified immediately upstream from the sulfatase gene, coding in the opposite direction. Its sequence has close homology to iron-sulfur proteins that posttranslationally modify other sulfatases. By analogy, this protein is predicted to catalyze the modification of a serine group to a formylglycine group at the active center of the mucin-desulfating sulfatase, which is necessary for enzymatic activity.  相似文献   

5.
Sulfatases are enzymes that hydrolyse a diverse range of sulfate esters. Deficiency of lysosomal sulfatases leads to human diseases characterized by the accumulation of either GAGs (glycosaminoglycans) or sulfolipids. The catalytic activity of sulfatases resides in a unique formylglycine residue in their active site generated by the post-translational modification of a highly conserved cysteine residue. This modification is performed by SUMF1 (sulfatase-modifying factor 1), which is an essential factor for sulfatase activities. Mutations in the SUMF1 gene cause MSD (multiple sulfatase deficiency), an autosomal recessive disease in which the activities of all sulfatases are profoundly reduced. In previous studies, we have shown that SUMF1 has an enhancing effect on sulfatase activity when co-expressed with sulfatase genes in COS-7 cells. In the present study, we demonstrate that SUMF1 displays an enhancing effect on sulfatases activity when co-delivered with a sulfatase cDNA via AAV (adeno-associated virus) and LV (lentivirus) vectors in cells from individuals affected by five different diseases owing to sulfatase deficiencies or from murine models of the same diseases [i.e. MLD (metachromatic leukodystrophy), CDPX (X-linked dominant chondrodysplasia punctata) and MPS (mucopolysaccharidosis) II, IIIA and VI]. The SUMF1-enhancing effect on sulfatase activity resulted in an improved clearance of the intracellular GAG or sulfolipid accumulation. Moreover, we demonstrate that the SUMF1-enhancing effect is also present in vivo after AAV-mediated delivery of the sulfamidase gene to the muscle of MPSIIIA mice, resulting in a more efficient rescue of the phenotype. These results indicate that co-delivery of SUMF1 may enhance the efficacy of gene therapy in several sulfatase deficiencies.  相似文献   

6.
pFGE is the paralog of the formylglycine-generating enzyme (FGE), which catalyzes the oxidation of a specific cysteine to Calpha-formylglycine, the catalytic residue in the active site of sulfatases. The enzymatic activity of sulfatases depends on this posttranslational modification, and the genetic defect of FGE causes multiple sulfatase deficiency. The structural and functional properties of pFGE were analyzed. The comparison with FGE demonstrates that both share a tissue-specific expression pattern and the localization in the lumen of the endoplasmic reticulum. Both are retained in the endoplasmic reticulum by a saturable mechanism. Limited proteolytic cleavage at similar sites indicates that both also share a similar three-dimensional structure. pFGE, however, is lacking the formylglycine-generating activity of FGE. Although overexpression of FGE stimulates the generation of catalytically active sulfatases, overexpression of pFGE has an inhibitory effect. In vitro pFGE interacts with sulfatase-derived peptides but not with FGE. The inhibitory effect of pFGE on the generation of active sulfatases may therefore be caused by a competition of pFGE and FGE for newly synthesized sulfatase polypeptides.  相似文献   

7.
Sulfatases are a highly conserved family of enzymes found in all three domains of life. To be active, sulfatases undergo a unique post-translational modification leading to the conversion of either a critical cysteine ("Cys-type" sulfatases) or a serine ("Ser-type" sulfatases) into a Calpha-formylglycine (FGly). This conversion depends on a strictly conserved sequence called "sulfatase signature" (C/S)XPXR. In a search for new enzymes from the human microbiota, we identified the first sulfatase from Firmicutes. Matrix-assisted laser desorption ionization time-of-flight analysis revealed that this enzyme undergoes conversion of its critical cysteine residue into FGly, even though it has a modified (C/S)XAXR sulfatase signature. Examination of the bacterial and archaeal genomes sequenced to date has identified many genes bearing this new motif, suggesting that the definition of the sulfatase signature should be expanded. Furthermore, we have also identified a new Cys-type sulfatase-maturating enzyme that catalyzes the conversion of cysteine into FGly, in anaerobic conditions, whereas the only enzyme reported so far to be able to catalyze this reaction is oxygen-dependent. The new enzyme belongs to the radical S-adenosyl-l-methionine enzyme superfamily and is related to the Ser-type sulfatase-maturating enzymes. This finding leads to the definition of a new enzyme family of sulfatase-maturating enzymes that we have named anSME (anaerobic sulfatase-maturating enzyme). This family includes enzymes able to maturate Cys-type as well as Ser-type sulfatases in anaerobic conditions. In conclusion, our results lead to a new scheme for the biochemistry of sulfatases maturation and suggest that the number of genes and bacterial species encoding sulfatase enzymes is currently underestimated.  相似文献   

8.
The sulfatase from the snail Heli pomatia is widely used for analytical applications. We have investigated the content of sulfatases in H. pomatia, using a biochemical and a molecular approach. A 112-kDa protein from the intestinal juice of H. pomatia comigrated with sulfatase activity when chromatographed on Sephacryl S300 and concanavalin A-Sepharose. The N-terminal amino acid sequence of the protein was similar to one of three sulfatase motifs defined by sequence alignment of known sulfatases. Degenerate primers designed from the motifs and the N-terminal amino acid sequence obtained were used to generate PCR fragments and to isolate both a full-length and a 3'-truncated cDNA encoding H. pomatia sulfatases, designated SULF1 and SULF2. SULF1 consists of 503 amino acids and shows 53-55% identity to the mammalian arylsulfatase B. The amino acid sequence deduced from the 878-bp SULF2 cDNA fragment is 55% identical with SULF1. Both SULF1 and SULF2 contain the cysteine residue conserved in the active site of many sulfatases, which is known to be posttranslationally modified into formylglycine in eukaryotic sulfatases. However, the SULF1 and SULF2 cDNAs do not code for the protein purified. This indicates the presence of at least three sulfatase genes in H. pomatia.  相似文献   

9.
Despite the importance of the microbiota in human physiology, the molecular bases that govern the interactions between these commensal bacteria and their host remain poorly understood. We recently reported that sulfatases play a key role in the adaptation of a major human commensal bacterium, Bacteroides thetaiotaomicron, to its host (Benjdia, A., Martens, E. C., Gordon, J. I., and Berteau, O. (2011) J. Biol. Chem. 286, 25973–25982). We hypothesized that sulfatases are instrumental for this bacterium, and related Bacteroides species, to metabolize highly sulfated glycans (i.e. mucins and glycosaminoglycans (GAGs)) and to colonize the intestinal mucosal layer. Based on our previous study, we investigated 10 sulfatase genes induced in the presence of host glycans. Biochemical characterization of these potential sulfatases allowed the identification of GAG-specific sulfatases selective for the type of saccharide residue and the attachment position of the sulfate group. Although some GAG-specific bacterial sulfatase activities have been described in the literature, we report here for the first time the identity and the biochemical characterization of four GAG-specific sulfatases. Furthermore, contrary to the current paradigm, we discovered that B. thetaiotaomicron possesses an authentic GAG endosulfatase that is active at the polymer level. This type of sulfatase is the first one to be identified in a bacterium. Our study thus demonstrates that bacteria have evolved more sophisticated and diverse GAG sulfatases than anticipated and establishes how B. thetaiotaomicron, and other major human commensal bacteria, can metabolize and potentially tailor complex host glycans.  相似文献   

10.
Multiple sulfatase deficiency is a lysosomal storage disorder, which can be divided into group I with severe and group II with moderate deficiencies in sulfatases. Antibodies raised against steroid sulfatase purified from human placenta were used to follow the biosynthesis and stability of this enzyme in multiple sulfatase-deficiency fibroblasts. Fibroblasts from both groups synthesized steroid sulfatase of apparently normal size and stability, while the apparent rate of enzyme synthesis and catalytic properties of steroid sulfatase were affected to a variable extent. Cell lines were observed, that synthesized normal amounts of steroid-sulfatase polypeptides, which were catalytically inactive, as well as cell lines that synthesized diminished amounts of catalytically active steroid sulfatase.  相似文献   

11.
Two estrogen sulfatases, arylsulfatase C-estrone sulfatase (ASC-ES) and d-equilenin sulfatase (EqS) were demonstrated histochemically in the normal human female breast, in benign breast diseases and in infiltrating mammary ductal carcinomas to study their significance in the pathogenesis of epithelial proliferations. By hydrolyzing estrone sulfate, the amount of which in female blood is about ten times greater than that of estradiol or estrone, estrogen sulfatases can produce a high local concentration of estrogens. A simultaneous azo-coupling method for histochemical demonstration of ASC-ES is described in the present study; EqS was demonstrated by a previously described method. Estrogen sulfatases were not found in the normal female breast. Both estrogen sulfatases were found in epithelial cells in some examples of mastopathic disease and in fibroadenomas, while ASC-ES was found in periductal fibroblasts. In some cases of infiltrating ductal carcinomas, estrogen sulfatases were present in carcinoma cells. In most of these tumors ASC-ES activity was observed in fibroblasts around infiltrative cell cords. There was no correlation between the presence of estrogen sulfatases and of hormone receptors in carcinomas. It is concluded that estrogen sulfatases play no role in the early stages of benign or malignant epithelial proliferations. However, the induction of estrogen sulfatases may promote epithelial proliferation in some cases if estrogen receptors are present in epithelial cells.  相似文献   

12.
In multiple sulfatase deficiency, a rare human lysosomal storage disorder, all known sulfatases are synthesized as catalytically poorly active polypeptides. Analysis of the latter has shown that they lack a protein modification that was detected in all members of the sulfatase family. This novel protein modification generates a 2-amino-3-oxopropanoic acid (Cα-formylglycine) residue by oxidation of the thiol group of a cysteine that is conserved among all eukaryotic sulfatases. The oxidation occurs in the endoplasmic reticulum at a stage when the nascent polypeptide is not yet folded. The aldehyde is part of the catalytic site and is likely to act as an aldehyde hydrate. One of the geminal hydroxyl groups accepts the sulfate during sulfate ester cleavage leading to the formation of a covalently sulfated enzyme intermediate. The other hydroxyl is required for the subsequent elimination of the sulfate and regeneration of the aldehyde group. In some prokaryotic members of the sulfatase gene family, the DNA sequence predicts a serine residue, and not a cysteine. Analysis of one of these prokaryotic sulfatases, however, revealed the presence of the Cα-formylglycine indicating that the aldehyde group is essential for all members of the sulfatase family and that it can be generated from either cysteine or serine. BioEssays 20 :505–510, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

13.
14.
The genome of Mycobacterium tuberculosis (Mtb) encodes nine putative sulfatases, none of which have a known function or substrate. Here, we characterize Mtb’s single putative type II sulfatase, Rv3406, as a non-heme iron (II) and α-ketoglutarate-dependent dioxygenase that catalyzes the oxidation and subsequent cleavage of alkyl sulfate esters. Rv3406 was identified based on its homology to the alkyl sulfatase AtsK from Pseudomonas putida. Using an in vitro biochemical assay, we confirmed that Rv3406 is a sulfatase with a preference for alkyl sulfate substrates similar to those processed by AtsK. We determined the crystal structure of the apo Rv3406 sulfatase at 2.5 Å. The active site residues of Rv3406 and AtsK are essentially superimposable, suggesting that the two sulfatases share the same catalytic mechanism. Finally, we generated an Rv3406 mutant (Δrv3406) in Mtb to study the sulfatase’s role in sulfate scavenging. The Δrv3406 strain did not replicate in minimal media with 2-ethyl hexyl sulfate as the sole sulfur source, in contrast to wild type Mtb or the complemented strain. We conclude that Rv3406 is an iron and α-ketoglutarate-dependent sulfate ester dioxygenase that has unique substrate specificity that is likely distinct from other Mtb sulfatases.  相似文献   

15.
Sulfatases that specifically catalyze the hydrolysis of the sulfate groups on chondroitin sulfate (CS)/dermatan sulfate (DS) poly- and oligosaccharides belong to the formylglycine-dependent family of sulfatases and have been widely found in various mammalian and bacterial organisms. However, only a few types of CS/DS sulfatase have been identified so far. Recently, several novel CS/DS sulfatases have been cloned and characterized. Advanced studies have provided significant insight into the biological function and mechanism of action of CS/DS sulfatases. Moreover, further studies will provide powerful tools for structural and functional studies of CS/DS as well as related applications. This article reviews the recent progress in CS/DS sulfatase research and is expected to initiate further research in this field.  相似文献   

16.
Fibroblasts from patients with multiple sulfatase deficiency were analyzed for activities of arylsulfatase A and B, iduronate 2-sulfatase and sulfamatase. A group of patients (group I) severely deficient in all sulfatases (residual activities less than or equal to 10% of control) were differentiated from patients (group II) with residual sulfatase activities of up to 90% of control. The synthesis and stability of arylsulfatase A and B were determined in pulse-chase labelling experiments. The apparent rate of synthesis of arylsulfatase A and B varied from 30% to normal in both fibroblasts from group I and II multiple sulfatase deficiency. In group I the molecular activity of the arylsulfatase A and B was more than 10-fold lower than in control fibroblasts. In group II the molecular activity of the arylsulfatase A was twofold to threefold lower and that of arylsulfatase B half of normal. In fibroblasts of both groups the stability of arylsulfatase A polypeptides was significantly diminished. For arylsulfatase B the instability was restricted to the mature 47000-Mr polypeptide and was variable within both groups. These results demonstrate that multiple sulfatase deficiency is a heterogeneous disorder, in which the primary defects can impair both the catalytic properties and the stability of sulfatases.  相似文献   

17.
Aryl sulfamates were originally developed as inhibitors of steroid sulfatase, and have recently been shown to be powerful inactivators of a bacterial sulfatase, PaAtsA from Pseudomonas aeruginosa. We demonstrate that a simple aryl sulfamate, 3-nitrophenyl sulfamate, can inactivate sulfatases from various sources including snail, limpet and abalone. In each case inactivation was time-dependent and active-site directed, as demonstrated by protection against inactivation by substrate. These results suggest that such easily acquired aryl sulfamates can be used as reliable biochemical reagents for the study of sulfatases from a diverse array of sources.  相似文献   

18.
Complementation of multiple sulfatase deficiency in somatic cell hybrids   总被引:1,自引:0,他引:1  
Multiple sulfatase deficiency (MSD) is an inherited disorder characterized by deficient activity of seven different sulfatases. Genetic complementation for steroid sulfatase (STS), arylsulfatase A, and N-acetylgalactosamine 6-SO4 sulfatase was demonstrated in somatic cell hybrids between MSD fibroblasts and mouse cells ( LA9 ) or Chinese hamster cells ( CHW ). In an electrophoretic system that separates human and rodent STS isozymes, enzyme from hybrids migrated as human enzyme. We concluded that the rodent cell complemented the MSD deficiency and allowed normal expression of the STS structural gene. Some MSD- LA9 hybrids showed significant levels of human arylsulfatase A activity, as shown by the immunoprecipitation of active enzyme by human-specific antiserum. Complementation was also suggested for N-acetylgalactosamine 6- sulfatate sulfatase (GalNAc-6S sulfatase) in several MSD- LA9 hybrids by the demonstration of a significant increase in activity (10-fold) over that of the GalNAc-6S sulfatase-deficient parental mouse and MSD cells. Thus, it was possible to demonstrate complementation for more than one sulfatase in a single MSD-rodent hybrid. Normal levels of sulfatase activity in hybrids indicate that the sulfatase structural genes are intact in MSD cells.  相似文献   

19.
Formylglycine-generating enzyme (FGE) catalyzes the oxidation of a specific cysteine residue in nascent sulfatase polypeptides to formylglycine (FGly). This FGly is part of the active site of all sulfatases and is required for their catalytic activity. Here we demonstrate that residues 34-68 constitute an N-terminal extension of the FGE catalytic core that is dispensable for in vitro enzymatic activity of FGE but is required for its in vivo activity in the endoplasmic reticulum (ER), i.e. for generation of FGly residues in nascent sulfatases. In addition, this extension is needed for the retention of FGE in the ER. Fusing a KDEL retention signal to the C terminus of FGE is sufficient to mediate retention of an N-terminally truncated FGE but not sufficient to restore its biological activity. Fusion of FGE residues 1-88 to secretory proteins resulted in ER retention of the fusion protein. Moreover, when fused to the paralog of FGE (pFGE), which itself lacks FGly-generating activity, the FGE extension (residues 34-88) of this hybrid construct led to partial restoration of the biological activity of co-expressed N-terminally truncated FGE. Within the FGE N-terminal extension cysteine 52 is critical for the biological activity. We postulate that this N-terminal region of FGE mediates the interaction with an ER component to be identified and that this interaction is required for both the generation of FGly residues in nascent sulfatase polypeptides and for retention of FGE in the ER.  相似文献   

20.
Calpha-formylglycine is the catalytic residue of sulfatases. Formylglycine is generated by posttranslational modification of a cysteine (pro- and eukaryotes) or serine (prokaryotes) located in a conserved (C/S)XPXR motif. The modifying enzymes are unknown. AtsB, an iron-sulfur protein, is strictly required for modification of Ser(72) in the periplasmic sulfatase AtsA of Klebsiella pneumoniae. Here we show (i) that AtsB is a cytosolic protein acting on newly synthesized serine-type sulfatases, (ii) that AtsB-mediated FGly formation is dependent on AtsA's signal peptide, and (iii) that the cytosolic cysteine-type sulfatase of Pseudomonas aeruginosa can be converted into a substrate of AtsB if the cysteine is substituted by serine and a signal peptide is added. Thus, formylglycine formation in serine-type sulfatases depends both on AtsB and on the presence of a signal peptide, and AtsB can act on sulfatases of other species. AtsB physically interacts with AtsA in a Ser(72)-dependent manner, as shown in yeast two-hybrid and GST pull-down experiments. This strongly suggests that AtsB is the serine-modifying enzyme and that AtsB relies on a cytosolic function of the sulfatase's signal peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号