共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Staphylococcus aureus is able to grow in the presence of extremely low iron concentrations (0.04 μM). In iron-limiting conditions, this species develops alternative metabolic strategies such as highly efficient iron-uptake mechanisms which are only partially shared with S. epidermidis . Here we summarize the mechanisms induced by iron starvation in S. aureus in order to elucidate the virulence characteristics of this bacterium. 相似文献
2.
3.
Silkworm hemolymph inhibits hemolysin production by Staphylococcus aureus. We purified a factor in the silkworm hemolymph responsible for this inhibitory activity. The final fraction with the greatest specific activity contained 220- and 74-kDa proteins. Determination of the N-terminal amino acid sequence revealed that the 220- and 74-kDa proteins were apolipophorin I and apolipophorin II, respectively, indicating that the factor was apolipophorin (ApoLp). The purified ApoLp fraction showed decreased expression of S. aureus hla encoding α-hemolysin, hlb encoding β-hemolysin, saeRS, and RNAIII, which activate the expression of these hemolysin genes. Injection of an anti-ApoLp antibody into the hemolymph increased the sensitivity of silkworms to the lethal effect of S. aureus. Hog gastric mucin, a mammalian homologue of ApoLp, decreased the expression of S. aureus hla and hlb. These findings suggest that ApoLp in the silkworm hemolymph inhibits S. aureus virulence and contributes to defense against S. aureus infection and that its activity is conserved in mammalian mucin. 相似文献
4.
5.
Tammy M. Rechtin Allison F. Gillaspy Maria A. Schumacher Richard G. Brennan Mark S. Smeltzer & Barry K. Hurlburt 《Molecular microbiology》1999,33(2):307-316
Staphylococcus aureus is a potent human pathogen that expresses a large number of virulence factors in a temporally regulated fashion. Two pleiotropically acting regulatory loci were identified in previous mutational studies. The agr locus comprises two operons that express a quorum-sensing system from the P2 promoter and a regulatory RNA molecule from the P3 promoter. The sar locus encodes a DNA-binding protein that activates the expression of both agr operons. We have cloned the sarA gene, expressed SarA in Escherichia coli and purified the recombinant protein to apparent homogeneity. The purified protein was found to be dimeric in the presence and absence of DNA and to consist mostly of alpha-helices. DNase I footprinting of SarA on the putative regulatory region cis to the agr promoters revealed three high-affinity binding sites composed of two half-sites each. Quantitative electrophoretic mobility shift assays (EMSAs) were used to derive equilibrium binding constants (KD) for the interaction of SarA with these binding sites. An unusual ladder banding pattern was observed in EMSA with a large DNA fragment including all three binding sites. Our data indicate that SarA regulation of the agr operons involves binding to multiple half-sites and may involve other sites located downstream of the promoters. 相似文献
6.
Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo 总被引:1,自引:0,他引:1
Thurlow LR Hanke ML Fritz T Angle A Aldrich A Williams SH Engebretsen IL Bayles KW Horswill AR Kielian T 《Journal of immunology (Baltimore, Md. : 1950)》2011,186(11):6585-6596
Biofilms are complex communities of bacteria encased in a matrix composed primarily of polysaccharides, extracellular DNA, and protein. Staphylococcus aureus can form biofilm infections, which are often debilitating due to their chronicity and recalcitrance to antibiotic therapy. Currently, the immune mechanisms elicited during biofilm growth and their impact on bacterial clearance remain to be defined. We used a mouse model of catheter-associated biofilm infection to assess the functional importance of TLR2 and TLR9 in the host immune response during biofilm formation, because ligands for both receptors are present within the biofilm. Interestingly, neither TLR2 nor TLR9 impacted bacterial density or inflammatory mediator secretion during biofilm growth in vivo, suggesting that S. aureus biofilms circumvent these traditional bacterial recognition pathways. Several potential mechanisms were identified to account for biofilm evasion of innate immunity, including significant reductions in IL-1β, TNF-α, CXCL2, and CCL2 expression during biofilm infection compared with the wound healing response elicited by sterile catheters, limited macrophage invasion into biofilms in vivo, and a skewing of the immune response away from a microbicidal phenotype as evidenced by decreases in inducible NO synthase expression concomitant with robust arginase-1 induction. Coculture studies of macrophages with S. aureus biofilms in vitro revealed that macrophages successful at biofilm invasion displayed limited phagocytosis and gene expression patterns reminiscent of alternatively activated M2 macrophages. Collectively, these findings demonstrate that S. aureus biofilms are capable of attenuating traditional host proinflammatory responses, which may explain why biofilm infections persist in an immunocompetent host. 相似文献
7.
Staphylococcus aureus is a major human pathogen causing a wide spectrum of nosocomial and community-associated infections with high morbidity and mortality. S. aureus generates a large number of virulence factors whose timing and expression levels are precisely tuned by regulatory proteins and RNAs. The aptitude of bacteria to use RNAs to rapidly modify gene expression, including virulence factors in response to stress or environmental changes, and to survive in a host is an evolving concept. Here, we focus on the recently inventoried S. aureus regulatory RNAs, with emphasis on those with identified functions, two of which are directly involved in pathogenicity. 相似文献
8.
Majerczyk CD Sadykov MR Luong TT Lee C Somerville GA Sonenshein AL 《Journal of bacteriology》2008,190(7):2257-2265
CodY is a global regulatory protein that was first discovered in Bacillus subtilis, where it couples gene expression to changes in the pools of critical metabolites through its activation by GTP and branched-chain amino acids. Homologs of CodY can be found encoded in the genomes of nearly all low-G+C gram-positive bacteria, including Staphylococcus aureus. The introduction of a codY-null mutation into two S. aureus clinical isolates, SA564 and UAMS-1, through allelic replacement, resulted in the overexpression of several virulence genes. The mutant strains had higher levels of hemolytic activity toward rabbit erythrocytes in their culture fluid, produced more polysaccharide intercellular adhesin (PIA), and formed more robust biofilms than did their isogenic parent strains. These phenotypes were associated with derepressed levels of RNA for the hemolytic alpha-toxin (hla), the accessory gene regulator (agr) (RNAII and RNAIII/hld), and the operon responsible for the production of PIA (icaADBC). These data suggest that CodY represses, either directly or indirectly, the synthesis of a number of virulence factors of S. aureus. 相似文献
9.
Jintae Lee Can Attila Suat L. G. Cirillo Jeffrey D. Cirillo Thomas K. Wood 《Microbial biotechnology》2009,2(1):75-90
Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7‐hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)‐regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI‐opmD multidrug efflux pump and genes involved in the synthesis of QS‐regulated virulence factors including pyocyanin (phz operon), 2‐heptyl‐3‐hydroxy‐4(1H)‐quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole‐related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa. 相似文献
10.
11.
Yarwood JM Paquette KM Tikh IB Volper EM Greenberg EP 《Journal of bacteriology》2007,189(22):7961-7967
12.
13.
14.
15.
16.
《Microbes and infection / Institut Pasteur》2014,16(11):967-972
Staphylococcus aureus is a leading cause of bacterial infections. Strains of community-associated methicillin-resistant S. aureus (CA-MRSA), such as USA300, display enhanced virulence and fitness. Patients suffering from iron overload diseases often undergo iron chelation therapy with deferoxamine mesylate (DFO). Here, we show that USA300 uses this drug to acquire iron. We further demonstrate that mice administered DFO I.P., versus those not administered DFO, had significantly higher bacterial burden in livers and kidneys after I.V. challenge with USA300, associated with increased abscess formation and tissue destruction. The virulence of USA300 mutants defective for DFO uptake was not affected by DFO treatment. 相似文献
17.
Previous studies have indicated that the silkworm model is useful for identifying virulence genes of Staphylococcus aureus, a human pathogenic bacterium. Here we examined the scope of S.?aureus virulence factors that can be evaluated using the silkworm model. Gene-disrupted mutants of the agr locus, arlS gene and saeS gene, which regulate the expression of cell surface adhesins and hemolysins, exhibited attenuated virulence in silkworms. Mutants of the hla gene encoding α-hemolysin, the hlb gene encoding β-hemolysin, and the psmα and psmβ operons encoding cytolysins, however, showed virulence in silkworms indistinguishable from that of the parent strain. Thus, these S.?aureus cytolysins are not required for virulence in silkworms. In contrast, the gene-disrupted mutants of clfB, fnbB and sdrC, which encode cell-wall-anchored proteins, attenuated S.?aureus virulence in silkworms. In addition, the mutant of the srtA gene encoding sortase A, which anchors cell-wall proteins, showed attenuated virulence in silkworms. These findings suggest that the silkworm model can be used to evaluate S.?aureus cell-wall proteins and regulatory proteins as virulence factors. 相似文献
18.
Oogai Y Matsuo M Hashimoto M Kato F Sugai M Komatsuzawa H 《Applied and environmental microbiology》2011,77(22):8097-8105
Staphylococcus aureus produces many virulence factors, including toxins, immune-modulatory factors, and exoenzymes. Previous studies involving the analysis of virulence expression were mainly performed by in vitro experiments using bacterial medium. However, when S. aureus infects a host, the bacterial growth conditions are quite different from those in a medium, which may be related to the different expression of virulence factors in the host. In this study, we investigated the expression of virulence factors in S. aureus grown in calf serum. The expression of many virulence factors, including hemolysins, enterotoxins, proteases, and iron acquisition factors, was significantly increased compared with that in bacterial medium. In addition, the expression of RNA III, a global regulon for virulence expression, was significantly increased. This effect was partially restored by the addition of 300 μM FeCl3 into serum, suggesting that iron depletion is associated with the increased expression of virulence factors in serum. In chemically defined medium without iron, a similar effect was observed. In a mutant with agr inactivated grown in serum, the expression of RNA III, psm, and sec4 was not increased, while other factors were still induced in the mutant, suggesting that another regulatory factor(s) is involved. In addition, we found that serum albumin is a major factor for the capture of free iron to prevent the supply of iron to bacteria grown in serum. These results indicate that S. aureus expresses virulence factors in adaptation to the host environment. 相似文献
19.
The production of virulence factors by various bacteria can be influenced by sub-inhibitory concentrations of antibiotics. The effect of six antibiotics on the production of representative extracellular enzymes and toxins produced by Staphylococcus aureus was investigated. The production of the virulence determinants coagulase, protein A, alpha and delta haemolysin was monitored in the presence of ciprofloxacin, enoxacin, chloramphenicol, gentamicin, tetracycline and methicillin. The protein synthesis inhibitors reduced the production of coagulase and protein A, and almost completely inhibited the production of the haemolysins. Haemolysin production was also reduced by ciprofloxacin and enoxacin, but these antibiotics had little effect on the production of coagulase and protein A. Methicillin stimulated the production of alpha and delta haemolysins but had no effect on the production of coagulase and protein A. 相似文献