首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The new interleukin (IL)-1 family cytokine IL-33 is synthesized as a 30-kDa precursor. Like pro-IL-1β, human pro-IL-33 was reported to be cleaved by caspase-1 to generate an 18-kDa fragment, which is sufficient to activate signaling by the IL-33 receptor T1/ST2. However, the proposed caspase-1 cleavage site is poorly conserved between species. In addition, it is not clear whether caspase-1 cleavage of pro-IL-33 occurs in vivo and whether, as for IL-1β, this cleavage is a prerequisite for IL-33 secretion and bioactivity. In this study, we further investigated caspase-1 cleavage of mouse and human pro-IL-33 and assessed the potential bioactivity of the IL-33 precursor. We observed the generation of a 20-kDa IL-33 fragment in cell lysates, which was enhanced by incubation with caspase-1. However, in vitro assays of mouse and human pro-IL-33 indicated that IL-33 is not a direct substrate for this enzyme. Consistently, caspase-1 activation in THP-1 cells induced cleavage of pro-IL-1β but not of pro-IL-33, and activated THP-1 cells released full-length pro-IL-33 into culture supernatants. Finally, addition of full-length pro-IL-33 induced T1/ST2-dependent IL-6 secretion in mast cells. However, we observed in situ processing of pro-IL-33 in mast cell cultures, and it remains to be determined whether full-length pro-IL-33 itself indeed represents the bioactive species. In conclusion, our data indicate that pro-IL-33 is not a direct substrate for caspase-1. In addition, our results clearly show that caspase-1 cleavage is not required for pro-IL-33 secretion and bioactivity, highlighting major differences between IL-1β and IL-33.Interleukin (IL)2 -33, the most recently described cytokine of the IL-1 family, is synthesized as a 30-kDa precursor. Human pro-IL-33, like pro-IL-1β, was reported to be cleaved by caspase-1 in vitro to generate an 18-kDa fragment, termed mature IL-33, which is sufficient to activate signaling by the IL-33 receptor T1/ST2 (1).Caspase-1 is an endoproteinase that specifically cleaves Asp-Xaa bonds, where Xaa typically refers to a small, often hydrophobic residue (24). Caspase-1 activity absolutely requires the presence of an Asp residue at position −1 of the cleavage site. Consistently, replacement of Asp116 by other amino acids, such as Ala, was previously demonstrated to prevent caspase-1 cleavage of pro-IL-1β (2). Recombinant (r) mature IL-33 starts at Ser112 for human (h) IL-33 and at Ser109 for mouse (m) IL-33, neither of which corresponds exactly to the position of a potential caspase-1 cleavage site. Indeed, the N-terminal moiety of human pro-IL-33 sequence contains a single Asp at position 110, and the N-terminal portion of mouse pro-IL-33 contains an Asp at positions 88 and 106. In fact, the region located between amino acids 80 and 110 of pro-IL-33 is rather poorly conserved between species (5). In particular, no Asp residues can be consistently found at an identical position across species to hint at the presence of a conserved caspase-1 cleavage site. So far, caspase-1 cleavage of pro-IL-33 has not been investigated in any species other than human.Expression of endogenous IL-33 has been described most extensively in endothelial cells, where essentially nuclear, full-length 30-kDa pro-IL-33 is detected (57). To date, only two studies have examined potential effects of caspase-1 activation on the processing and secretion of pro-IL-33 in living cells. In one study, stimulation of murine glial cultures with caspase-1 activators induced secretion of bioactive IL-33 into culture supernatants, but the size of the secreted protein was not assessed (8). It is thus not clear whether caspase-1 cleavage of pro-IL-33 occurs in mouse cells. In a second study, Western blot analysis revealed the presence of a 32-kDa protein and minor 17 and 20 kDa bands reacting with anti-IL-33 antibodies in the supernatants of THP-1 cells upon caspase-1 activation, suggesting secretion of full-length pro-IL-33 and of two potential cleavage products (9). Although this last observation suggests that some pro-IL-33 may be secreted, it not known to what extent IL-33 secretion is dependent on caspase-1 cleavage. Finally, so far all studies reporting T1/ST2-mediated effects of IL-33 were performed using the recombinant mature form of IL-33, whereas potential biological activity of the full-length precursor form has not been tested. It thus remains to be shown whether, as for IL-1β, caspase-1 cleavage is indeed required for IL-33 bioactivity. In the present study, we thus further investigated caspase-1 cleavage of mouse and human pro-IL-33 in vitro and in cultured cells and assessed the potential bioactivity of the IL-33 precursor.  相似文献   

6.
The Sec1/Munc18 (SM) family of proteins is thought to impart compartmental specificity to vesicle fusion reactions. Here we report characterization of Vps33p, an SM family member previously thought to act exclusively at the vacuolar membrane with the vacuolar syntaxin Vam3p. Vacuolar morphology of vps33Delta cells resembles that of cells lacking both Vam3p and the endosomal syntaxin Pep12p, suggesting that Vps33p may function with these syntaxins at the vacuole and the endosome. Consistent with this, vps33 mutants secrete the Golgi precursor form of the vacuolar hydrolase CPY into the medium. We also demonstrate that Vps33p acts at other steps, for vps33 mutants show severe defects in endocytosis at the late endosome. At the endosome, Vps33p and other class C members exist as a complex with Vps8p, a protein previously known to act in transport between the late Golgi and the endosome. Vps33p also interacts with Pep12p, a known interactor of the SM protein Vps45p. High copy PEP7/VAC1 suppresses vacuolar morphology defects of vps33 mutants. These findings demonstrate that Vps33p functions at multiple trafficking steps and is not limited to action at the vacuolar membrane. This is the first report demonstrating the involvement of a single syntaxin with two SM proteins at the same organelle.  相似文献   

7.
After we modified the protocol of purification, monkey metallothionein-1 (mkMT-1) and its mutant at position 33 (C33M mutant) were efficiently expressed and purified by using the glutathione-S-transferase fusion protein system. The protein yield has been considerably improved (8 mg/L culture for mkMT-1 and 10 mg/L culture for C33M mutant). The recombinant MT-1 and C33M mutant were characterized by ESI-MS, UV, and CD spectra. The reactions of MI-1 and C33M mutant with 5,5-dithiobis(2-nitrobenzoic acid) and EDTA also have been carefully studied. The pH titration of MT-1 and C33M mutant has been studied by UV and CD spectra. The mutation of cysteine-to-methionine at position 33 mostly maintains the -domain structure similar to that in wild-type mkMT-1, but the C33M mutant has significant loss of stability and cooperative properties of the domain.  相似文献   

8.
Garate M  Wong RP  Campos EI  Wang Y  Li G 《EMBO reports》2008,9(6):576-581
The tumour suppressor p33(ING1b) ((ING1b) for inhibitor of growth family, member 1b) is important in cellular stress responses, including cell-cycle arrest, apoptosis, chromatin remodelling and DNA repair; however, its degradation pathway is still unknown. Recently, we showed that genotoxic stress induces p33(ING1b) phosphorylation at Ser 126, and abolishment of Ser 126 phosphorylation markedly shortened its half-life. Therefore, we suggest that Ser 126 phosphorylation modulates the interaction of p33(ING1b) with its degradation machinery, stabilizing this protein. Combining the use of inhibitors of the main degradation pathways in the nucleus (proteasome and calpains), partial isolation of the proteasome complex, and in vitro interaction and degradation assays, we set out to determine the degradation mechanism of p33(ING1b). We found that p33(ING1b) is degraded in the 20S proteasome and that NAD(P)H quinone oxidoreductase 1 (NQO1), an oxidoreductase previously shown to modulate the degradation of p53 in the 20S proteasome, inhibits the degradation of p33(ING1b). Furthermore, ultraviolet irradiation induces p33(ING1b) phosphorylation at Ser 126, which, in turn, facilitates its interaction with NQO1.  相似文献   

9.
10.
Tomohiko Kuwabara  Norio Murata 《BBA》1982,680(2):210-215
The 33-kDa protein was purified in a high yield from thylakoid membranes of spinach chloroplasts. The extinction coefficient and A1%1cm value at 276 nm of the protein were 22000 M?1·cm?1 and 6.8, respectively. The 33-kDa protein and a polypeptide appearing at 32 kDa in the SDS-polyacrylamide gel electrophoresis of thylakoid membranes were compared by peptide mapping after limited proteolysis. This indicates that the 32-kDa band is entirely due to the 33-kDa protein. The molar ratio of chlorophyll to the 33-kDa protein in the chloroplasts was estimated to be 300. This suggests that one photosynthetic unit possesses one or two molecules of the 33-kDa protein.  相似文献   

11.
Inflammation occurs in adipose tissue in obesity. We have examined whether IL-33, a recently identified IL-1 gene family member, and its associated receptors are expressed in human adipocytes. IL-33, IL-1RL1 and IL-1RAP gene expression was observed in human visceral white fat, in preadipocytes and in adipocytes (SGBS cells). Treatment with TNFα for 24 h induced a 6-fold increase in IL-33 mRNA level in preadipocytes and adipocytes. Time-course studies with adipocytes showed that the increase in IL-33 mRNA with TNFα was maximal (>55-fold) at 12 h. This response was markedly different to IL-1β (peak mRNA increase at 2 h; 5.4-fold) and 1L-18 (peak mRNA increase at 6 h; >1500-fold). Exposure of adipocytes to hypoxia (1% O2, 24 h) did not alter IL-33 mRNA level; in preadipocytes, however, there was a 3-fold increase. Human adipocytes and preadipocytes express IL-33, but the various IL-1 family members exhibit major differences in responsiveness to TNFα.  相似文献   

12.
Interleukin-33 (IL-33) is the most recently identified member of the IL-1 family of cytokines, which is primarily known for its proinflammatory functions. We have previously reported that IL-33 is expressed by bone-forming osteoblasts, and that administration of recombinant IL-33 to bone marrow cultures inhibits their differentiation into bone-resorbing osteoclasts. Likewise, while the inhibitory effect of IL-33 on osteoclast differentiation was fully abolished in cultures lacking the IL-33 receptor ST2, mice lacking ST2 displayed low bone mass caused by increased osteoclastogenesis. Although these data suggested a physiological role of IL-33 as an inhibitor of bone resorption, direct in vivo evidence supporting such a function was still missing. Here we describe the generation and bone histomorphometric analysis of a transgenic mouse model (Col1a1-Il33) over-expressing IL-33 specifically in osteoblasts. While we did not observe differences in osteoblast number and bone formation between wildtype and Col1a1-Il33 mice, the number of osteoclasts was significantly reduced compared to wildtype littermates in two independent transgenic lines. Since we did not observe quantitative differences in the populations of eosinophils, neutrophils, basophils or M2-macrophages from the bone marrow of wildtype and Col1a1-Il33 mice, our data demonstrate that an inhibition of osteoclastogenesis is one of the major physiological functions of IL-33, at least in mice.  相似文献   

13.
1. The type-specific substance, S. 33B, from Pneumococcus type 33B contains P, 2.89; hexose, 51; total sugar, 69; galactosamine, 18; and d-glucose, 20%. 2. After degradation with alkali, followed by enzymic dephosphorylation, S. 33B yielded a hexasaccharide. 3. The hexasaccharide was assigned the structure O-beta-d-glucopyranosyl- (1-->5)-O-beta-d-galactofuranosyl- (1-->3)-O-2-acetamido-2-deoxy-beta-d- galactopyranosyl-(1-->4)-O-[alpha-d- galactopyranosyl-(1-->2)]-alpha-d-galactopyranosyl- (1-->2)-ribitol. 4. Phosphate residues in S. 33B are located on the hydroxyl groups at position 5 of ribitol units and on the hydroxyl groups at position 6 of hexopyranose residues.  相似文献   

14.
The gene product of the Saccharomyces cerevisiae open reading frame YDR229w (named IVY1 for: Interacting with Vps33p and Ypt7p) was found to interact with both the GTPase Ypt7p and the Sec1-related Vps33 protein. While deletion of IVY1 does not lead to any recognized change in phenotype, overexpression of Ivy1p leads to fragmentation of the vacuole, missorting of the vacuolar enzyme carboxypeptidase Y (CPY) to the exterior of the cell, and an accumulation of multivesicular bodies inside the cell. All effects caused by the overexpression of Ivy1p can be reset by simultaneously raising the amount of Vps33p. This suppression activity of Vps33p suggests that Ivy1p and Vps33p at least partially counteract the action of each other in the cell. The intracellular level of Ivy1p increases in cells approaching stationary growth phase at which part of the protein is located at the rim of the vacuole. In addition to its specific interactions with members of two regulatory protein families, Ivy1p in vitro shows a marked propensity for binding phospholipids with high affinity.  相似文献   

15.
A novel way of chemical modification of the macrolide antibiotic oligomycin A (1) at the side chain was developed. Mesylation of 1 with methane sulfonyl chloride in the presence of 4-dimethylaminopyridine produced 33-O-mesyl oligomycin in 56% yield. Reactions of this intermediate with sodium azide produced the key derivative 33-azido-33-deoxy-oligomycin A in 60% yield. 1,3-Dipolar cycloaddition reaction with propiolic acid, methyl ester of propiolic acid, and phenyl acetylene resulted in 33-deoxy-33-(1,2,3-triazol-1-yl)oligomycin A derivatives substituted at N4 of the triazole cycle. The mesylated oligomycin A and 33-deoxy-33-azidooligomycin A did not inhibit F0F1 ATFase ATPase; however, 33-azido-33-deoxy-oligomycin A and the derivatives containing 4-phenyltriazole, 4-methoxycarbonyl-triazole and 3-dimethylaminoethyl amide of carboxyltriazole substituents demonstrated a high cytotoxicity against K562 leukemia and HCT116 human colon carcinoma cell lines whereas non-malignant skin fibroblasts were less sensitive to these compounds. Novel series of oligomycin A derivatives allow for the search of intracellular molecules beyond F0F1 ATP synthase relevant to the cytotoxic properties of this perspective chemical class.  相似文献   

16.
Connexin 33 (Cx33) is a testis-specific gap junction protein. We previously reported that Cx33 exerts dominant-negative effect on gap junction intercellular communication by sequestering Cx43 within early endosomes in Sertoli cells. However, the molecular mechanisms that drive this process are unknown. The present study analyzed: (i) the trafficking of Cx33 and Cx43 in wild-type Sertoli cells transfected with Cx33-DsRed2 and Cx43-green fluorescent protein vectors; (ii) the formation of heteromeric Cx33/Cx43 hemi-channels and their incorporation into gap junction plaques. Fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer and videomicroscopy studies demonstrated that Cx33 and Cx43 associated to form heteromeric oligomers that trafficked along microtubules to the plasma membrane. However, the plaques containing Cx33 were not functional. Immunoprecipitation experiments revealed that zonula occludens-1 (ZO-1), a scaffold protein proposed to secure Cx in gap junction plaques at the cell–cell boundary, associated with Cx33 in testis extracts. In cells expressing Cx33, Cx33 and ZO-1 specifically interacted with P1 phosphorylated and P0 unphosphorylated isoforms of Cx43, and the ZO-1 membranous signal level was reduced. It is suggested that alteration of Cx43/ZO-1 association by Cx33 could be one mechanism by which Cx33 exerts its dominant-negative effect on gap junction plaque.  相似文献   

17.
IL-1 family ligand does not possess a typical hydrophobic signal peptide and needs a processing enzyme for maturation. The maturation process of IL-33 (IL-1F11), a new member of the IL-1 family ligand, remains unclear. Precursor IL-33 ligand affinity column isolates neutrophil proteinase 3 (PR3) from human urinary proteins. PR3 is a known IL-1 family ligand-processing enzyme for IL-1β (IL-1F2) and IL-18 (IL-1F4), including other inflammatory cytokines. We investigated PR3 in the maturation process of precursor IL-33 because we isolated urinary PR3 by using the precursor IL-33 ligand affinity column. PR3 converted inactive human and mouse precursor IL-33 proteins to biological active forms; however, the increase of PR3 incubation time abrogated IL-33 activities. Unlike caspase-1-cleaved precursor IL-18, PR3 cut precursor IL-33 and IL-18 at various sites and yielded multibands. The increased incubation period of PR3 abated mature IL-33 in a time-dependent manner. The result is consistent with the decreased bioactivity of IL-33 along with the increased PR3 incubation time. Six different human and mouse recombinant IL-33 proteins were expressed by the predicted consensus amino acid sequence of PR3 cleavage sites and tested for bioactivities. The human IL-33/p1 was highly active, but human IL-33/p2 and p3 proteins were inactive. Our results suggest the dual functions (activation/termination) of PR3 in IL-33 biological activity.  相似文献   

18.
19.
ADAM33 (a disintegrin and metalloproteinase) is an asthma susceptibility gene recently identified through a genetic study of asthmatic families (van Eerdewegh et al. (2002) Nature 418, 426-430). In order to characterize the catalytic properties of ADAM33, the metalloproteinase domain of human ADAM33 was expressed in Drosophila S2 cells and purified. The N-terminal sequence of the purified metalloproteinase was exclusively (204)EARR, indicating utilization of one of three furin recognition sites. Of many synthetic peptides tested as potential substrates, four peptides derived from beta-amyloid precursor protein (APP), Kit-ligand-1 (KL-1), tumor necrosis factor-related activation-induced cytokine, and insulin B chain were cleaved by ADAM33; mutation at the catalytic site, E346A, inactivated catalytic activity. Cleavage of APP occurred at His(14)/Gln(15), not at the alpha-secretase site and was inefficient (k(cat)/K(m) (1.6 +/- 0.3) x 10(2) m(-1) s(-1)). Cleavage of a juxtamembrane KL-1 peptide occurred at a site used physiologically with a similar efficiency. Mutagenesis of KL-1 peptide substrate indicated that the P3, P2, P1, and P3' residues were critical for activity. In a transfected cell-based sheddase assay, ADAM33 functioned as a negative regulator of APP shedding and mediated some constitutive shedding of KL-1, which was not regulated by phorbol 12-myristate 13-acetate activation. ADAM33 activity was sensitive to several hydroxamate inhibitors (IK682, K(i) = 23 +/- 7 nm) and to tissue inhibitors of metalloproteinase (TIMPs). Activity was inhibited moderately by TIMP-3 and TIMP-4 and weakly inhibited by TIMP-2 but not by TIMP-1, a profile distinct from other ADAMs. The identification of ADAM33 peptide substrates, cellular activity, and a distinct inhibitor profile provide the basis for further functional studies of ADAM33.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号