首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Glucose (20 mM) and carbachol (1 mM) produced a rapid increase in [3H]inositol trisphosphate (InsP3) formation in isolated rat islets of Langerhans prelabelled with myo-[3H]inositol. The magnitude of the increase in InsP3 formation was similar when either agent was used alone and was additive when they were used together. In islets prelabelled with 45Ca2+ and treated with carbachol (1 mM), the rise in InsP3 correlated with a rapid, transient, release of 45Ca2+ from the cells, consistent with mobilization of 45Ca2+ from an intracellular pool. Under these conditions, however, insulin secretion was not increased. In contrast, islets prelabelled with 45Ca2+ and exposed to 20mM-glucose exhibited a delayed and decreased 45Ca2+ efflux, but released 7-8-fold more insulin than did those exposed to carbachol. Depletion of extracellular Ca2+ failed to modify the increase in InsP3 elicited by either glucose or carbachol, whereas it selectively inhibited the efflux of 45Ca2+ induced by glucose in preloaded islets. Under these conditions, however, glucose was still able to induce a small stimulation of the first phase of insulin secretion. These results demonstrate that polyphosphoinositide metabolism, Ca2+ mobilization and insulin release can all be dissociated in islet cells, and suggest that glucose and carbachol regulate these parameters by different mechanisms.  相似文献   

2.
Isolated perifused rat islets were stimulated with glucose, exogenous insulin, or carbachol. C-peptide and, where possible, insulin secretory rates were measured. Glucose (8-10 mm) induced dose-dependent and kinetically similar patterns of C-peptide and insulin secretion. The addition of 100 nm bovine insulin had no effect on C-peptide release in response to 8-10 mm glucose stimulation. The addition of 100 nm bovine insulin or 500 nm human insulin together with 3 mm glucose had no stimulatory effect on C-peptide secretion rates from perifused rat islets. Stimulation with carbachol plus 7 mm glucose enhanced both C-peptide and insulin secretion, and the further addition of 100 nm bovine insulin had no inhibitory effect on C-peptide secretory rates under this condition. Perifusion studies using pharmacologic inhibitors (genistein and wortmannin) of the kinases thought to be involved in insulin signaling potentiated 10 mm glucose-induced secretion. The results support the following conclusions. 1) C-peptide release rates accurately reflect insulin secretion rates from collagenase-isolated, perifused rat islets. 2) Exogenously added bovine insulin exerts no inhibitory effect on release to several agonists including glucose. 3) In the presence of 3 mm glucose, exogenously added bovine or human insulin do not stimulate endogenous insulin secretion.  相似文献   

3.
Isolated rat islets were incubated with myo-[2-3H]inositol for 2 h to label their phosphoinositide (PI) pools. Labelling was carried out under three separate conditions: in media containing low (2.75 mM) glucose, high (13.75 mM) glucose, or low (2.75 mM) glucose plus sulphated cholecystokinin (CCK-8S; 200 nM). After labelling, the islets were perifused and the insulin-secretory response to 20 mM-glucose was measured. PI hydrolysis in these same islets was assessed by measurements of both [3H]inositol efflux and the accumulation of labelled inositol phosphates. The following major observations were made. After prelabelling for 2 h in low glucose, perifusion with 20 mM-glucose resulted in a biphasic insulin-secretory response, an increase in [3H]inositol efflux and a parallel increase in the accumulation of labelled inositol phosphates. After prelabelling in high (13.75 mM) glucose, peak first-phase insulin secretion induced by 20 mM-glucose increased 2-2.5-fold, whereas the second phase of insulin release, as well as [3H]inositol efflux and inositol phosphate accumulation, were significantly decreased. The simultaneous infusion of the diacylglycerol kinase inhibitor 1-mono-oleoylglycerol (50 microM), along with 20 mM-glucose, restored the second-phase insulin-secretory response from these islets. After labelling in low (2.75 mM) glucose plus CCK-8S, the initial phases of the insulin-secretory and [3H]inositol-efflux responses to 20 mM-glucose were blunted and the sustained phases of both responses were markedly decreased. Inositol phosphate accumulation was also impaired. Labelling islets in high (13.75 mM) glucose or low (2.75 mM) glucose plus CCK-8S suppresses, in a parallel fashion, glucose-induced increases in PI hydrolysis and in second-phase insulin release. These findings suggest that desensitization of the insulin-secretory response is a consequence of impaired information flow in the inositol lipid cycle.  相似文献   

4.
The priming effect of glucagon-like peptide-1 (7-36) amide (GLP-1 (7-36) amide), glucose-dependent insulin-releasing polypeptide (GIP) and cholecystokinin-8 (CCK-8) on glucose-induced insulin secretion from rat pancreas was investigated. The isolated pancreas was perfused in vitro with Krebs-Ringer bicarbonate buffer containing 2.8 mmol/l glucose. After 10 min this medium was supplemented with GLP-1 (7-36) amide, GIP or CCK-8 (10, 100, 1000 pmol/l) for 10 min. After an additional 10 min period with 2.8 mmol/l glucose alone, insulin secretion was stimulated with buffer containing 10 mmol/l glucose for 44 min. In control experiments the typical biphasic insulin response to 10 mmol/l glucose occurred. Pretreatment of the pancreas with GIP augmented insulin secretion: 10 pmol/l GIP enhanced only the first phase of the secretory response to 10 mmol/l glucose; 100 and 1000 pmol/l GIP stimulated both phases of hormone secretion. After exposure to CCK-8, enhanced insulin release during the first (at 10 and 1000 pmol/l CCK-8) and the second phase (at 1000 pmol/l) was observed. Priming with 100 pmol/l GLP-1 (7-36) amide significantly amplified the first and 1000 pmol/l GLP-1 (7-36) amide both secretion periods, 10 pmol/l GLP-1 (7-36) amide had no significant effect. All three peptide hormones influenced the first, quickly arising secretory response more than the second phase. Priming with forskolin (30 mM) enhanced the secretory response to 10 mM glucose plus 0.5 nM GLP-1 (7-36) amide 4-fold. With a glucose-responsive B-cell line (HIT cells), we investigated the hypothesis that the priming effect of GLP-1 (7-36) amide is mediated by the adenylate cyclase system. Priming with either IBMX (0.1 mM) or forskolin (2.5 microM) enhanced the insulin release after a consecutive glucose stimulation (5 mM). This effect was pronounced when GLP-1 (7-36) amide (100 pM) was added during glucose stimulation. Priming capacities of intestinal peptide hormones may be involved in the regulation of postprandial insulin release. The incretin action of these hormones can probably, at least in part, be explained by these effects. The priming effect of GLP-1 (7-36) amide is most likely mediated by the adenylate cyclase system.  相似文献   

5.
Sur1 knockout mouse beta-cells lack K(ATP) channels and show spontaneous Ca(2+) action potentials equivalent to those seen in patients with persistent hyperinsulinemic hypoglycemia of infancy, but the mice are normoglycemic unless stressed. Sur1(-/-) islets lack first phase insulin secretion and exhibit an attenuated glucose-stimulated second phase secretion. Loss of the first phase leads to mild glucose intolerance, whereas reduced insulin output is consistent with observed neonatal hyperglycemia. Loss of K(ATP) channels impairs the rate of return to a basal secretory level after a fall in glucose concentration. This leads to increased hypoglycemia upon fasting and contributes to a very early, transient neonatal hypoglycemia. Whereas persistent hyperinsulinemic hypoglycemia of infancy underscores the importance of the K(ATP)-dependent ionic pathway in control of insulin release, the Sur1(-/-) animals provide a novel model for study of K(ATP)-independent pathways that regulate insulin secretion.  相似文献   

6.
The effect of somatostatin on glucose-induced insulin secretion and cyclic AMP accumulation in isolated islets from obese, hyperglycemic ob/ob mice was studied in a microperifusion system. The normal biphasic pattern of insulin release as well as the inhibitory pattern of insulin release produced by somatostatin (0.5--1 microgram/ml) was matched by similar changes in the intracellular concentration of cyclic AMP. When islets were stimulated by glucose (3 mg/ml) plus 3-isobutyl-1-methylxanthine (0.1 mM), somatostatin (0.5 microgram/ml) failed to inhibit insulin secretion or cyclic AMP formation in the second phase whereas in the first phase both parameters were significantly reduced by somatostatin (0.5 microgram/ml). In batch-type incubations it was shown that addition of excess calcium (to 6 mM) reversed this inhibition. In the second phase calcium potentiated the (glucose + 3-isobutyl-1-methylxanthine)-stimulated insulin secretion without affecting the cyclic AMP production. This potentiation was inhibited by somatostatin (0.1 microgram/ml). Somatostatin (1 microgram/ml) inhibited adenylate cyclase activity in islet homogenates. No effect of somatostatin on islet glucose utilization could be demonstrated. The results indicate a dual action of somatostatin in the inhibition of insulin release, one involving the islet adenylate cyclase and one affecting the islet uptake of calcium.  相似文献   

7.
Although phospholipase A(2) (PLA(2)) is of importance for insulin secretion, it is not established how it relates to other signalling mechanisms. This study examined the crosstalk between PLA(2) and the cyclic AMP (cAMP)-protein kinase A (PKA) pathway in isolated rat islets. Forskolin, IBMX, and dbcAMP reduced [(3)H]arachidonic acid ([(3)H]AA) efflux from prelabelled islets during PLA(2) activation by mellitin or cholecystokinin (CCK-8), while efflux induced by carbachol was unaffected. The PKA inhibitor myrPKI(14-22) prevented this reduction of CCK-8-induced efflux. Glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide (GIP), and vasoactive intestinal polypeptide (VIP) diminished CCK-8-induced efflux. Also in the absence of Ca(2+), forskolin/IBMX and dbcAMP reduced CCK-8-induced efflux. In parallel with effects on [(3)H]AA, the expected additive insulin secretion induced by mellitin or CCK-8 in combination with forskolin or GLP-1, respectively, was reduced. In conclusion, the cAMP-PKA pathway restrains both Ca(2+)-dependent and Ca(2+)-independent PLA(2) activation, indicating a regulating crosstalk between these two pathways.  相似文献   

8.
The release and oxidation of 5-hydroxytryptamine from 5-hydroxytryptamine-preloaded beta-cells has been used as a surrogate marker for insulin secretion. Findings made using this methodology have been used to support the concept that insulin stimulates its own release. In the present studies, the effects of 5-hydroxytryptamine on stimulated insulin secretion from isolated perifused rat islets was determined. When added together with stimulatory glucose, 5-hydroxytryptamine (0.5 mm) significantly reduced both phases of 8 mm glucose-induced secretion and reduced the first phase of 15 mm glucose-induced release by 60% without any effect on sustained insulin release rates. Preloading of beta-cells with 0.5 mm 5-hydroxytryptamine for 3 h resulted in a more severe impairment of 15 mm glucose-induced secretion. First and second phase release rates were reduced by 70 and 55%, respectively. In addition, this pretreatment protocol also abolished 200 microm tolbutamide-induced insulin secretion from perifused islets. These findings confirm that 5-hydroxytryptamine is a powerful inhibitor of stimulated insulin secretion. The responses of 5-hydroxytryptamine-preloaded beta-cells may not accurately reflect the biochemical events occurring during the physiologic regulation of insulin secretion. The suggestion that insulin stimulates its own secretion based exclusively on amperometric measurements should be reconsidered.  相似文献   

9.
The effect of somatostatin on glucose-induced insulin secretion and cyclic AMP accumation in isolated islets from obese, hyperglycemic ob/ob mice was studied in a microperifusion system. The normal biphasic pattern of insulin release as well as the inhibitory pattern of insulin release produced by somatostatin (0.5–1 μg/ml) was matched by similar changes in the intracellular concentration of cyclic AMP. When islets were stimulated by glucose (3 mg/ml) plus 3-isobutyl-1-methylxanthine (0.1 mM), somatostatin (0.5 μg/ml) failed to inhibit insulin secretion or cyclic AMP formation in the second phase whereas in the first phase both parameters were significantly reduced by somatostatin (0.5 μg/ml). In batch-type incubations it was shown that addition of excess calcium (to 6 mM) reversed this inhibition. In the second phase calcium potentiated the (glucose + 3-isobutyl-1-methylxanthine)-stimulated insulin secretion without affecting the cyclic AMP production. This potentiation was inhibited by somatostatin (0.1 μg/ml). Somatostatin (1 μg/ml) inhibited adenylate cyclase activity in islet homogenates. No effect of somatostatin on islet glucose utilization could be demonstrated.The results indicate a dual action of somatostatin in the inhibition of insulin release, one involving the islet adenylate cyclase and one affecting the islet uptake of calcium.  相似文献   

10.
The insulin response of 3-day old neonatal rat islets was evaluated following a 1 h incubation with glucose alone and in the presence of 30 nM sulfated cholecystokinin octapeptide (CCK) and/or 20 microM carbachol (CCh). Insulin secretion was found to be incrementally increased from the lowest glucose concentration and enhanced several fold in the presence of CCK and/or CCh. In combination, CCK and CCh increased glucose-stimulated insulin secretion by an amount equivalent to the sum of their individual increases. The presence of either CCK alone or CCK plus CCh increased phosphoinositide hydrolysis by the same relative amount that they increased insulin secretion when compared to 8.3 mM glucose. Glucose-stimulated insulin secretion was totally inhibited when calcium was omitted from the incubation buffer; this effect was partially negated by CCK alone and more so by CCK combined with CCh. Insulin secretion in response to 8.3 mM glucose alone was unchanged when calcium in the incubation buffer was increased from 1 to 5 mM; however, the insulin response to 16.7 mM glucose alone and 8.3 mM glucose in the presence of CCK and/or CCh was increased under this condition. Thus, we have shown that, even at 3 days postpartum, insulin secretion from isolated islets is a complex response capable of being molded by several secretagogues at once and ultimately determined by interplay of different signaling systems activated.  相似文献   

11.
The impact of modest but prolonged (3 h) exposure to high physiological glucose concentrations and hyperkalemia on the insulin secretory and phospholipase C (PLC) responses of rat pancreatic islets was determined. In acute studies, glucose (5-20 mM) caused a dose-dependent increase in secretion with maximal release rates 25-fold above basal secretion. When measured after 3 h of exposure to 5-10 mM glucose, subsequent stimulation of islets with 10-20 mM glucose during a dynamic perifusion resulted in dose-dependent decrements in secretion and PLC activation. Acute hyperkalemia (15-30 mM) stimulated calcium-dependent increases in both insulin secretion and PLC activation; however, prolonged hyperkalemia resulted in a biochemical and secretory lesion similar to that induced by sustained modest hyperglycemia. Glucose- (8 mM) desensitized islets retained significant sensitivity to stimulation by either carbachol or glucagon-like peptide-1. These findings emphasize the vulnerability of the beta-cell to even moderate sustained hyperglycemia and provide a biochemical rationale for achieving tight glucose control in diabetic patients. They also suggest that PLC activation plays a critically important role in the physiological regulation of glucose-induced secretion and in the desensitization of release that follows chronic hyperglycemia or hyperkalemia.  相似文献   

12.
Glucose-stimulated insulin release from rat pancreas is known to be blunted by aging. In the present study, we examined the effect of aging on insulin release induced by various secretagogues using the isolated perfused pancreas of female rats. Insulin release from the perfused pancreas in response to 16.7 mM glucose in 8-month-old rats (older rats) was much less than that in 2-month-old rats (young rats). The first phase of insulin release after glucose stimulation was attenuated in older rats. The addition of 0.1 mM 3-isobutyl-1-methylxanthine (IBMX) potentiated glucose-induced insulin secretion in both groups of rats. However, the second phase of insulin secretion in older rats was lower than that in younger rats. The phorbol ester 12-O-tetradecanoyl phorbol ester (TPA, 200 nM) enhanced both the first and the second phases of insulin release induced by glucose in both groups of rats. The amount of first phase insulin release induced by TPA with glucose in young rats was greater than that in older rats, whereas the second phase of insulin release was similar in both groups of rats. On the other hand, tolbutamide (200 uM) similarly stimulated the first phase of insulin release in both age groups of rat. In addition, the amount of cumulative insulin secretion induced by tolbutamide during the second phase was slightly but significantly greater in older rats than in young controls. Insulin content in the pancreas was significantly greater in older rats than in young rats and increased after the stimulation with TPA and tolbutamide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Porcine diazepam-binding inhibitor (pDBI) is a novel peptide that has been isolated from the small bowel of the pig, and that occurs also in the islet D-cells. We have studied its effects on hormone release in vitro from the endocrine pancreas of the rat. In isolated islets, pDBI (10(-9)-10(-6)M) did not affect basal insulin release at 3.3 mM glucose, whereas stimulated release at 8.3 mM glucose was dose-dependently suppressed by 32-69% (P less than 0.01). Furthermore, insulin secretion stimulated by either 16.7 mM glucose or 1 mM IBMX (3-isobutyl-1-methylxanthine) or 1 micrograms/ml glibenclamide was suppressed by pDBI at 10(-8) M (by 28-30%, P less than 0.05) and 10(-7) M (by 43-47%, P less than 0.01). In contrast, islet insulin secretion induced by 20 mM arginine was unaffected by these concentrations of pDBI. In the perfused rat pancreas, pDBI (10(-8) M) enhanced by 30% (P less than 0.05) the first phase (0-5 min) of arginine-stimulated insulin release, whereas the second phase (5-20 min) was unchanged. Moreover, pDBI suppressed by 28% (P less than 0.05) the second phase of arginine-induced glucagon release. Arginine-induced somatostatin release was not significantly affected by the peptide. Since pDBI immunoreactivity has been localized also to islet D-cells, the present results suggest that pDBI may act as a local modulator of islet hormone release.  相似文献   

14.
The second messenger cAMP mediates potentiation of glucose-stimulated insulin release. Use of inhibitors of cAMP-hydrolyzing phosphodiesterase (PDE) 3 and overexpression of PDE3B in vitro have demonstrated a regulatory role for this enzyme in insulin secretion. In this work, the physiological significance of PDE3B-mediated degradation of cAMP for the regulation of insulin secretion in vivo and glucose homeostasis was investigated in transgenic mice overexpressing PDE3B in pancreatic beta-cells. A 2-fold overexpression of PDE3B protein and activity blunted the insulin response to intravenous glucose, resulting in reduced glucose disposal. The effects were "dose"-dependent because mice overexpressing PDE3B 7-fold failed to increase insulin in response to glucose and hence exhibited pronounced glucose intolerance. Also, the insulin secretory response to intravenous glucagon-like peptide 1 was reduced in vivo. Similarly, islets stimulated in vitro exhibited reduced insulin secretory capacity in response to glucose and glucagon-like peptide 1. Perifusion experiments revealed that the reduction specifically affected the first phase of glucose-stimulated insulin secretion. Furthermore, morphological examinations demonstrated deranged islet cytoarchitecture. In conclusion, these results are consistent with an essential role for PDE3B in cAMP-mediated regulation of insulin release and glucose homeostasis.  相似文献   

15.
Our previous work has demonstrated that islet depolarization with KCl opens connexin36 hemichannels in β-cells of mouse pancreatic islets allowing the exchange of small metabolites with the extracellular medium. In this study, the opening of these hemichannels has been further characterized in rat islets and INS–1 cells. Taking advantage of hemicannels’opening, the uptake of extracellular ATP and its effect on insulin release were investigated. 70 mM KCl stimulated light emission by luciferin in dispersed rat islets cells transduced with the fire-fly luciferase gene: it was suppressed by 20 mM glucose and 50 μM mefloquine, a specific connexin36 inhibitor. Extracellular ATP was taken up or released by islets depolarized with 70 mM KCl at 5 mM glucose, depending on the external ATP concentration. 1 mM ATP restored the loss of ATP induced by the depolarization itself. ATP concentrations above 5 mM increased islet ATP content and the ATP/ADP ratio. No ATP uptake occurred in non-depolarized or KCl-depolarized islets simultaneously incubated with 50 μM mefloquine or 20 mM glucose. Extracellular ATP potentiated the secretory response induced by 70 mM KCl at 5 mM glucose in perifused rat islets: 5 mM ATP triggered a second phase of insulin release after the initial peak triggered by KCl-depolarization itself; at 10 mM, it increased both the initial, KCl-dependent, peak and stimulated a greater second phase of secretion than at 5 mM. These stimulatory effects of extracellular ATP were almost completely suppressed by 50 μM mefloquine. The magnitude of the second phase of insulin release due to 5 mM extracellular ATP was decreased by addition of 5 mM ADP (extracellular ATP/ADP ratio = 1). ATP acts independently of KATP channels closure and its intracellular concentration and its ATP/ADP ratio seems to regulate the magnitude of both the first (triggering) and second (amplifying) phases of glucose-induced insulin secretion.  相似文献   

16.
We investigated implications of nitric oxide (NO) derived from islet neuronal constitutive NO synthase (ncNOS) and inducible NOS (iNOS) on insulin secretory mechanisms in the mildly diabetic GK rat. Islets from GK rats and Wistar controls were analysed for ncNOS and iNOS by HPLC, immunoblotting and immunocytochemistry in relation to insulin secretion stimulated by glucose or l-arginine in vitro and in vivo. No obvious difference in ncNOS fluorescence in GK vs control islets was seen but freshly isolated GK islets displayed a marked iNOS expression and activity. After incubation at low glucose GK islets showed an abnormal increase in both iNOS and ncNOS activities. At high glucose the impaired glucose-stimulated insulin release was associated with an increased iNOS expression and activity and NOS inhibition dose-dependently amplified insulin secretion in both GK and control islets. This effect by NOS inhibition was also evident in depolarized islets at low glucose, where forskolin had a further amplifying effect in GK but not in control islets. NOS inhibition increased basal insulin release in perfused GK pancreata and amplified insulin release after glucose stimulation in both GK and control pancreata, almost abrogating the nadir separating first and second phase in controls. A defective insulin response to l-arginine was seen in GK rats in vitro and in vivo, being partially restored by NOS inhibition. The results suggest that increased islet NOS activities might contribute to the defective insulin response to glucose and l-arginine in the GK rat. Excessive iNOS expression and activity might be deleterious for the beta-cells over time.  相似文献   

17.
The impact of muscarinic type 3 receptor knockout (M3KO) on the cholinergic regulation of insulin secretion and phospholipase C (PLC) activation was determined. Islets isolated from control, wild-type mice or heterozygotes responded with comparable insulin secretory responses to 15 mM glucose. This response was markedly amplified by the inclusion of 10 microM carbachol. While 15 mM glucose-induced release remained similar to wild-type and heterozygote responses in M3KO mice, the stimulatory impact of carbachol was abolished. Stimulation with 15 mM glucose plus 50 microM carbachol increased fractional efflux rates of myo-[2-3H]inositol from control wild-type and heterozygote islets but not from M3KO islets. Fed plasma insulin levels of M3KO mice were reduced 68% when compared to values obtained from combined wild-type and heterozygote animals. These studies support the conclusion that the M3 receptor in islets is coupled to PLC activation and insulin secretion and that cholinergic stimulation of the islets may play an important role in the regulation of plasma insulin levels.  相似文献   

18.
The effects of D-glyceraldehyde and glucose on islet function were compared in order to investigate the difference between them in the mechanism by which they induce insulin secretion. The stimulation of insulin secretion from isolated rat islets by 10 mM glyceraldehyde was not completely inhibited by either 150 microM diazoxide (an opener of ATP-sensitive K(+) channels) or 5 microM nitrendipine (an L-type Ca(2+)-channel blocker), whereas the stimulation of insulin secretion by 20 mM glucose was completely inhibited by either drug. The insulin secretion induced by glyceraldehyde was less augmented by 100 microM carbachol (a cholinergic agonist) than that induced by glucose. The stimulation of myo-inositol phosphate production by 100 microM carbachol was more marked in islets incubated with the hexose than with the triose. The content of glyceraldehyde 3-phosphate, a glycolytic intermediate, in islets incubated with glyceraldehyde was far higher than that in islets incubated with glucose, whereas the ATP content in islets incubated with the triose was significantly lower than that in islets incubated with the hexose. These results suggest that glyceraldehyde not only mimics the effect of glucose on insulin secretion but also has the ability to cause the secretion of insulin without the influx of Ca(2+ )through voltage-dependent Ca(2+) channels. The reason for the lower potency of the triose than the hexose in stimulating insulin secretion is also discussed.  相似文献   

19.
To explore the effects immune‐isolating encapsulation has on the insulin secretion of pancreatic islets and to improve our ability to quantitatively describe the glucose‐stimulated insulin release (GSIR) of pancreatic islets, we conducted dynamic perifusion experiments with isolated human islets. Free (unencapsulated) and hydrogel encapsulated islets were perifused, in parallel, using an automated multi‐channel system that allows sample collection with high temporal resolution. Results indicated that free human islets secrete less insulin per unit mass or islet equivalent (IEQ) than murine islets and with a less pronounced first‐phase peak. While small microcapsules (d = 700 µm) caused only a slightly delayed and blunted first‐phase insulin response compared to unencapsulated islets, larger capsules (d = 1,800 µm) completely blunted the first‐phase peak and decreased the total amount of insulin released. Experimentally obtained insulin time‐profiles were fitted with our complex insulin secretion computational model. This allowed further fine‐tuning of the hormone‐release parameters of this model, which was implemented in COMSOL Multiphysics to couple hormone secretion and nutrient consumption kinetics with diffusive and convective transport. The results of these GSIR experiments, which were also supported by computational modeling, indicate that larger capsules unavoidably lead to dampening of the first‐phase insulin response and to a sustained‐release type insulin secretion that can only slowly respond to changes in glucose concentration. Bioartificial pancreas type devices can provide long‐term and physiologically desirable solutions only if immunoisolation and biocompatibility considerations are integrated with optimized nutrient diffusion and insulin release characteristics by design.  相似文献   

20.
Heat shock protein (hsp), including hsp70, has been reported to restore the glucose-induced insulin release suppressed by nitric oxide (NO). However, the mechanism underlying this recovery remains unclear. In the present study, we examine the effects, in rat islets, of heat shock on insulin secretion inhibited by a small amount of NO and also on glucose metabolism, the crucial factor in insulin release. Exposure to a higher dose (15 U/ml) of interleukin-1beta (IL-1beta) abolished the insulin release by stimulation of glucose or KCl in both control and heat shocked islets. In rat islets exposed to a lower dose (1.5 U/ml) of IL-1beta, insulin secretion in response to glucose, but not to glyceraldehydes (GA), ketoisocaproate (KIC), or KCl, was selectively impaired, concomitantly with lower ATP concentrations in the presence of 16.7 mM glucose, while such suppression of insulin secretion and ATP content was not observed in heat shock-treated islets. NO production in islets exposed to 1.5 U/ml IL-1beta was significantly, but only partly, decreased by heat shock treatment. The glucose utilization rate measurement using [5-3H]-glucose and [2-3H]-glucose and the glucokinase activity in vitro were reduced in islets treated with 1.5 U/ml IL-1beta. In heat shock-treated islets, glucose utilization and glucokinase activity were not affected by 1.5 U/ml IL-1beta. These data suggest that heat shock restores glucose-induced insulin release inhibited by NO by maintaining glucokinase activity and the glucose utilization rate in islets in addition to reducing endogenous NO production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号