首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have isolated a chimpanzee processed pseudogene for subunit IV of cytochrome c oxidase (COX; EC 1.9.3.1) by screening a chimpanzee genomic library in lambda Charon 32 with a bovine liver cDNA encoding COX subunit IV (COX IV), and localized it to a 1.9-kb HindIII fragment. Southern-blot analysis of genomic DNA from five primates showed that DNAs from human, gorilla, and chimpanzee each contained the 1.9-kb pseudogene fragment, whereas orangutan and pigtail macaque monkey DNA did not. This result clearly indicates that the pseudogene arose before the divergence of the chimpanzee and gorilla from the primate lineage. By screening Chinese hamster x human hybrid panels with the human COX4 cDNA, we have mapped COX4 genes to two human chromosomes, 14 and 16. The 1.9-kb HindIII fragment containing the pseudogene, COX4P1, can be assigned to chromosome 14, and by means of rearranged chromosomes in somatic cell hybrids, to 14q21-qter. Similarly, the functional gene, COX4, has been mapped to 16q22-qter.  相似文献   

4.
Three pseudogenes for the nuclear-encoded subunit VIb of cytochrome c oxidase (COX) were isolated by screening a human genomic library with cloned human cDNA coding for COX subunit VIb. The nucleotide sequences of the pseudogenes, designated psi COX6b-1, psi COX6b-2 and psi COX6b-3, were determined. Pseudogene psi COX6b-1 bears all the hallmarks of a processed pseudogene and diverged from the parental gene after the divergence of man and cow. Alu repetitive elements were integrated into the structural sequences of the other two pseudogenes. Comparison with the human and bovine cDNA sequences encoding COX subunit VIb suggests that psi COX6b-2 and psi COX6b-3 were formed earlier in evolution than psi COX6b-1. Genomic Southern analysis indicated that a few more pseudogenes for COX subunit VIb are likely to be present in the human genome. Identical nt differences with respect to the human cDNA sequence in the pseudogenes provide some clues on the evolution of the ancestral gene coding for COX subunit VIb.  相似文献   

5.
Structure and evolution of primate cytochrome c oxidase subunit II gene   总被引:2,自引:0,他引:2  
The sequence of cytochrome oxidase subunit II (COII) mRNA from the cynomolgus macaque has been determined. Availability of the sequence from a non-human primate has allowed examination of the evolution of the COII gene and protein along the primate lineage. Comparison with existing protein and DNA sequences, combined with estimates of divergence derived from calculations designed to compensate for multiple mutation and reversion events, indicates that although the rate of fixation of nucleotide substitutions at silent sites is somewhat lower in primates than non-primates, the rate of fixation at replacement sites is 4-5-fold higher. The data also suggest that the rate of divergence at replacement sites along the primate lineage has not been uniform, but has decreased 2-2.5-fold since the higher primate branch point, in the absence of a comparable change in the rate substitution at silent sites. Both primate mRNAs differ from their non-primate homologues in having 3'-untranslated regions of 20-25 nucleotides. Examination of the monkey and human untranslated sequences suggests that these regions have evolved by duplication events occurring in both cases within 2-3 nucleotides following the translational stop codon. The primate mRNAs are also exceptional in that both can form stable stem and loop structures immediately preceding the postulated duplication site that may have played a role in facilitating the mutational events involved. Comparison of the human and monkey protein sequences has revealed regions conserved in primates that are significantly more hydrophobic than their non-primate counterparts. The possible effects of these alterations on the interaction between COII and cytochrome c are discussed.  相似文献   

6.
7.
8.
9.
10.
A 9.2 kb segment of the maxi-circle of Trypanosoma brucei mitochondrial DNA contains the genes for cytochrome c oxidase subunits I and II (coxI and coxII) and seven Unassigned Reading Frames ("URFs"). The genes for coxI and coxII display considerable homology at the aminoacid level (38 and 25%, respectively) to the corresponding genes in fungal and mammalian mtDNA, the only striking point of divergence being an unusually high cysteine content (about 4.5%). The reading frame coding for cytochrome c oxidase subunit II is discontinuous: the C-terminal portion of about 40 aminoacids, is present in the DNA-sequence in a -1 reading frame with respect to the N-terminal moiety. URF5, 8 and 10, show a low but distinct homology (about 20%) to mammalian mitochondrial URF-1, 4 and 5, respectively. In URF5, the first AUG is found at codon 145, whereas extensive homology to mammalian URF-1 sequences occurs upstream of this position. The possibility exists that UUG can serve as an initiator codon. URF7 and URF9 have a highly unusual aminoacid composition and do not possess AUG or UUG initiator codons. These URFs probably do not have a protein-coding function. The segment does not contain conventional tRNA genes.  相似文献   

11.
We examined the nucleotide and amino acid sequence variation of the cytochrome c oxidase subunit II (COII) gene from 25 primates (4 hominoids, 8 Old World monkeys, 2 New World monkeys, 2 tarsiers, 7 lemuriforms, 2 lorisiforms). Marginal support was found for three phylogenetic conclusions: (1) sister-group relationship between tarsiers and a monkey/ape clade, (2) placement of the aye-aye (Daubentonia) sister to all other strepsirhine primates, and (3) rejection of a sister-group relationship of dwarf lemurs (i.e., Cheirogaleus) with lorisiform primates. Stronger support was found for a sister-group relationship between the ring-tail lemur (Lemur catta) and the gentle lemurs (Hapalemur). In congruence with previous studies on COII, we found that the monkeys and apes have undergone a nearly two-fold increase in the rate of amino acid replacement relative to other primates. Although functionally important amino acids are generally conserved among all primates, the acceleration in amino acid replacements in higher primates is associated with increased variation in the amino terminal end of the protein. Additionally, the replacement of two carboxyl-bearing residues (glutamate and aspartate) at positions 114 and 115 may provide a partial explanation for the poor enzyme kinetics in cross-reactions between the cytochromes c and cytochrome c oxidases of higher primates and other mammals. Correspondence to: R.L. Honeycutt  相似文献   

12.
13.
Mouse contains two functional, but differentially expressed, cytochrome c genes. One of these genes is expressed in all somatic tissues so far examined. The other gene is expressed only in testis and is assumed to be spermatogenesis-specific. The nucleotide sequence of four mouse cytochrome c-like genes has been determined. One of these genes (MC1) contains an intron and encodes a polypeptide sequence identical to the published mouse somatic cytochrome c amino acid sequence. The other three genes can not properly encode a mouse cytochrome c protein and appear to be pseudogenes which have arisen via an insertion into the mouse genome of a cDNA copy of a cytochrome c mRNA molecule.  相似文献   

14.
15.
16.
17.
18.
19.
The subunit structure of the cytochrome c oxidase complex has been obtained for three preparations each isolated by a different detergent procedure. Six polypeptides were present in all samples with the following molecular weights: subunits I, 36000; II, 22500, III, 17100; IV, 12500; V, 9700; and VI, 5300. These subunits have been purified by gel filtration in sodium dodecyl sulfate or in 6 M guanidine hydrochloride and their amino acid compositions have been determined. Subunit I is hydrophobic in character with a polarity of 35.7%. Subunits II through VI are more hydrophilic with polarities of 45.5, 48.6, 47.8, 49.7, and 53.7%, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号