首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A significant reduction in the content of two members of the sulfoglucuronyl-neolacto series of glycolipids (SGGLs), 3-sulfoglucuronyl-lacto-N-neotetraosylceramide (SGGL-1) and 3-sulfoglucuronyl lacto-N-norhexaosylceramide (SGGL-2), in the cerebellum of the Purkinje cell abnormality mutants, Purkinje cell degeneration (pcd/pcd), lurcher (Lc/+), and staggerer (sg/sg), was also confirmed in the mildly affected nervous (nr/nr) mutant. The expression of SGGLs was studied during development of the pcd/pcd mutant cerebellum, and it was shown that the rate of decline in the level of SGGLs practically coincided with the loss of Purkinje cell perikarya. This indicated that SGGLs are primarily localized in Purkinje cells and that initially, at least, there is no genetic defect in the biosynthesis of SGGLs in the mutant. The precursors of SGGLs, viz., lacto-N-neotetraosylceramide (paragloboside) and lacto-N-norhexaosylceramide, as well as other glycolipids derived from these precursors, such as X-determinant fucoglycolipids and disialosyllacto-N-neotetraosylceramide, were also present in normal cerebellum. Levels of paragloboside and its other derivatives, similar to SGGLs, were also significantly reduced in the Purkinje cell abnormality mutants pcd/pcd, sg/sg, Lc/+, and nr/nr but were normal in other cerebellar mutants, such as quaking (qk/qk), weaver (wv/wv), and reeler (rl/rl), where Purkinje cells are not involved. Thus, the entire paragloboside family of glycolipids is primarily associated with Purkinje cells in the cerebellum. Although levels of monoclonal antibody HNK-1-reactive glycolipids were reduced in the Purkinje cell abnormality mutants, HNK-1-reactive glycoproteins were not affected in these mutants.  相似文献   

2.
It is shown here that glycolipids of the sulfoglucuronyl neolacto series (SGGLs) are present in the adult rodent cerebellum. SGGLs were not detected in the cerebellar murine mutants lurcher, Purkinje cell degeneration, and staggerer, in which Purkinje cell loss is the primary defect. SGGLs were present, however, in normal amounts in weaver and reeler mutants, in which there is a major and relatively specific loss of granule cells without obvious deficiency in Purkinje cells. In the myelin-deficient quaking mutant, the expression of SGGLs also was nearly normal. The loss of SGGLs in Purkinje cell-deficient mutants was specific, since most of the major lipids were not affected significantly and only the percentage composition of other lipids, such as sulfatides and gangliosides, was altered in the mutants. These and other results strongly suggest that SGGLs and other glycolipids of the paragloboside family are localized specifically in Purkinje cells and their arbors in the adult cerebellum. This is the first demonstration of the localization of a specific glycolipid and its analogs in a specific cell type in the nervous system.  相似文献   

3.
A novel glucuronyltransferase (GlcAT-1) has been detected in embryonic chicken brains. This enzyme catalyzes the biosynthesis in vitro of glucuronic acid containing glycolipids starting from neolactotetraosylceramide (nLcOse4Cer) and neolactohexaosylceramide (nLcOse6Cer). The activity is present primarily in the Golgi-rich membrane fraction and can be extracted (60%) from the membrane using a neutral detergent, Nonidet P-40, at pH 7.0. The detergent-solubilized GlcAT-1 is stable (70%) at -20 degrees C for at least 4 months. Both membrane-bound GlcAT-1 and solubilized GlcAT-1 show similar pH optima, 6.5-7.0, in HEPES buffer. The Km values were 15 and 200 microM with UDP-[14C] GlcA and nLcOse4Cer, respectively, when the detergent-solubilized supernatant fraction was used as enzyme source. The purified 14C radioactive product that comigrated with chemically characterized GlcA beta 1-3nLcOse4Cer (GlcA-nLc4) also yielded a positive immunostain with monoclonal antibody (human IgM-RI). The anomeric linkage was established as beta-linked GlcA to the terminal galactose of the substrate, as evidenced by 90-99% cleavage of the terminal [14C] GlcA by purified Helix pomatia and limpet glucuronidases. Permethylation studies of the radioactive product obtained from [6-3H]Gal beta 1-4LcOse3Cer and non-radioactive UDP-GlcA showed the presence of 2,4,6-tri-O-methylgalactose in the hydrolyzed enzymatic product. These studies established the structure of the biosynthesized product from nLcOse4Cer as GlcA beta 1-3Gal beta 1-4 GlcNAc beta 1-3Gal beta 1-4Glc-ceramide.  相似文献   

4.
Abstract: The lacto series of glycolipids are only minor constituents in mammalian CNS and are found mostly during development. Expression of a significant amount (70 μg of neuraminic acid/g dry weight) of disialosyl-lacto- N -neotetraosylceramide (LD1) in adult mouse cerebellum is reported for the first time in the nervous system. The structure of this ganglioside was determined by hydrolysis with various glycosidases, immunochemical tests, sugar and fatty acid analyses after permethylation and capillary GLC-mass spectrometry, sugar linkage analysis of permethylated alditol acetates, and fast-atom bombardment-mass spectrometry of the native ganglioside. The structure of LD1 was determined to be NeuAc-NeuAc α 2-3Gal β 1-4GlcNAc β 1-3Gal β 1-4Glc β 1-1-ceramide. The major fatty acid was 18:0, and the long-chain base was C18-sphingenine. Mouse cerebellum also contained O -acetyl-LD1 and several other O -acetylated gangliosides as recognized by monoclonal antibodies ME311 and 3G5. The levels of LD1 and O -acetyl-LD1 in cerebellum increased during postnatal development. During development of the Purkinje cell degeneration mutant, pcd/pcd , the levels of both of these gangliosides in the cerebellum declined with the loss of Purkinje cells, a finding indicating that these gangliosides are primarily associated with Purkinje cells. In the cortex, LD1, O -acetyl-LD1, and O -acetyl GD3, like GD3, are developmentally regulated antigens and are only expressed in the fetal cortex and not to any significant extent in the adult.  相似文献   

5.
Sulfoglucuronyl glycolipids (SGGLs) have been considered as target antigens in demyelinating peripheral neuropathies associated with IgM monoclonal gammopathy. The regulation of expression of SGGLs in the rat sciatic nerve during development was studied by assaying the levels of SGGLs and activities of four glycosyltransferases sequentially involved in their synthesis from lactosylceramide. The levels of SGGLs in the sciatic nerve increased with development and reached a maximum at sixty days after birth. The rate of increase in the level of SGGLs between day 5 to 20 was similar to rate of deposition of myelin in the nerve. Analysis of the activities of the glycosyltransferases showed that only lactotriosylceramide galactosyltransferase (LcOse3Cer-GalTr) increased in parallel with the levels of SGGLs during development. The other three enzymes were not co-relative with the synthesis of SGGLs. The product of LcOse3Cer-GalTr reaction, nLcOse4Cer is the key intermediate for all neolactoglycolipids, particularly NeuAc2-3nLcOse4Cer or nLM1, which is the major ganglioside (60%) of myelin in rat sciatic nerve. The results suggest that in the sciatic nerve SGGLs are mostly associated with Schwann cell myelin and their synthesis is regulated by LcOse3Cer-GalTr, unlike in the cerebral cortex and cerebellum where SGGLs are associated with the neuronal membranes and their synthesis is regulated by lactosylceramide N-acetylglucosaminyltransferase (LcOse2Cer-GlcNAcTr).  相似文献   

6.
The following neolacto glycolipids were identified and their developmental expression was studied in the rat cerebral cortex and cerebellum: Fuc1-3IIInLcOse4Cer,Fuc1-3VnLcOse6Cer and (Fuc)21-3III,3VnLcOse6Cer, as well as acidic glycolipids, NeuAc2-3IVnLcOse4Cer [nLM1], (NeuAc)22-3IVnLcOse4Cer [nLD1],O-acetyl (NeuAc)22-3IVnLcOse4Cer [OAc-nLD1] and their higher neolactosaminyl homologues NeuAc2-3VInLcOse6Cer [nHM1] and (NeuAc)22-3VInLcOse6Cer [nHD1]. These glycolipids were expressed in the cerebral cortex only during embryonic stages and disappeared postnatally. This loss was ascribed to the down regulation of the synthesis of the key precursor LcOse3Cer which is synthesized by the enzyme lactosylceramide:N-acetylglucosaminyl transferase. On the other hand in the cerebellum, these glycolipids increased with postnatal development due to increasing availability of LcOse3Cer. In the cerebellum, only nLM1 and fucosyl-neolactoglycolipids declined after postnatal day 10–15, perhaps due to regulation by other glycosyltransferases. Also, in the cerebellum, nLD1 and nHD1 were shown to be specifically associated with Purkinje cells and their dendrites in the molecular layer and with their axon terminals in the deep cerebellar nuclei, similar to other neolactoglycolipids shown previously.  相似文献   

7.
A pair of novel neutral glycosphingolipids (Ngsls) has been identified in bovine brain. Their mobilities on thin layer chromatography were slightly different from a standard pentaglycosylceramide (nLcOse(5)Cer from bovine erythrocytes). The compounds were purified to homogeneity by column chromatography. Their fatty acid and base compositions, their monosaccharide compositions and sugar linkage positions were determined by gas-liquid chromato-graphy/mass spectrometry. Carbohydrate sequence analy-sis by(1)H NMR spectroscopy and stepwise exoglyco-sidase digestion indicated the following pentaglycosyl structure for the oligosaccharide moiety of both Ngsls: GalNAcbeta1-4Galbeta1-3GalNAcbeta1-4Galbeta1-4Gl c. The two Ngsls (abbreviated as IV(4)GalNAcGgOse(4)Cer or GalNAc-GA1), differ in their ceramide compositions, having d18:0 and d18:1 sphingosine as their long chain bases. A monospecific polyclonal anti-GalNAc-GA1 antibody, prepared in rabbit and purified by affinity chromatography, stained the neurons of cerebral cortex and cerebellum including Purkinje cells in adult rat brain, indicating that the novel GalNAc-GA1 is associated with cerebellar and other neurons in vertebrate central nervous system.  相似文献   

8.
Abstract: Neolactoglycolipids are derived from neolactotetraosylceramide (nLcOse4Cer). They are found during the embryonic and neonatal developmental periods in the rat cerebral cortex and disappear shortly after birth. These glycolipids are, however, abundant in the adult cerebellum. Lactotriosylceramide (LcOse3Cer):galactosyltrans- ferase (GT), which catalyzes the terminal step in the biosynthesis of nLcOse4Cer, was characterized in mammalian brain. The enzyme was highly specific for LcOse3Cer, with a terminal GlcNAcβ1 -3Gal-residue, and it did not catalyze the transfer of galactose to other glycolipids studied with alternate carbohydrate residues. The microsomal membrane enzyme required Mn2+ and a detergent for in vitro activity. The optimal pH was 7.4, and the Km value for LcOse3Cer was 34 μM (Vmax=~2 nmol/mg/h). The LcOse3Cer:GT was shown to be different from the GM2:GT and the soluble enzyme lactose synthase A. The specific activity of LcOse3Cer:GT was enriched fivefold higher in the white matter than in the gray matter of young adult rat brain, whereas GM2:GT was enriched only about 1.5-fold higher in the white matter. The developmental expression of LcOse3Cer:GT in the cerebral cortex and cerebellum was not correlative with the levels of nLcOse4Cer in these neural areas. Despite the complete absence of nLcOse4Cer in the cerebral cortex of animals older than 5 days, significant activity of the LcOse3Cer:GT was found even in the adult cortex. In cerebellum, the levels of nLcOse4Cer increased with development, but the specific activity of the enzyme was reduced by 50% soon after birth and then remained practically the same with development. The results indicate that LcOse3Cer:GT is not a regulatory enzyme that controls the expression of nLcOse4Cer and its derived neolactoglycolipids in the brain.  相似文献   

9.
Abstract: The cellular distribution of gangliosides in the cerebellum was studied in a series of adult mouse mutants that lose specific populations of neurons. The weaver ( wv ) mutation destroys the vast majority of granule cells, whereas the Purkinje cell degeneration mutation ( pcd ) destroys the vast majority of Purkinje cells. The staggerer ( sg ) and lurcher ( Lc ) mutations, on the other hand, destroy the vast majority of both granule and Purkinje cells. A proliferation of reactive glial cells, which occurs as a consequence of neuronal loss, has been reported in the sg/sg and pcd/pcd mutants, but not in the wv/wv mutant. Compared with the normal (+/+) mice, the concentration (μg/100 mg dry weight) of GD1a was significantly reduced in those mutants that lost granule cells, but was not reduced in the pcd/pcd mutant. The concentration of GTIa, on the other hand, was significantly reduced in those mutants that lost Purkinje cells, but was not reduced in the wv/wv mutant. A significant elevation in the concentration of GD3, which may be related to the proliferation of reactive glial cells, was observed in the pcd/pcd, sglsg , and Lc /+ mutants, but was not observed in the wv/wv mutant. Because these ganglioside abnormalities were confined to the cerebellum, they cannot result from genetic defects in ganglioside metabolism. Instead, these abnormalities result from a differential enrichment of gangliosides in neural membranes. Our findings suggest that GDT1a is more heavily concentrated in granule cells than Purkinje cells, whereas the opposite appears true for GTla. It also appears that GD3 is enriched in reactive glial cells and may play an important role during the morphological transformation of neural membranes.  相似文献   

10.
Diplococcal beta-galactosidase, which is known to be useful for the structural studies of glycoprotein-linked oligosaccharides, was found to show the same substrate specificity in cleaving Gal beta 1-4 linkages of glycolipids as that of the oligosaccharides. The optimum conditions of beta-galactosidase in the 80% ammonium sulfate precipitates of the culture medium of Streptococcus (Diplococcus) pneumoniae were determined with nLcOse4Cer radiolabeled by the galactose oxidase-NaB3H4 procedure. Detergent was required for the highest activity, and different combinations of several buffers and detergents showed different properties in stimulating beta-galactosidase, and in enhancing or suppressing N-acetyl-beta-hexosaminidase which was contaminated in the enzyme preparation. The optimum pH was found to be at 6.5, and specific activity and Km were 8.1 nmol/mg protein/h and 1 nmol, respectively. While more than 70% of beta-galactose was liberated from LacCer and nLcOse4Cer within 1 h under the optimum conditions to form GlcCer and nLcOse3Cer, respectively, none was liberated from LcOse4Cer, GalCer, GgOse4Cer, GbOse3Cer, IV3 alpha GalnLcOse4Cer, and Il3NeuAcGgOse4Cer, showing the substrate specificity solely to Gal beta 1-4 linkage.  相似文献   

11.
Glycolipid glucuronyltransferase activity (GlcAT-1) has been solubilized and characterized from 19-day-old embryonic chicken brain Golgi-rich membranes. The enzyme catalyzes the biosynthesis in vitro of GlcA beta 1-3nLcOse4Cer glycolipid using neolactetraosylceramide (nLcOse4Cer, Gal beta 1-4GlcNAc beta 1-3Gal beta-1-4Glc-Cer) as the substrate. The membrane-bound enzyme shows optimum activity in the presence of neutral detergents such as Triton CF-54, Triton DF-12, and Nonidet P-40. Approximately 60% of the enzyme activity can be solubilized from the Golgi membrane by Nonidet P-40. The solubilized GlcAT-1 activity is inhibited by different salts such as NaCl, NaBr, NaI, and NaOAc, but not by sodium fluoride (up to 0.4 M concentration). Desialyzed alpha 1 acid glycoprotein (SA alpha 1AGP) can be used as a substrate for glucuronyltransferase. Competition studies between glycolipid (nLcOse4Cer) and glycoprotein SA alpha 1AGP) substrates show a mixed type of inhibition. Phospholipids, in particular phosphatidylglycerol, stimulate solubilized GlcAT-1 activity, while D-erythro-sphingosine, a metabolite of glycosphingolipids, is inhibitory (50% inhibition at 0.8 mM D-erythro-sph). These results demonstrate that both phospholipid as well as sphingosine might be involved in modulating glucuronyltransferase activity.  相似文献   

12.
Monoclonal antibody HNK-1-reactive carbohydrate epitope is expressed on proteins, proteoglycans, and sulfoglucuronyl glycolipids (SGGLs). The developmental expression of these HNK-1-reactive antigens was studied in rat cerebellum. The expression of sulfoglucuronyl lacto-N-neotetraosylceramide (SGGL-1) was biphasic with an initial maximum at postnatal day one (PD 1), followed by a second rise in the level at PD 20. The level of sulfoglucuronyl lacto-N-norhexaosyl ceramide (SGGL-2) in cerebellum was low until PD 15 and then increased to a plateau at PD 20. The levels of SGGLs increased during postnatal development of the cerebellum, contrary to their diminishing expression in the cerebral cortex. The expression of HNK-1-reactive glycoproteins decreased with development of the rat cerebellum from PD 1. Several HNK-1-reactive glycoproteins with apparent molecular masses between 150 and 325 kDa were visualized between PD 1 and PD 10. However, beyond PD 10, only two HNK-1-reactive bands at 160 and 180 kDa remained. The latter appeared to be neural cell adhesion molecule, N-CAM-180. A diffuse HNK-1-reactive band seen at the top of polyacrylamide electrophoretic gels was due mostly to proteoglycans. This band increased in its reactivity to HNK-1 between PD 15 and PD 25 and then decreased in the adult cerebellum. The lipid antigens were shown by two complementary methodologies to be localized primarily in the molecular layer and deep cerebellar nuclei as opposed to the granular layer and white matter. A fixation procedure which eliminates HNK-1-reactive epitope on glycoproteins and proteoglycans, but does not affect glycolipids, allowed selective immunoreactivity in the molecular layer and deep cerebellar nuclei.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Abstract: The cerebellar levels of Protein I, a synapse-specific neuronal phosphoprotein, have been investigated in the cerebellar mouse mutants staggerer ( sg ), weaver ( wv ), nervous ( nr ), and Purkinje cell degeneration ( pcd ). The Protein I concentration was reduced by about 66% in sg and wv mutants, representing a 90% loss of Protein I per cerebellum. A heterozygote effect was observed in the wv mutant. These results indicate that a great majority of Protein I in the normal cerebellum may be present in the granule cells. in nr mutants the cerebellar Protein I concentration was reduced by only 12% in 62-day-old mice, suggesting that Purkinje cells contribute little to cerebellar Protein I. However, a greater reduction was observed in pcd mutants, which may reflect on the nature of the pcd mutation.  相似文献   

14.
HNK-1 antibody reactive sulfoglucuronyl carbohydrate (SGC) and SSEA-1 antibody reactive Lewis X (Lex) epitope are expressed on several glycolipids, glycoproteins, and proteoglycans of the nervous system and have been implicated in cell-cell recognition, neurite outgrowth, and/or neuronal migration during development. Interaction of SGC with its binding protein Amphoterin and interaction of Amphoterin with a cell-signaling molecule, receptor for advance glycation end product (RAGE) have been suggested to regulate neurite outgrowth and neuronal migration. The regulation of expression of SGC, Lex, Amphoterin, and RAGE was studied in embryonal carcinoma P19 cells after treatment with retinoic acid (RA). The untreated proliferating P19 cells strongly expressed the Lex epitope, which was mostly due to Lex-glycoproteins. P19 cells, when differentiated into neuron-like cells by RA, did not express the Lex epitope, but expressed increasing levels of SGC, with time in culture. Quantitative biochemical analyses showed that in the P19 cells after RA treatment, the amount of SGC-glycoproteins increased at a significantly higher level than sulfoglucuronyl glycolipid-1 (SGGL-1). The increase in the levels of SGGL-1 was due to 16-fold upregulation in the activity of lactosylceramide: N-acetylglucosaminyl-transferase (Lc3 synthase), which synthesizes the key intermediate lactotriosylceramide (Lc3Cer), for lacto- and neolacto-glycolipids. The large increase in the activity of Lc3 synthase appeared to regulate the levels of other neolacto glycolipids, such as Lc3Cer, nLc4Cer, nLc6Cer, disialosyl-nLc4Cer (LD1), and Lex-glycolipids. Strong upregulation of glucuronyl-transferase and modest twofold enhancement in the activity of the glucuronyl-sulfotransferase, which catalyze the final steps in the SGC synthesis, also would account for the large increase in the synthesis SGC-glycoproteins. RA also upregulated the synthesis of Amphoterin and RAGE in P19 cells. SGC, RAGE, and Amphoterin were co-localized in the RA-differentiated neurons. The initiation of neurite outgrowth along with co-ordinated upregulation of Amphoterin, RAGE, SGC-glycoproteins, and SGGLs in RA-treated P19 cells support the hypothesis that these molecules are involved in the neuronal process formation.  相似文献   

15.
In some patients with neuropathy and plasma cell dyscrasia, the serum IgM M-proteins are known to bind to the myelin associated glycoprotein and to peripheral nerve glycolipids. We have isolated two acidic glycolipids which bind to the M-protein from human cauda equina by DEAE-Sephadex, Iatrobeads, and high performance liquid column chromatographies. The major acidic glycolipid migrated between GM1 and GD1a and the minor acidic glycolipid migrated between GD1a and GD1b. Their structures were elucidated by sugar analysis, enzymatic digestion, mild acid hydrolysis, permethylation, fast atom bombardment mass spectrometry, and NMR studies. Their core structure was confirmed to be paragloboside by high performance thin-layer chromatography-immunostaining using anti-paragloboside monoclonal antibody. Both acidic glycolipids lacked sialic acid but contained sulfated glucuronic acid as their acidic moiety. The sulfate group in the glucuronic acid was established by periodate oxidation and permethylation studies to be attached to the 3 position. The structures of the two acidic glycolipids are therefore consistent with the following: IV3GlcUA(3-sulfate)nLcOse4Cer and VI3GlcUA(3-sulfate)nLcOse6Cer. Additionally, the free carboxyl group on the glucuronic acid residue was shown to be necessary to bind the IgM M-proteins from neuropathy patients.  相似文献   

16.
Sulfoglucuronyl Glycolipids Bind Laminin   总被引:5,自引:1,他引:4  
Previous studies have shown that HNK-1 antibody reactive glycoconjugates, including the glycolipids 3-sulfoglucuronylneolactotetraosylceramide (SGGL-1) and 3-sulfoglucuronylneolactohexaosylceramide (SGGL-2), are temporally and spatially regulated antigens in the developing mammalian cortex. Extracellular matrix glycoprotein laminin is involved in cell adhesion by interacting with cell surface components and also promotes neurite outgrowth. Laminin has been shown to bind sulfatide. The interaction of sulfated glycolipids SGGL-1 and SGGL-2 with laminin was studied by employing a solid-phase radioimmunoassay and by HPTLC-immunoblotting. Laminin binding was detected with anti-laminin antibodies followed by 125I-labelled Protein A and autoradiography. Laminin binds SGGL-1 and SGGL-2, besides sulfatide, but does not bind significantly gangliosides and neutral glycolipids. The binding of SGGLs to laminin was two to three times less compared to sulfatide when compared on a molar basis. Desulfation of SGGLs and sulfatide by mild acid treatment resulted in abolition of laminin binding. On the other hand, chemical modification of glucuronic acid moiety by either esterification or reduction of the carboxyl group had no effect. This showed that the sulfate group was essential for laminin binding. Of the various glycosaminoglycans tested, only heparin inhibited the binding of laminin to SGGLs and sulfatide in a dose-dependent manner. This indicated that SGGLs and sulfatide bind to the heparin binding site present in the laminin molecule. The availability of HNK-1 reactive glycolipids and glycoproteins such as SGGLs and several neural cell adhesion molecules to bind laminin at critical stages of neural development may serve as important physiological signals.  相似文献   

17.
The Purkinje cell degeneration (PCD) mutant mouse is characterized by a degeneration of cerebellar Purkinje cells and progressive ataxia. To identify the molecular mechanisms that lead to the death of Purkinje neurons in PCD mice, we used Affymetrix microarray technology to compare cerebellar gene expression profiles in pcd3J mutant mice 14 days of age (prior to Purkinje cell loss) to unaffected littermates. Microarray analysis, Ingenuity Pathway Analysis (IPA) and expression analysis systematic explorer (EASE) software were used to identify biological and molecular pathways implicated in the progression of Purkinje cell degeneration. IPA analysis indicated that mutant pcd3J mice showed dysregulation of specific processes that may lead to Purkinje cell death, including several molecules known to control neuronal apoptosis such as Bad, CDK5 and PTEN. These findings demonstrate the usefulness of these powerful microarray analysis tools and have important implications for understanding the mechanisms of selective neuronal death and for developing therapeutic strategies to treat neurodegenerative disorders.  相似文献   

18.
Monoclonal antibody HNK-1 reacts with a carbohydrate epitope present in proteins, proteoglycans, and sulfoglucuronylglycolipids (SGGLs). On high-performance TLC plates, SGGLs of the CNS from several species migrated consistently slower than those from the PNS, a result indicating possible differences in the structures. The structural characteristics of the major SGGL, sulfoglucuronylneolactotetraosylceramide (SGGL-1), from CNS was compared with those of SGGL-1 from PNS. Although the composition, sequence, and linkages of the carbohydrate moiety of the SGGL-1 species were identical, SGGL-1 from CNS contained mainly short-chain fatty acids, 16:0, 18:0, and 18:1, amounting to 85% of the total fatty acids, whereas SGGL-1 from PNS contained large proportions (59%) of long-chain fatty acids (greater than 18:0). These differences in the fatty acid composition accounted for the different migration pattern observed. The developmental expression of SGGLs and HNK-1-reactive proteins was studied in rat cerebral cortex between embryonic day (ED) 15 to adulthood. SGGLs in the rat cortex were maximally expressed around ED 19 and almost completely disappeared by postnatal day (PD) 20. This expression was contrary to their increasing expression in the cerebellum and sciatic nerve with postnatal development. Six to eight protein bands with a molecular mass of greater than 160 kDa were HNK-1 reactive in the rat cerebral cortex at different ages. The major HNK-1 reactivity to the 160-kDa protein band seen in ED 19 to PD 10 cortex decreased and completely disappeared from the adult cortex, whereas several other proteins remained HNK-1 reactive even in the adult. Western blot analyses of the neural cell adhesion molecules (N-CAMs) during development of the rat cortex with a polyclonal anti-N-CAM antibody showed that the major HNK-1-reactive protein bands were not N-CAMs. Between PD 1 and 10, 190-200-kDa N-CAM was the major N-CAM, and between PD 15 to adulthood, 180-kDa N-CAM was the only N-CAM present in the rat cortex.  相似文献   

19.
An alpha 2----3 glycolipid galactosyl sialyltransferase (SAT3/4) has been partially purified from embryonic chicken skeletal muscle. It is preserved in 50 mM Hepes buffer (pH 6.8) containing 1% Triton CF-54 and 20% glycerol at -70 degrees C for a period of 6 months without loss of activity. The SAT3+4 preparation transfers sialic acid to nLcOse4Cer, nLcOse6Cer and GgOse4Cer with respective Km values of 1.4, 0.83 and 0.45 mM. The activity is stimulated 2-3-fold at high substrate concentration and 6-8-fold at low substrate concentration; 0.01 and 0.005 mumol for asialo GM1 and 0.025 and 0.01 mumol for other glycolipids in the presence of phosphatidylcholine (PC) and sphingomyelin (SM) at an optimum concentration 0.75%. A higher concentration is inhibitory. SM from chicken muscle is more effective than that from bovine brain and the stimulation is qualitatively proportional to that of the saturated fatty acyl content of SM. Free fatty acids (palmitic and stearic), their sodium salts, other choline compounds including choline chloride, phosphorylcholine and acetylcholine either do not have any effect or are inhibitory. Acetylcholine, even in the presence of SM and PC, is strongly inhibitory (70%).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号