首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloroplast mRNA translation is regulated by the 5′‐untranslated region (5′‐UTR). Chloroplast 5′‐UTRs also support translation of the coding regions of heterologous genes. Using an in vitro translation system from tobacco chloroplasts, we detected no translation from a human immunodeficiency virus tat coding region fused directly to the tobacco chloroplast psbA 5′‐UTR. This lack of apparent translation could have been due to rapid degradation of mRNA templates or synthesized protein products. Replacing the psbA 5′‐UTR with the E. coli phage T7 gene 10 5′‐UTR, a highly active 5′‐UTR, and substituting synonymous codons led to some translation of the tat coding region. The Tat protein thus synthesized was stable during translation reactions. No significant degradation of the added tat mRNAs was observed after translation reactions. These results excluded the above two possibilities and confirmed that the tat coding region prevented its own translation. The tat coding region was then fused to the psbA 5′‐UTR with a cognate 5′‐coding segment. Significant translation was detected from the tat coding region when fused after 10 or more codons. That is, translation could be initiated from the tat coding region once translation had started, indicating that the tat coding region inhibits translational initiation but not elongation. Hence, cooperation/compatibility between the 5′‐UTR and its coding region is important for translational initiation.  相似文献   

2.
3.
Cyanobacteria have multiple psbA genes encoding PsbA, the D1 reaction center protein of the Photosystem II complex which bears together with PsbD, the D2 protein, most of the cofactors involved in electron transfer reactions. The thermophilic cyanobacterium Thermosynechococcus elongatus has three psbA genes differently expressed depending on the environmental conditions. Among the 344 residues constituting each of the 3 possible PsbA variants there are 21 substitutions between PsbA1 and PsbA3, 31 between PsbA1 and PsbA2 and 27 between PsbA2 and PsbA3. In this review, we summarize the changes already identified in the properties of the redox cofactors depending on the D1 variant constituting Photosystem II in T. elongatus. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

4.
5.
6.
7.
《Gene》1998,207(1):25-32
The sequence of the chicken interferon-γ (ifn-γ) gene was determined, one of the first non-mammalian cytokine gene structures to be elucidated. Initial genomic clones were amplified from chicken genomic DNA and were used to isolate a cosmid clone covering the entire gene for sequencing. The exon:intron structure of chicken ifn-γ is very similar to those of its mammalian homologues, with the exception of the third intron, which is markedly shorter in the chicken. The first exon contains both 5′ UTR and signal sequence and the first 22 aa of the mature protein. The remainder of the coding region lies in exons 2–4. Exon 4 also encodes the stop codon and the 3′ UTR, including two possible polyadenylation signals. A number of potential regulatory sequences similar to those found in mammals have been identified, in the promoter, in each intron and in the 3′ UTR. In the promoter, these include the TATAATA- and CCAT-boxes, a consensus GATA motif in the reverse orientation and a potential NF-κB binding site. Other regulatory elements identified in the promoters of mammalian ifn-γ genes are absent. Internal to the gene structure, regulatory sequences identified include elements found in the DNase I hypersensitivity region of the first intron of the human ifn-γ gene and several potential NF-κB binding sites. The 3′ UTR contains an AT-rich sequence, including nine repeats of the `instability' motif ATTTA. As in mammals, chicken ifn-γ is a single copy gene. The gene is highly conserved, with no polymorphisms yet identified using either RFLP or SSCP in the coding region. However, promoter sequence polymorphisms between different inbred lines of chickens have been identified, with possible links to disease resistance.  相似文献   

8.
9.
10.
11.
12.
The nucleotide sequences of the entire gene family, comprising six genes, that encodes the Rubisco small subunit (rbcS) multigene family in Mesembryanthemum crystallinum (common ice plant), were determined. Five of the genes are arranged in a tandem array spanning 20 kb, while the sixth gene is not closely linked to this array. The mature small subunit coding regions are highly conserved and encode four distinct polypeptides of equal lengths with up to five amino acid differences distinguishing individual genes. The transit peptide coding regions are more divergent in both amino acid sequence and length, encoding five distinct peptide sequences that range from 55 to 61 amino acids in length. Each of the genes has two introns located at conserved sites within the mature peptide-coding regions. The first introns are diverse in sequence and length ranging from 122 by to 1092 bp. Five of the six second introns are highly conserved in sequence and length. Two genes, rbcS-4 and rbcS-5, are identical at the nucleotide level starting from 121 by upstream of the ATG initiation codon to 9 by downstream of the stop codon including the sequences of both introns, indicating recent gene duplication and/or gene conversion. Functionally important regulatory elements identified in rbcS promoters of other species are absent from the upstream regions of all but one of the ice plant rbcS genes. Relative expression levels were determined for the rbcS genes and indicate that they are differentially expressed in leaves.  相似文献   

13.
14.
Protein synthesis is often regulated at the level of initiation of translation, making it a critical step. This regulation occurs by both the cis‐regulatory elements, which are located in the 5′‐ and 3′‐UTRs (untranslated regions), and trans‐acting factors. A breakdown in this regulation machinery can perturb cellular metabolism, leading to various physiological abnormalities. The highly structured UTRs, along with features such as GC‐richness, upstream open reading frames and internal ribosome entry sites, significantly influence the rate of translation of mRNAs. In this review, we discuss how changes in the cis‐regulatory sequences of the UTRs, for example, point mutations and truncations, influence expression of specific genes at the level of translation. Such modifications may tilt the physiological balance from healthy to diseased states, resulting in conditions such as hereditary thrombocythaemia, breast cancer, fragile X syndrome, bipolar affective disorder and Alzheimer's disease. This information tends to establish the crucial role of UTRs, perhaps as much as that of coding sequences, in health and disease.  相似文献   

15.
16.
Expression of the chloroplast psbA gene coding for the D1 protein of Photosystem II is subject to regulation at different levels in higher plants, including control of mRNA accumulation and translation. In dicots, the conserved 5 non-translated leader (5-UTR) of the psbA mRNA is sufficient to direct the light-dependent translation of the D1 protein. In this report we show that the psbA mRNA 5-UTR forms a stem-loop structure and binds a 43 kD chloroplast protein (43RNP). Binding of the 43RNP is sensitive to competition with poly(U), but insensitive to high concentrations of tRNA, the RNA homopolymers poly(A), poly(G), poly(C), or poly(A):poly(U) as a double-strand RNA. The 43RNP does not bind efficiently to the psbA mRNA 3 non-translated region, although the RNA sequence is U-rich and folds into a stem-loop. A deletion mutant of the psbA 5-UTR RNA in which 5 sequences of the stem-loop are removed does not affect 43RNP binding. Together, these properties suggest that the 43RNP binds most effectively to a specific single-strand U-rich sequence preceding the AUG start codon in the psbA mRNA. Binding of the 43RNP is not detectable in plastid protein extracts from 5-day-old dark-grown seedlings, but is detectable in light-grown seedlings as well as mature plants in the light and after shifted to the dark. The 43RNP is therefore a candidate for a regulatory RNA-binding protein that may control the accumulation and/or translation of the psbA mRNA during light-dependent seedling development.Abbreviations DMS dimethylsulfate - psb Photosystem II genes - RNP ribonucleoprotein - UTR non-translated leader - UV crosslinking ultra-violet light crosslinking  相似文献   

17.
18.
19.
20.
Regulatory small RNAs (sRNAs) have crucial roles in the adaptive responses of bacteria to changes in the environment. Thus far, potential regulatory RNAs have been studied mainly in marine picocyanobacteria in genetically intractable Prochlorococcus, rendering their molecular analysis difficult. Synechococcus sp. WH7803 is a model cyanobacterium, representative of the picocyanobacteria from the mesotrophic areas of the ocean. Similar to the closely related Prochlorococcus it possesses a relatively streamlined genome and a small number of genes, but is genetically tractable. Here, a comparative genome analysis was performed for this and four additional marine Synechococcus to identify the suite of possible sRNAs and other RNA elements. Based on the prediction and on complementary microarray profiling, we have identified several known as well as 32 novel sRNAs. Some sRNAs overlap adjacent coding regions, for instance for the central photosynthetic gene psbA. Several of these novel sRNAs responded specifically to environmentally relevant stress conditions. Among them are six sRNAs changing their accumulation level under cold stress, six responding to high light and two to iron limitation. Target predictions suggested genes encoding components of the light-harvesting apparatus as targets of sRNAs originating from genomic islands and that one of the iron-regulated sRNAs might be a functional homolog of RyhB. These data suggest that marine Synechococcus mount adaptive responses to these different stresses involving regulatory sRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号