首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A better understanding of the antimicrobial peptide (AMP) resistance mechanisms of bacteria will facilitate the design of effective and potent AMPs. Therefore, to understand resistance mechanisms and for in vitro assessment, variants of Enterococcus faecalis that are resistant to different doses of the fungal AMP alamethicin (Alm(r)) were selected and characterized. The resistance developed was dose dependent, as both doses of alamethicin and degrees of resistance were colinear. The formation of bacterial cell aggregates observed in resistant cells may be the prime mechanism of resistance because overall, a smaller cell surface in aggregated cells is exposed to AMPs. Increased rigidity of the membranes of Alm(r) variants, because of their altered fatty acids, was correlated with limited membrane penetration by alamethicin. Thus, resistance developed against alamethicin was an adaptation of the bacterial cells through changes in their morphological features and physiological activity and the composition of membrane phospholipids. The Alm(r) variants showed cross-resistance to pediocin, which indicated that resistance developed against both AMPs may share a mechanism, i.e., an alteration in the cell membrane. High percentages of colorimetric response by both AMPs against polydiacetylene/lipid biomimetic membranes of Alm(r) variants confirmed that altered phospholipid and fatty acid compositions were responsible for acquisition of resistance. So far, this is the only report of quantification of resistance and cross-resistance using an in vitro colorimetric approach. Our results imply that a single AMP or AMP analog may be effective against bacterial strains having a common mechanism of resistance. Therefore, an understanding of resistance would contribute to the development of a single efficient, potent AMP against resistant strains that share a mechanism of resistance.  相似文献   

2.
Li P  Sun M  Wohland T  Yang D  Ho B  Ding JL 《Biochemistry》2006,45(35):10554-10562
Factor C-derived Sushi peptides (S1 and S3) have been shown to bind lipopolysaccharide (LPS) and inhibit the growth of Gram-negative bacteria but do not affect mammalian cells. On the premise that the composition of membrane phospholipids differs between the microbial and human cells, we studied the modes of interaction between S1 and S3 and the bacterial membrane phospholipids, POPG, in comparison to that with the mammalian cell membrane phospholipids, POPC and POPE. S1 exhibits specificity against POPG, suggesting its preference for bacterial anionic phospholipids, regardless of whether the phospholipids form vesicles in a solution or a monolayer on a solid surface. The specificity of the Sushi peptides for POPG is a consequence of the electrostatic and hydrophobic forces. The unsaturated nature of POPG confers fluidity to the lipid layer, and being in the proximity of LPS in the microenvironmental milieu, POPG probably enhances the insertion of the peptide-LPS complex into the bacterial inner membrane. Furthermore, during its interaction with POPG, the S1 peptide underwent a transition from random to alpha-helical coil, while S3 became a mixture of beta-sheet and alpha-helical structures. This differential structural change in the peptides could be responsible for their different modes of disruption of POPG vesicles. Conceivably, the selectivity for POPG spares the mammalian membranes from undesirable effects of antimicrobial peptides, which could be helpful in designing and developing a new generation of antibiotics and in offering some clues about the specific function of Factor C, a LPS biosensor.  相似文献   

3.
How do bacteria resist human antimicrobial peptides?   总被引:26,自引:0,他引:26  
Cationic antimicrobial peptides (CAMPs), such as defensins, cathelicidins and thrombocidins, are an important human defense mechanism, protecting skin and epithelia against invading microorganisms and assisting neutrophils and platelets. Staphylococcus aureus, Salmonella enterica and other bacterial pathogens have evolved countermeasures to limit the effectiveness of CAMPs, including the repulsion of CAMPs by reducing the net negative charge of the bacterial cell envelope through covalent modification of anionic molecules (e.g. teichoic acids, phospholipids and lipid A); expelling CAMPs through energy-dependent pumps; altering membrane fluidity; and cleaving CAMPs with proteases. Mutants susceptible to CAMPs are more efficiently inactivated by phagocytes and are virulence-attenuated, indicating that CAMP resistance plays a key role in bacterial infections.  相似文献   

4.
The physical properties of lipid bilayers, such as curvature and fluidity, can affect the interactions of polypeptides with membranes, influencing biological events. Additionally, given the growing interest in peptide-based therapeutics, understanding the influence of membrane properties on membrane-associated peptides has potential utility. pH low insertion peptides (pHLIPs) are a family of water-soluble peptides that can insert across cell membranes in a pH-dependent manner, enabling the use of pH to follow peptide-lipid interactions. Here we study pHLIP interactions with liposomes varying in size and composition, to determine the influence of several key membrane physical properties. We find that pHLIP binding to bilayer surfaces at neutral pH is governed by the ease of access to the membrane’s hydrophobic core, which can be facilitated by membrane curvature, thickness, and the cholesterol content of the membrane. After surface binding, if the pH is lowered, the kinetics of pHLIP folding to form a helix and subsequent insertion across the membrane depends on the fluidity and energetic dynamics of the membrane. We showed that pHLIP is capable of forming a helix across lipid bilayers of different thicknesses at low pH. However, the kinetics of the slow phase of insertion corresponding to the translocation of C-terminal end of the peptide across lipid bilayer, vary approximately twofold, and correlate with bilayer thickness and fluidity. Although these influences are not large, local curvature variations in membranes of different fluidity could selectively influence surface binding in mixed cell populations.  相似文献   

5.
The increased resistance of various bacteria toward available antibiotic drugs has initiated intensive research efforts into identifying new sources of antimicrobial substances. Short antibiotic peptides (10-30 residues) are prevalent in nature as part of the intrinsic defense mechanisms of most organisms and have been proposed as a blueprint for the design of novel antimicrobial agents. Antimicrobial peptides are generally believed to kill bacteria through membrane permeabilization and extensive pore-formation. Assays providing rapid and easy evaluation of interactions between antimicrobial membrane peptides and lipid bilayers could significantly improve screening for substances with effective antibacterial properties, as well as contribute to the elucidation of structural and functional properties of antimicrobial peptides. Here we describe a colorimetric sensor in which particles composed of phospholipids and polymerized polydiacetylene (PDA) lipids were shown to exhibit striking color changes upon interactions with antimicrobial membrane peptides. The color changes in the system occur because of the structural perturbation of the lipids following their interactions with antimicrobial peptides. The assay was also sensitive to the antibacterial properties of structurally and functionally related peptide analogs.  相似文献   

6.
To understand the role of cell membrane phospholipids during resistance development to cationic antimicrobial peptides (CAMPs) in Enterococcus faecalis, gradual dose-dependent single exposure pediocin-resistant (Pedr) mutants of E. faecalis (Efv2.1, Efv3.1, Efv3.2, Efv4.1, Efv4.2, Efv5.1, Efv5.2 and Efv5.3), conferring simultaneous resistance to other CAMPs, selected in previous study were characterized for cell membrane phospholipid head-groups and fatty acid composition. The involvement of phospholipids in resistance acquisition was confirmed by in vitro colorimetric assay using PDA (polydiacetylene)-biomimetic membranes. Estimation of ratio of amino-containing phospholipids to amino-lacking phospholipids suggests that phospholipids in cell membrane of Pedr mutants loose anionic character. At moderate level of resistance, the cell-membrane becomes neutralized while at further higher level of resistance, the cell-surface acquired positive charge. Increased expression of mprF gene (responsible for lysinylation of phospholipids) was also observed on acquiring resistance to pediocin in Pedr E. faecalis. Decreased level of branched chain fatty acids in Pedr mutants might have contributed in enhancing rigidification of cell membrane and contributing towards resistance. The interaction of pediocin with PDA-biomimetic membranes prepared from wild-type and Pedr mutants was monitored by measuring percent colorimetric response (%CR). Increased %CR of pediocin against PDA-biomimetic membranes prepared from Pedr mutants confirmed that cell membrane phospholipids are involved in the interactions of pore formation by CAMPs. There was a direct linear relationship between percent colorimetric response and IC50 of CAMPs for wild-type and Pedr mutants. This relationship further reveals that in vitro colorimetric assay can be used effectively for quantification of resistance to CAMPs.  相似文献   

7.
The skins of closely related frog species produce Gly-Leu-rich peptide orthologs that have very similar sequences, hydrophobicities, and amphipathicities but differ markedly in their net charge and membrane-damaging properties. Cationic Gly-Leu-rich peptides are hemolytic and very potent against microorganisms. Peptides with no net charge have only hemolytic activity. We have used ancestral protein reconstruction and peptide analogue design to examine the roles of electrostatic and hydrophobic interactions in the biological activity and mode of action of functionally divergent Gly-Leu-rich peptides. The structure and interaction of the peptides with anionic and zwitterionic model membranes were investigated by circular dichroism with 2-dimyristoyl-sn-glycero-3-phosphatidylcholine or 1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol vesicles and surface plasmon resonance with immobilized bilayers. The results, combined with antimicrobial assays, the kinetics of bacterial killing, and membrane permeabilization assays, reveal that Gly, Val, Thr, and Ile can all be accommodated in an amphipathic alpha helix when the helix is in a membrane environment. Binding to anionic and zwitterionic membranes fitted to a 2-stage interaction model (adsorption to the membrane followed by membrane insertion). The first step is governed by hydrophobic interactions between the nonpolar surface of the peptide helix and the membranes. The strong binding of Gly-Leu-rich cationic peptides to anionic membranes is due to the second binding step and involves short-range Coulombic interactions that prolong the residence time of the membrane-inserted peptide. The data demonstrate that evolution has positively selected charge-altering nucleotide substitutions to generate an orthologous cationic variant of neutral hemolytic peptides that bind to and permeate bacterial cell membranes.  相似文献   

8.
beta-Amyloid peptide (A beta) is the primary constituent of senile plaques, a defining feature of Alzheimer's disease. Aggregated A beta is toxic to neurons, but the mechanism of toxicity is uncertain. One hypothesis is that interactions between A beta aggregates and cell membranes mediate A beta toxicity. Previously, we described a positive correlation between the A beta aggregation state and surface hydrophobicity, and the ability of the peptide to decrease fluidity in the center of the membrane bilayer [Kremer, J. J., et al. (2000) Biochemistry 39, 10309--10318]. In this work, we report that A beta aggregates increased the steady-state anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) embedded in the hydrophobic center of the membrane in phospholipids with anionic, cationic, and zwitterionic headgroups, suggesting that specific charge--charge interactions are not required for A beta--membrane interactions. A beta did not affect the fluorescence lifetime of DPH, indicating that the increase in anisotropy is due to increased ordering of the phospholipid acyl chains rather than changes in water penetration into the bilayer interior. A beta aggregates affected membrane fluidity above, but not below, the lipid phase-transition temperature and did not alter the temperature or enthalpy of the phospholipid phase transition. A beta induced little to no change in membrane structure or water penetration near the bilayer surface. Overall, these results suggest that exposed hydrophobic patches on the A beta aggregates interact with the hydrophobic core of the lipid bilayer, leading to a reduction in membrane fluidity. Decreases in membrane fluidity could hamper functioning of cell surface receptors and ion channel proteins; such decreases have been associated with cellular toxicity.  相似文献   

9.
The broad-spectrum antiviral arbidol (Arb) inhibits cell entry of enveloped viruses by blocking viral fusion with host cell membrane. To better understand Arb mechanism of action, we investigated its interactions with phospholipids and membrane peptides. We demonstrate that Arb associates with phospholipids in the micromolar range. NMR reveals that Arb interacts with the polar head-group of phospholipid at the membrane interface. Fluorescence studies of interactions between Arb and either tryptophan derivatives or membrane peptides reconstituted into liposomes show that Arb interacts with tryptophan in the micromolar range. Interestingly, apparent binding affinities between lipids and tryptophan residues are comparable with those of Arb IC50 of the hepatitis C virus (HCV) membrane fusion. Since tryptophan residues of membrane proteins are known to bind preferentially at the membrane interface, these data suggest that Arb could increase the strength of virus glycoprotein's interactions with the membrane, due to a dual binding mode involving aromatic residues and phospholipids. The resulting complexation would inhibit the expected viral glycoprotein conformational changes required during the fusion process. Our findings pave the way towards the design of new drugs exhibiting Arb-like interfacial membrane binding properties to inhibit early steps of virus entry, i.e., attractive targets to combat viral infection.  相似文献   

10.
Antimicrobial peptides (AMPs) take part in the immune system by mounting a first line of defense against pathogens. Recurrent structural and functional aspects are observed among peptides from different sources, particularly the net cationicity and amphipathicity. However, the membrane seems to be the key determinant of their action, either as the main target of the peptide action or by forming a barrier that must be crossed by peptides to target core metabolic pathways. More importantly, the specificity exhibited by antimicrobial peptides relies on the different lipid composition between pathogen and host cells, likely contributing to their spectrum of activity. Several mechanisms of action have been reported, which may involve membrane permeabilization through the formation of pores, membrane thinning or micellization in a detergent-like way. AMPs may also target intracellular components, such as DNA, enzymes and even organelles. More recently, these peptides have been shown to produce membrane perturbation by formation of specific lipid-peptide domains, lateral phase segregation of zwitterionic from anionic phospholipids and even the formation of non-lamellar lipid phases. To countermeasure their activity, some pathogens were successful in developing effective mechanisms of resistance to decrease their susceptibility to AMPs. The functional and integral knowledge of such interactions and the clarification of the complex interplay between molecular determinants of peptides, the pathogen versus host cells dichotomy and the specific microenvironment in which all these elements convene will contribute to an understanding of some elusive aspects of their action and to rationally design novel therapeutic agents to overcome the current antibiotic resistance issue.  相似文献   

11.
Vasostatin-I (CgA1-76) is a naturally occurring and biologically active N-terminal peptide derived from chromogranin A (CgA), produced and secreted at high concentrations by neuroendocrine tissues and also from a range of neuroendocrine tumors. This study aims to examine the hypothesis that in the absence of classical protein receptors CgA1-76 may, like its two derived peptides CgA1-40 and CgA47-66, perturb the lipid microenvironment of other membrane receptors, as a basis for the largely inhibitory activities of these CgA peptides. The nature of the interactions between phospholipids and vasostatin-derived fragments was studied in the Langmuir film balance apparatus at 37 degrees C. The synthetic peptides CgA1-40 and CgA47-66 and a recombinant fragment (VS-I) containing vasostatin-I (Ser-Thr-Ala-CgA1-78) were compared for their effects on monolayers of phosphatidylcholine and phosphatidylethanolamine from pig brain and defined species of phosphatidylserine. Marked differences in surface pressure-area isotherms and phase-transition plateaus were apparent with the three classes of phospholipids on VS-I, CgA1-40 and CgA47-66 in physiological buffer or pure water. The results indicate that VS-I and CgA47-66 at 5-10 nM concentrations may engage in electrostatic as well as hydrophobic interactions with membrane-relevant phospholipids at physiological conditions, VS-I in particular enhancing the fluidity of saturated species of phosphatidylserine.  相似文献   

12.
We study fully hydrated bilayers of two di-monounsaturated phospholipids diC18:1PC (DOPC) and diC22:1PC with varying amounts of alamethicin (Alm). We combine the use of X-ray diffuse scattering and molecular dynamics simulations to determine the orientation of alamethicin in model lipids. Comparison of the experimental and simulated form factors shows that Alm helices are inserted transmembrane at high humidity and high concentrations, in agreement with earlier results. The X-ray scattering data and the MD simulations agree that membrane thickness changes very little up to 1/10 Alm/DOPC. In contrast, the X-ray data indicate that the thicker diC22:1PC membrane thins with added Alm, a total decrease in thickness of 4 Å at 1/10 Alm/diC22:1PC. The different effect of Alm on the thickness changes of the two bilayers is consistent with Alm having a hydrophobic thickness close to the hydrophobic thickness of 27 Å for DOPC; Alm is then mismatched with the 7 Å thicker diC22:1PC bilayer. The X-ray data indicate that Alm decreases the bending modulus (KC) by a factor of ∼ 2 in DOPC and a factor of ∼ 10 in diC22:1PC membranes (P/L ∼ 1/10). The van der Waals and fluctuational interactions between bilayers are also evaluated through determination of the anisotropic B compressibility modulus.  相似文献   

13.
Inhibitors of the energy metabolism, such as sodium azide and valinomycin, render yeast cells completely resistant against the killing action of a number of cationic antimicrobial peptides, including the salivary antimicrobial peptide Histatin 5. In this study the Histatin 5-mediated killing of the opportunistic yeast Candida albicans was used as a model system to comprehensively investigate the molecular basis underlying this phenomenon. Using confocal and electron microscopy it was demonstrated that the energy poison azide reversibly blocked the entry of Histatin 5 at the level of the yeast cell wall. Azide treatment hardly induced depolarization of the yeast cell membrane potential, excluding it as a cause of the lowered sensitivity. In contrast, the diminished sensitivity to Histatin 5 of energy-depleted C. albicans was restored by increasing the fluidity of the membrane using the membrane fluidizer benzyl alcohol. Furthermore, rigidification of the membrane by incubation at low temperature or in the presence of the membrane rigidifier Me(2)SO increased the resistance against Histatin 5, while not affecting the energy charge of the cell. In line, azide induced alterations in the physical state of the interior of the lipid bilayer. These data demonstrate that changes in the physical state of the membrane underlie the increased resistance to antimicrobial peptides.  相似文献   

14.
Interaction of enkephalin peptides with anionic model membranes.   总被引:2,自引:0,他引:2  
According to the model for passive transport across the membranes, the total flow of permeant molecules is related to the product of the water-membrane partition coefficient and the diffusion coefficient, and to the water-membrane interfacial barrier. The effect of membrane surface charge on the permeability and interaction of analgesic peptide ligands with model membranes was investigated. A mixture of zwitterionic phospholipids with cholesterol was used as a model membrane. The lipid membrane charge density was controlled by the addition of anionic 1-palmitoyl-2-oleoylphosphatidylserine. Two classes of highly potent analgesic peptides were studied, c[D-Pen(2),D-Pen(5)]enkephalin (DPDPE) and biphalin, a dimeric analog of enkephalin. The effect of increased surface charge on the permeability of the zwitterionic DPDPE is a relatively modest decrease, that appears to be due to a diminished partition coefficient. On the other hand the binding of the dicationic biphalin ligands to membranes increases proportionally with increased negative surface charge. This effect translates into a significant reduction of biphalin permeability by reducing the diffusion of the peptide across the bilayer. These experiments show the importance of electrostatic effects on the peptide-membrane interactions and suggest that the negative charge naturally present in cell membranes may hamper the membrane transport of some peptide drugs, especially cationic ones, unless there are cationic transporters present.  相似文献   

15.
The penetratin peptide, a 16 amino acid sequence extracted from Antennapedia homeodomain, is able to translocate across a neural cell membrane through an unknown mechanism, most likely a non-specific interaction with membrane lipids. Beyond its potential application as vector targeting small hydrophilic molecules and enabling them to reach a cell nucleus, this observation raises intriguing questions concerning the physico-chemistry of peptide-lipid interactions. Here we present a study of the role of lipid surface pressure and head charge on the mechanism of interaction. This was performed using optical techniques: surface infrared spectroscopy and ellipsometry, applied to a monolayer of phospholipids deposited at the air-water interface. Determination of the structure and orientation of peptides and lipids (separately or together) evidenced that electrostatic rather than amphiphilic interactions determine the peptide adsorption and its action on lipids.  相似文献   

16.
The purpose of this study was to determine the fatty acid composition of the serum phospholipids of children with sickle cell disease (SCD) in Nigeria and to compare the relative fluidity of the acyl chains of the serum phospholipids of controls versus the subjects with SCD. It is widely accepted that the fatty acid composition of an individual's serum phospholipids reflects that of their tissue phospholipids. An alteration in the fatty acid composition of membrane phospholipids could affect critical membrane-dependent enzymes and processes (e.g., ion and solute transport, hormone-receptor interactions, signal transduction pathways). We found a significant reduction in the content of polyunsaturated n-3 fatty acids in the phospholipids of subjects with SCD which could result in a reduction of the fluidity of their tissue membranes. Specifically, there was a 40-50% reduction in the proportion of total n-3 fatty acids in subjects with SCD. On the basis of calculated melting points and double bond indices of the acyl chains of the serum phospholipids, the phospholipids of the children with SCD are less fluid relative to those of their healthy counterparts. In addition, we determined that linoleic acid, arachidonic acid, and stearic acid were the major determinants of the fluidity of the acyl chains of the serum phospholipids of the healthy controls and children with SCD.  相似文献   

17.
Modification of the membrane lipid phosphatidylglycerol (PG) of Staphylococcus aureus by enzymatic transfer of a l-lysine residue leading to lysyl-PG converts the net charge of PG from -1 to +1 and is thought to confer resistance to cationic antimicrobial peptides (AMPs). Lysyl-PG synthesis and translocation to the outer leaflet of the bacterial membrane are achieved by the membrane protein MprF. Consequently, mutants lacking a functional mprF gene are in particular vulnerable to the action of AMPs. Hence, we aim at elucidating whether and to which extent lysyl-PG modulates membrane binding, insertion, and permeabilization by various AMPs. Lysyl-PG was incorporated into artificial lipid bilayers, mimicking the cytoplasmic membrane of S. aureus. Moreover, we determined the activity of the peptides against a clinical isolate of S. aureus strain SA113 and two mutants lacking a functional mprF gene and visualized peptide-induced ultrastructural changes of bacteria by transmission electron microscopy. The studied peptides were: (i) NK-2, an α-helical fragment of mammalian NK-lysin, (ii) arenicin-1, a lugworm β-sheet peptide, and (iii) bee venom melittin. Biophysical data obtained by FRET spectroscopy, Fourier transform infrared spectroscopy, and electrical measurements with planar lipid bilayers were correlated with the biological activities of the peptides. They strongly support the hypothesis that peptide-membrane interactions are a prerequisite for eradication of S. aureus. However, degree and mode of modulation of membrane properties such as fluidity, capacitance, and conductivity were unique for each of the peptides. Altogether, our data support and underline the significance of lysyl-PG for S. aureus resistance to AMPs.  相似文献   

18.
The surface charge of cultured neurons was investigated with the electron microscope markers anionized ferritin (AF) and cationized ferritin (CF). To determine which membrane components could react with the markers, model reactions were used. Both protein-coated Sepharose beads and lipid vesicles were reacted at physiological pH. Results with these model reactions indicate that the following groups may contribute to the surface charge: acidic groups--the sialic acid of both glycoproteins and gangliosides, the carboxyl group of proteins, and the phosphates of phospholipids; basic groups--the amines of proteins. The effect of chemical fixation on the surface charge was investigated. Glutaraldehyde fixation was shown to increase the charge of neutral proteins but not by a mechanism involving unbound aldehydes. Glutaraldehyde fixation of phospholipid vesicles in the presence of CF showed that amine-containing phospholipids were cross-linked to CF. This cross-linkage was seen with the electron microscope as the clumping of CF and the burying of CF in the membrane. Paraformaldehyde fixation had a lesser effect on the charge of proteins but did react with phospholipids as did glutaraldehyde. It is concluded that at physiological pH: (a) most of the charged proteins and lipids on cell surface can contribute to the membrane surface charge, and (b) the membrane surface charge of cells can be greatly changed by chemical fixation.  相似文献   

19.
According to the model for passive transport across the membranes, the total flow of permeant molecules is related to the product of the water-membrane partition coefficient and the diffusion coefficient, and to the water-membrane interfacial barrier. The effect of membrane surface charge on the permeability and interaction of analgesic peptide ligands with model membranes was investigated. A mixture of zwitterionic phospholipids with cholesterol was used as a model membrane. The lipid membrane charge density was controlled by the addition of anionic 1-palmitoyl-2-oleoylphosphatidylserine. Two classes of highly potent analgesic peptides were studied, c[D-Pen2,D-Pen5]enkephalin (DPDPE) and biphalin, a dimeric analog of enkephalin. The effect of increased surface charge on the permeability of the zwitterionic DPDPE is a relatively modest decrease, that appears to be due to a diminished partition coefficient. On the other hand the binding of the dicationic biphalin ligands to membranes increases proportionally with increased negative surface charge. This effect translates into a significant reduction of biphalin permeability by reducing the diffusion of the peptide across the bilayer. These experiments show the importance of electrostatic effects on the peptide-membrane interactions and suggest that the negative charge naturally present in cell membranes may hamper the membrane transport of some peptide drugs, especially cationic ones, unless there are cationic transporters present.  相似文献   

20.
Synthetic peptides Phd1-3 spanning the cationic carboxy-terminal region of human beta-defensins HBD-1-3 have been shown to have antibacterial activity. Gross morphological changes were seen in E. coli cells treated with these peptides. In this paper, we have studied the surface-active properties of peptides Phd1-3 and their interactions with different phospholipids using Langmuir-Blodgett monolayers. Compression isotherms and increase in pressure on insertion of peptides into lipid monolayers at different initial pressures indicate the affinity of these peptides for negatively charged lipids. Phd3 inserted less effectively into monolayers as compared to Phd1 and Phd2. The peptides differed in their ability to permeabilize the inner membrane of E. coli, with Phd3 being least effective. It is likely that the peptides kill Gram-negative bacteria by more than one mechanism. When hydrophobicity and net charge favor insertion into lipid membranes, then membrane permeabilization could be the primary event in the killing of bacteria. In cases where membrane insertion does not occur, interaction with phospholipid interface induces highly selective stress that leads to stasis and cell death, as proposed for polymyxin B and bactenecin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号