首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genes involved in the degradation of fluorene to phthalate were characterized in the fluorene degrader Terrabacter sp. strain DBF63. The initial attack on both fluorene and 9-fluorenone was catalyzed by DbfA to yield 9-fluorenol and 1,1a-dihydroxy-1-hydro-9-fluorenone, respectively. The FlnB protein exhibited activities against both 9-fluorenol and 1,1a-dihydroxy-1-hydro-9-fluorenone to produce 9-fluorenone and 2'-carboxy-2,3-dihydroxybiphenyl, respectively. FlnD is a heteromeric protein encoded by flnD1 and ORF16, being a member of the class III two-subunit extradiol dioxygenase. FlnE was identified as a serine hydrolase for the meta-cleavage products that yield phthalate.  相似文献   

2.
The preferred substrates in angular dioxygenation, monooxygenation, and lateral dioxygenation by dibenzofuran 4,4a-dioxygenase (DFDO) from Terrabacter sp. strain DBF63 and carbazole 1,9a-dioxygenase (CARDO) from Pseudomonas resinovorans strain CA10 are shown to be distinctly different. The preferred oxygenation reactions suggest that DFDO evolved from a polycyclic aromatic hydrocarbon dioxygenase and that its most preferred substrates were fluorene and 9-fluorenone. The angular dioxygenases involved in the degradation pathway of dibenzofuran (dioxin) and fluorene are closely related in function, while CARDO is a novel enzyme not only phylogenetically but also functionally.  相似文献   

3.
A gram-positive bacterium Terrabacter sp. strain DBF63 is able to degrade dibenzofuran (DF) via initial dioxygenation by a novel angular dioxygenase. The dbfA1 and dbfA2 genes, which encode the large and small subunits of the dibenzofuran 4,4a-dioxygenase (DFDO), respectively, were isolated by a polymerase chain reaction-based method. DbfA1 and DbfA2 showed moderate homology to the large and small subunits of other ring-hydroxylating dioxygenases (less than 40%), respectively, and some motifs such as the Fe(II) binding site and the [2Fe-2S] cluster ligands were conserved in DbfA1. DFDO activity was confirmed in Escherichia coli cells containing the cloned dbfA1 and dbfA2 genes with the complementation of nonspecific ferredoxin and ferredoxin reductase component of E. coli. Under this condition, these cells exhibited angular dioxygenation of DF and dibenzo-p-dioxin, and monooxygenation of fluorene, but not angular dioxygenation of carbazole, xanthene, and phenoxathiin. Phylogenetic analysis revealed that DbfA1 formed a branch with recently reported large subunits of polycyclic aromatic hydrocarbon (PAH) dioxygenase from gram-positive bacteria but did not cluster with that of other angular dioxygenases, i.e., DxnA1 from Sphingomonas sp. strain RW1 [Armengaud, J., Happe, B., and Timmis, K. N. J. Bacteriol. 180, 3954-3966, 1998] and CarAa from Pseudomonas sp. strain CA10 [Sato, S., Nam, J.-W., Kasuga, K., Nojiri, H., Yamane, H., and Omori, T. J. Bacteriol. 179, 4850-4858, 1997].  相似文献   

4.
The anhydrotetracycline (ATC) oxygenase enzyme which carries out the conversion of ATC to dehydrotetracycline was purified and the N-terminal amino acid sequence was determined. The sequence displays a significant similarity to that of the p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. This is consistent with the activity of the oxygenase, i.e., addition of a hydroxyl moiety to an aromatic ring structure. Oligonucleotide probes were designed and used to clone the corresponding fragment of chromosomal DNA from Streptomyces rimosus. This DNA fragment was used to screen a cosmid library, allowing the isolation of flanking DNA sequences. Surprisingly, the gene was located within the previously cloned cluster of genes involved in the synthesis of the biosynthetic intermediate ATC and not as had been expected (P. M. Rhodes, N. Winskill, E. J. Friend, and M. Warren, J. Gen. Microbiol. 124:329-338, 1981) at a separate locus on the other side of the chromosome. Subcloning of an appropriate DNA fragment from one of the cosmid clones onto pIJ916 produced Streptomyces lividans transformants which synthesized oxytetracycline.  相似文献   

5.
The gene encoding a novel milk protein-hydrolyzing proteinase was cloned on a 6.56-kb SstI fragment from Streptomyces sp. strain C5 genomic DNA into Streptomyces lividans 1326 by using the plasmid vector pIJ702. The gene encoding the small neutral proteinase (snpA) was located within a 2.6-kb BamHI-SstI restriction fragment that was partially sequenced. The molecular mass of the deduced amino acid sequence of the mature protein was determined to be 15,740, which corresponds very closely with the relative molecular mass of the purified protein (15,500) determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal amino acid sequence of the purified neutral proteinase was determined, and the DNA encoding this sequence was found to be located within the sequenced DNA. The deduced amino acid sequence contains a conserved zinc binding site, although secondary ligand binding and active sites typical of thermolysinlike metalloproteinases are absent. The combination of its small size, deduced amino acid sequence, and substrate and inhibition profile indicate that snpA encodes a novel neutral proteinase.  相似文献   

6.
A 19 kb SphI DNA fragment containing the gene for the extracellular active-site serine beta-lactamase of Streptomyces cacaoi KCC-SO352 was cloned in Streptomyces lividans TK24 using the high-copy-number plasmid pIJ702 as vector. A 30-fold higher yield of beta-lactamase was obtained from S. lividans strain ML1, carrying the recombinant plasmid pDML51, than from S. cacaoi grown under optimal production conditions. In all respects (molecular mass, isoelectric point, kinetics of inhibition by beta-iodopenicillanate) the overproduced S. lividans ML1 beta-lactamase was identical to the original S. cacaoi enzyme. A considerable reduction of beta-lactamase production was caused by elimination of a 12.8 kb portion of the 19 kb DNA fragment by cleavage at an internal SphI site located more than 3 kb upstream of the beta-lactamase structural gene. The beta-lactamase gene was located within a 1.8 NcoI-BclI fragment but when this fragment was cloned in S. lividans pIJ702, the resulting strain produced hardly any more beta-lactamase than the original S. cacaoi.  相似文献   

7.
8.
Nucleotide sequence analysis of the flanking regions of the carBC genes of Pseudomonas sp. strain CA10 revealed that there were two open reading frames (ORFs) ORF4 and ORF5, in the upstream region of carBC. Similarly, three ORFs, ORF6 to ORF8, were found in the downstream region of carBC. The deduced amino acid sequences of ORF6 and ORF8 showed homologies with ferredoxin and ferredoxin reductase components of bacterial multicomponent dioxygenase systems, respectively. ORF4 and ORF5 had the same sequence and were tandemly linked. Their deduced amino acid sequences showed about 30% homology with large (alpha) subunits of other terminal oxygenase components. Functional analysis using resting cells harboring the deleted plasmids revealed that the products of ORF4 and -5, ORF6, and ORF8 were terminal dioxygenase, ferredoxin, and ferredoxin reductase, respectively, of carbazole 1,9a-dioxygenase (CARDO), which attacks the angular position adjacent to the nitrogen atom of carbazole, and that the product of ORF7 is not indispensable for CARDO activity. Based on the results, ORF4, ORF5, ORF6, and ORF8 were designated carAa, carAa, carAc, and carAd, respectively. The products of carAa, carAd, and ORF7 were shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be polypeptides with molecular masses of 43, 36, and 11 kDa, respectively. However, the product of carAc was not detected in Escherichia coli. CARDO has the ability to oxidize a wide variety of polyaromatic compounds, including dibenzo-p-dioxin, dibenzofuran, biphenyl, and polycyclic aromatic hydrocarbons such as naphthalene and phenanthrene. Since 2,2',3-trihydroxydiphenyl ether and 2,2',3-trihydroxybiphenyl were identified as metabolites of dibenzo-p-dioxin and dibenzofuran, respectively, it was considered that CARDO attacked at the angular position adjacent to the oxygen atom of dibenzo-p-dioxin and dibenzofuran as in the case with carbazole.  相似文献   

9.
A 4.9-kb DNA fragment containing the bla gene for the extracellular beta-lactamase (BLA) of Streptomyces albus G was cloned in Streptomyces lividans using the conjugative, low-copy-number plasmid pIJ61 as vector. No expression of bla was observed when this DNA fragment was introduced into Escherichia coli HB101 on a plasmid vector. A 1.5-kb PstI-SstI fragment containing the bla gene was cloned in S. lividans on the nonconjugative, high-copy-number plasmid pIJ702. A tenfold higher yield of BLA was obtained from S. lividans carrying this plasmid than from S. albus G grown under optimal production conditions. The BLA from the clone reacts with beta-iodopenicillanate according to a branched pathway which is characteristic of the original S. albus G BLA enzyme.  相似文献   

10.
A genomic library from Streptomyces tendae raised in shuttle cosmid vector pKC505 was screened with a previously isolated 8-kb DNA fragment containing the orfP1 gene, which is involved in nikkomycin biosynthesis. The entire set of structural genes for nikkomycin synthesis was heterologously expressed in S. lividans TK23 by introducing recombinant cosmids p24/32 and p9/43-2, carrying inserts of about 31 and 27 kb, respectively, overlapping by 15 kb. S. lividans transformants synthesized nikkomycins X, Z, I, and J, which were identified by high-pressure liquid chromatography analyses of culture filtrates.  相似文献   

11.
12.
13.
A lignin peroxidase gene was cloned from Streptomyces viridosporus T7A into Streptomyces lividans TK64 in plasmid pIJ702. BglII-digested genomic DNA (4-10 kb) of S. viridosporus was shotgun-cloned into S. lividans after insertion into the melanin (mel+) gene of pIJ702. Transformants expressing pIJ702 with insert DNA were selected based upon the appearance of thiostrepton resistant (tsrr)/mel-colonies on regeneration medium. Lignin peroxidase-expressing clones were isolated from this population by screening of transformants on a tsr-poly B-411 dye agar medium. In the presence of H2O2 excreted by S. lividans, colonies of lignin peroxidase-expressing clones decolorized the dye. Among 1000 transformants screened, 2 dye-decolorizing clones were found. One, pIJ702/TK64.1 (TK64.1), was further characterized. TK64.1 expressed significant extracellular 2,4-dichlorophenol (2.4-DCP) peroxidase activity (= assay for S. viridosporus lignin peroxidase). Under the cultural conditions employed, plasmidless S. lividans TK64 had a low background level of 2.4-DCP oxidizing activity. TK64.1 excreted an extracellular peroxidase not observed in S. lividans TK64, but similar to S. viridosporus lignin peroxidase ALip-P3, as shown by activity stain assays on nondenaturing polyacrylamide gels. The gene was located on a 4 kb fragment of S. viridosporus genomic DNA. When peroxidase-encoding plasmid, pIJ702.LP, was purified and used to transform three different S. lividans strains (TK64, TK23, TK24), all transformants tested decolorized poly B-411. When grown on lignocellulose in solid state processes, genetically engineered S. lividans TK64.1 degraded the lignocellulose slightly better than did S. lividans TK64. This is the first report of the cloning of a bacterial gene coding for a lignin-degrading enzyme.  相似文献   

14.
In two separate studies a BclI-generated DNA fragment coding for the enzyme tyrosinase, responsible for melanin synthesis, was cloned from Streptomyces antibioticus DNA into two SLP1.2-based plasmid vectors (pIJ37 and pIJ41) to generate the hybrid plasmids, designated pIJ700 and pIJ701, using S. lividans 66 as the host. The fragment (1.55 kb) was subcloned into the multicopy plasmid pIJ350 (which carries thiostrepton resistance and has two non-essential BclI sites) to generate four new plasmids (pIJ702-pIJ705) with the tyrosinase insert located in either orientation at each site. All six plasmids conferred melanin production (the Mel+ phenotype) on their host. As in the S. antibioticus parent, strains of S. lividans carrying the gene specifying tyrosinase synthesis possessed an enzyme activity which was inducible. Most of the tyrosinase activity was secreted during growth of S. antibioticus; in contrast, the majority remained intracellular in the S. lividans clones. The specific activity of the induced tyrosinase activity (intracellular) was higher (up to 36-fold) when the gene was present on the multicopy vector in comparison with its location on the low copy plasmids, pIJ700 or pIJ701, or in S. antibioticus. Restriction mapping of the tyrosinase fragment in pIJ702 revealed endonuclease cleavage sites for several enzymes, including single sites for BglII, SphI and SstI that are absent from the parent vector (pIJ350). Insertion of DNA fragments at any one of these sites abolished the Mel+ phenotype. The results indicate that pIJ702 is a useful cloning vector with insertional inactivation of the Mel+ character as the basis of clone recognition.  相似文献   

15.
S Biro  K F Chater 《Gene》1987,56(1):79-86
Streptomyces lividans gyl DNA (for glycerol utilisation) was cloned by complementation of a Streptomyces coelicolor gyl mutant. Restriction mapping showed that the cloned DNA was highly homologous (perhaps 99%) to S. coelicolor gyl DNA. Using phage-mediated mutational cloning, an internal fragment of the S. coelicolor gyl operon was used to generate a gyl mutant of S. lividans, which subsequently served as recipient in the cloning of gyl DNA from S. griseus. A 7.5-kb SstI-generated fragment of S. griseus DNA was obtained which, as judged by analysis of restriction sites, was only perhaps 87% homologous with the S. coelicolor gyl operon. The cloned S. griseus DNA appears to contain intact gylA and gylB genes and probably also an upstream gene related to the putative gyl regulatory '0.9-kb' gene of S. coelicolor. Cloning of the fragment on a high-copy-number vector in S. lividans did not lead to high levels of the enzymes encoded by gylA and gylB. The S. griseus gylA and gylB genes were not detectably expressed in Escherichia coli glp mutants.  相似文献   

16.
本文旨在构建阿维链霉菌(Streptomyces avermitilis)来源的磷脂酰丝氨酸合成酶基因(pss)的重组质粒,研究其在毕氏酵母中的异源分泌型表达。利用PCR技术克隆阿维链霉菌来源的pss基因,再通过电转化方法将重组质粒pOG-01转入毕氏酵母KM71中,构建重组工程菌KP1。实验结果表明,阿维链霉菌来源的磷酯酰丝氨酸合成酶基因在毕氏酵母KM71中成功表达,2 mL菌体上清催化50 mmol/L卵磷脂,转酯反应的转化率为58%,酶活为4.83 U/mL。  相似文献   

17.
The gene encoding a novel xyloglucanase (Xeg) belonging to family 74 glycoside hydrolases was isolated from a Jonesia sp. strain through functional screening in Escherichia coli. The encoded xyloglucanase is a protein of 972 aminoacyl residues with a 23 residue aminoterminal signal peptide. Over-expression of Xeg in B. subtilis or E. coli failed. In contrast, Xeg was successfully over-expressed and secreted in Streptomyces lividans TK24. To this end Xeg was fused C-terminally to the secretory signal peptide of the subtilisin inhibitor protein (vsi) from Streptomyces venezuelae. The native Xeg signal peptide derived from Jonesia sp. is only poorly functional in S. lividans. Under optimal growth conditions, significant amounts of mature Xeg (100-150 mg/l) are secreted in the spent growth media. A protocol to rapidly purify Xeg to homogeneity from culture supernatants was developed. Biophysical and biochemical analyses indicate that the enzyme is intact, stable and fully functional. Xeg is the longest heterologous polypeptide shown to be secreted from S. lividans. This study further validates use of S. lividans for production of active heterologous proteins and demonstrates that heterologous polypeptides of up to 100 kDa are also tractable by this system.  相似文献   

18.
19.
The dibenzofuran-degrading bacterial strain DPO360 represents a new species of the genus Terrabacter together with the previously described dibenzofuran-mineralizing bacterial strain DPO1361 (K.-H. Engesser, V. Strubel, K. Christoglou, P. Fischer, and H. G. Rast, FEMS Microbiol. Lett. 65:205-210, 1989; V. Strubel, Ph.D. thesis, University of Stuttgart, Stuttgart, Germany, 1991; V. Strubel, H. G. Rast, W. Fietz, H.-J. Knackmuss, and K.-H. Engesser, FEMS Microbiol. Lett. 58:233-238, 1989). Two 2,3-dihydroxybiphenyl-1,2-dioxygenases (BphC1 and BphC2) and one catechol-2,3-dioxygenase (C23O) were shown to be expressed in Terrabacter sp. strain DPO360 growing with dibenzofuran as a sole source of carbon and energy. These enzymes exhibited strong sensitivity to oxygen. They were purified to apparent homogeneity as homodimers (BphC and BphC2) and as a homotetrameric catechol-2,3-dioxygenase (C23O). According to their specificity constants kcat/Km, both BphC1 and BphC2 were shown to be responsible for the cleavage of 2,2',3-trihydroxybiphenyl, the first metabolite in dibenzofuran mineralization along the angular dioxygenation pathway. With this substrate, BphC2 exhibited a considerably higher kcat/Km, value (183 microM/min) than BphC1 (29 microM/min). Catechol-2,3-dioxygenase was recognized to be not involved in the ring cleavage of 2,2',3-trihydroxybiphenyl (kcat/Km, 1 microM/min). Analysis of deduced amino acid sequence data of bphC1 revealed 36% sequence identity to nahC from Pseudomonas putida PpG7 (S. Harayama and M. Rekik, J. Biol. Chem. 264:15328-15333, 1989) and about 40% sequence identity to various bphC genes from different Pseudomonas and Rhodococcus strains. In addition, another 2,3-dihydroxybiphenyl-1,2-dioxygenase gene (bphC3) was cloned from the genome of Terrabacter sp. strain DPO360. Expression of this gene, however, could not be detected in Terrabacter sp. strain DPO360 after growth with dibenzofuran.  相似文献   

20.
Two genes from Zymomonas mobilis that are responsible for ethanol production, pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhII), were heterologously expressed in the Gram-positive bacterium Streptomyces lividans TK24. An examination of carbon distribution revealed that a significant portion of carbon metabolism was switched from biomass and organic acid biosynthesis to ethanol production upon the expression of pdc and adhII. The recombinant S. lividans TK24 produced ethanol from glucose with a yield of 23.7 % based on the carbohydrate consumed. The recombinant was able to produce ethanol from xylose, l-arabinose, mannose, l-rhamnose, galactose, ribose, and cellobiose with yields of 16.0, 25.6, 21.5, 33.6, 30.6, 14.6, and 33.3 %, respectively. Polymeric substances such as starch and xylan were directly converted to ethanol by the recombinant with ethanol yields of 18.9 and 8.8 %, respectively. The recombinant S. lividans TK24/Tpet developed in this study is potentially a useful microbial resource for ethanol production from various sources of biomasses, especially microalgae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号