首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the last decade, the long-standing biologist's dream of seeing the molecular events within the living cell came true. This technological achievement is largely due to the development of fluorescence microscopy technologies and the advent of green fluorescent protein as a fluorescent probe. Such imaging technologies allowed us to determine the subcellular localization, mobility and transport pathways of specific proteins and even visualize protein-protein interactions of single molecules in living cells. Direct observation of such molecular dynamics can provide important information about cellular events that cannot be obtained by other methods. Thus, imaging of protein dynamics in living cells becomes an important tool for cell biology to study molecular and cellular functions. In this special issue of review articles, we review various imaging technologies of microscope hardware and fluorescent probes useful for cell biologists, with a focus on recent development of live cell imaging.  相似文献   

2.
Mizrahi A  Lazar A 《Cytotechnology》1988,1(3):199-214
The increasing interest in products from animal cells has caused an extensive research effort towards development of media for cell cultivation.The basic components in the media used for cultivation of animal cells vary depending upon the characters of the cells and the cultivation method. Basic components consist of an energy source, nitrogen source, vitamins, fats and fatty soluble components, inorganic salts, nucleic acid precursors, antibiotics, oxygen, pH buffering systems, hormones, growth factors and serum. Extensive efforts are directed towards developing serum-free or chemically defined media. Among the serum substitutes is a long list of hormones and growth factors.  相似文献   

3.
Quantifying the amount and defining the location of metal ions in cells and organisms are critical steps in understanding metal homeostasis and how dyshomeostasis causes or is a consequence of disease. A number of recent advances have been made in the development and application of analytical methods to visualize metal ions in biological specimens. Here, we briefly summarize these advances before focusing in more depth on probes for examining transition metals in living cells with high spatial and temporal resolution using fluorescence microscopy. This article is part of a Special Issue entitled: Cell Biology of Metals.  相似文献   

4.
The menisci are important fibrocartilaginous structures which give lubrication, shock absorption, nutrition and stabilisation to the knee joint, and also help transfer load. The meniscus' extracellular matrix possesses a complex architecture which is not uniform throughout the tissue. The inner third of the meniscus is composed of hyaline cartilage and the outer meniscus is composed of fibrocartilage. In a mature meniscus only the outer 10-25% is vascularised. There are various types of pathology associated with the meniscus. Previously, surgical techniques used to be considered as conventional treatment for meniscal lesions. However lesions in the avascular regions of the meniscus would rarely heal appropriately. It has been found that total menisectomies in patients may increase their chance of suffering from osteoarthritis in the future. Meniscal tissue engineering has been developed in an attempt to help improve the healing potential of avascular meniscal regions. Many different concepts and approaches have been tried and tested, such as the application of natural and synthetic scaffolds, mesenchymal stem cells, growth factors, fibrin glue and more. The objective of this review is to summarise the different approaches that have been used in the development of meniscal tissue engineering. The focus of this review is to evaluate the strengths and weaknesses of the studies that have been carried out, and from there determine what we have learnt from them in order to further the development in meniscal tissue engineering.  相似文献   

5.
6.
7.
8.
This paper is a short review of the fluorimetric methods used to measure intracellular free Ca++ concetration in living cells. The availability of fluorescent probes has greatly contributed to the understanding of the mechanisms responsible for the cellular homeostasys of this second messenger. Data can be collected from populations of cells by spectrofluorimetry or from small groups or single cells by spectromicroscopy. Finally the fluorescent images can be captured by a high sensitivity camera, digitally processed and convert in Ca++ images of the cell. The technique allows recognition of differences in [Ca++]i transients among adjacent cells in a same field or in different regions of a cell and greatly contributes to the identification of the cellular mechanisms modulating [Ca++]i.  相似文献   

9.
Gregory  P.J.  Hinsinger  P. 《Plant and Soil》1999,210(1):1-9
The past decade has seen the rapid development of new techniques that have revealed substantial changes in soil physical and chemical properties in the rhizosphere compared to the bulk soil. This brief overview focuses on some examples of recently developed, innovative techniques now available and indicates the technical developments required for the future. The development of non-invasive imaging allied with computed tomography has begun to allow the study of root systems in situ and the measurement of localized uptake of water. Further development is still required to disaggregate the simultaneous changes in bulk density and water content that may occur as roots occupy new soil volumes, but resolution of 0.1 mm is now feasible in scanning times of less than 1 h thereby allowing dynamic processes to be measured. Changes in surface tension and composition of solutions close to roots, and of pH, can now be measured with a variety of techniques. Temporal and spatial changes of pH can be measured with micro-electrodes and dye indicator/agar gel techniques have allowed quantitative estimates of H+ fluxes albeit in artificial systems. Novel micro-sampling techniques are under development to quantify rhizosphere changes. So far these techniques have rarely been applied in soils but innovative sampling and analytical techniques should soon allow such studies. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Flynn A  Barry F  O'Brien T 《Cytotherapy》2007,9(8):717-726
The UC is a readily available source of blood that may be used for analysis and treatment. Some authors suggest that within the UC blood (UCB) are cells with potential for differentiation down mesenchymal lineages. Isolation and characterization of these cells has been accomplished in some centers. Differentiation of these cells down multiple lineages has been documented. Surface marker expression and gene expression profiling has been performed, and mesenchymal stromal cells (MSC) from BM and adipose tissue have been compared with those derived from UCB. The use of UCB-derived stem cells has been investigated in pre-clinical studies. As this field is rapidly advancing, this review summarizes the current state of our knowledge of MSC derived from UCB.  相似文献   

11.
The mitogenic in vitro activation of human peripheral blood lymphocytes is severely depressed in space as well as in models of low gravity conditions on ground. The mechanism of T-cell activation is very complex; 3 signals are required for full activation. A series of experiments performed in space and in modeled low gravity on ground have shown that a failure in the delivery of the second signal--interleukin-2--is one of the reasons for the impaired activation. The cytoskeleton plays a key role in several steps of the mitogenic activation; (1) in the binding of the mitogen to the cell membrane and the subsequent patching and capping of the receptors, and (2) in the transduction of the signals from the membrane to the nucleus. Changes in the cytoskeletal structures of vimentin and tubulin observed in cells exposed to low gravity conditions may have influenced the correct signal transduction.  相似文献   

12.
13.

The attachment of motile spores of the green alga Enteromorpha to the substratum is an active process involving an irreversible commitment to adhesion and the secretion of an adhesive. This paper provides an overview of the spore adhesion processes and outlines the results of an experimental approach towards the molecular characterisation of the adhesive, based on the use of monoclonal antibody (mAb) technology. Hybridomas were produced to settled spores displaying secreted adhesive. Candidates producing mAbs to putative adhesive were selected using a range of criteria based on cellular localisation, time of secretion and functional inhibition of adhesion. MAb Ent 6 immunolabelled fibrillar material which was secreted during the early stages of adhesion and low (nM) concentrations of this mAb, or its F(ab)2 fragments, strongly inhibited the attachment of zoospores. A related antibody (Ent 1) also labelled the spore adhesive apparatus, but the antigen appeared to be secreted later during the adhesion process and was predominantly associated with the developing cell wall. Ent 1 also inhibited settlement in spore adhesion assays but the effect was most pronounced at later time points which suggests that this antigen does not have a role in the earliest stages of adhesion. Immunolocalisation showed that both antigens were absent from the cytoplasm or organelles of vegetative tissue but labelled the vegetative cell wall, suggesting a relationship between cell wall components and materials involved in primary adhesion. Both mAbs labelled the Golgi region of settled spores, suggesting continued synthesis of both antigens after adhesion. Both mAbs recognised a 110 kDa N‐linked polydisperse and heterogeneous glycoprotein in extracts of swimming spores under denaturing conditions. In native form the antigens behaved as high molecular weight aggregates (Mr>1.3 × 106). The antigens became progressively insoluble after zoospore attachment. Taken together, the data suggest that the two antibodies recognise closely related, polydisperse, self‐aggregating cell wall glycoproteins in which there is some structural variation to suit alternative roles in primary adhesion and cell wall formation. The two mAbs Ent 1 and Ent 6 partially discriminate between these structural and functional variants. A model for zoospore adhesion is discussed in which adhesion is viewed as an extension of cell wall synthesis, with cross‐links between glycoproteins and other cell wall matrix components providing a strong physical continuum between the cell and the adhesive at the substratum interface.  相似文献   

14.
Biodiesel (fatty acids alkyl esters) is a promising alternative fuel to replace petroleum-based diesel that is obtained from renewable sources such as vegetable oil, animal fat and waste cooking oil. Vegetable oils are more suitable source for biodiesel production compared to animal fats and waste cooking since they are renewable in nature. However, there is a concern that biodiesel production from vegetable oil would disturb the food market. Oil from Jatropha curcas is an acceptable choice for biodiesel production because it is non-edible and can be easily grown in a harsh environment. Moreover, alkyl esters of jatropha oil meet the standard of biodiesel in many countries. Thus, the present paper provides a review on the transesterification methods for biodiesel production using jatropha oil as feedstock.  相似文献   

15.
16.
17.
De novo drug design is the process of generating novel lead compounds with desirable pharmacological and physiochemical properties. The application of deep learning (DL) in de novo drug design has become a hot topic, and many DL-based approaches have been developed for molecular generation tasks. Generally, these approaches were developed as per four frameworks: recurrent neural networks; encoder-decoder; reinforcement learning; and generative adversarial networks. In this review, we first introduced the molecular representation and assessment metrics used in DL-based de novo drug design. Then, we summarized the features of each architecture. Finally, the potential challenges and future directions of DL-based molecular generation were prospected.  相似文献   

18.
This paper reports for the first time the ability to process living cellular materials by means of electrified jets at electric field strengths of up to 2 kV/mm. Bio-suspensions containing living human Jurkat cells at different concentrations were processed via this jetting approach. The jetting process was carried out at an electric field strength between 0.67 kV/mm and 2 kV/mm, corresponding to an applied voltage of 10-30 kV between two electrodes approximately 15 mm apart. The Jurkat cells were jetted under sterile conditions, collected in petri dishes and incubated for 24 and 48 hours. During and after incubation, cells were assessed for survival and structural damage; cells were found to be unharmed and to retain their integrity under all electric field strengths examined. At all field strengths jetting took place in the unstable mode. Good correlation was observed between droplet distribution plots generated by way of laser spectroscopy and estimated values from measurements of droplet relics.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号