首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histidine decarboxylase activity in hamster and rat brains were studied using a newly developed sensitive, direct radioenzymatic microassay. For our assay conditions, we determined aK m forl-histidine of 320 M and aV max for histidine decarboxylase of 110 pmol histamine/hr/mg protein in rat hypothalamus. The regional distributions of both histidine decarboxylase and histamine levels were similar in the hamster and rat with the most activity in hypothalamus. Most of the histidine decarboxylase activity in rat hypothalamus was in the cytosol fraction. The developmental pattern of histidine decarboxylase in the fetal rat did not reveal a prenatal spike in activity. Histidine decarboxylase activity in rat brain reached adult levels by four weeks. Alpha-fluoromethylhistidine inhibited histidine decarboxylase activity almost totally in vitro at 10 M and about 80% in vivo after six days of infusion (100mg/kg/day) in all brain regions except the cerebellum. Likewise, histamine levels were depleted about 75% in all brain regions except the cerebellum.  相似文献   

2.
A single dose of growth hormone (10 mg/kg, i.p.) was injected into male weanling rats (50--60 g), and the temporal changes in cyclic AMP concentration, protein kinase activation, and ornithine decarboxylase activation were measured in the liver and adrenal gland. The level of cyclic AMP did not change significantly from control values in either liver or adrenal following growth hormone administration. Cyclic AMP-dependent protein kinase(s); however, was markedly activated in liver and adrenal within 30 min. Protein kinase remained activated for more than 4 hr in the liver, while activation of protein kinase in the adrenal returned to control value within 2 hr. Ornithine decarboxylase activity was elevated 20-fold in liver within 4 hr of injection and was increased 7- to 8-fold in be adrenal within l hr. These observations are discussed with regard to the generality of the role of cyclic AMP as the second messenger for target-specifici trophic hormone action and the significance of protein kinase activiation as an index of the cyclic nucleotide involvement in the growth response.  相似文献   

3.
Ornithine decarboxylase, the rate-limiting enzyme in polyamine synthesis, was significantly induced in female rat liver following oral administration of the pesticide mirex. After dual oral exposure (120 mg/kg of mirex; 21 and 4 hr prior to sacrifice), ornithine decarboxylase activity in rat liver cytosol was 70-fold higher than control values. A single oral dose of mirex (180 mg/kg) induced hepatic ornithine decarboxylase activity 55-fold over controls. After a single oral dose of mirex the maximal induction of ODC activity occurred at 36 hr. Mirex is an unusually potent and long-lasting inducer of rat hepatic ornithine decarboxylase activity.  相似文献   

4.
Summary Ornithine decarboxylase activity was determined during the development of the peripheral auditory system in the murine otocyst with the goal of understanding the role of this enzyme in the morphological and functional maturation of the inner ear. At gestational days 11 and 12 enzyme activity was more than 10-fold higher than adult levels. A sharp decline occured between day 12 and 13 after which activity rose to a peak around day 15. Activity then dropped continuously until near-adult levels were reached at birth. A lower specific activity of ODC but a similar time-course was seen in otocysts explanted at gestational day 13 and subsequently cultured for 6 days. For two stages of development, enzyme activity and binding of 3H--difluoromethylornithine were compared. The four-fold difference in enzymatic activity on gestational days 15 and 17 was paralleled by a similar difference in binding. Ornithine decarboxylase activity during inner ear development therefore seems primarily regulated at the level of protein synthesis. Ornithine decarboxylase activity correlates with major inductive events in the morphogenesis of the cartilagenous otic capsule that serves as a template for the formation of the bony labyrinth. The pattern of activity may reflect the changes in the head mesenchyme that is recruited by the otocyst to aggregate and form its protective otic capsule.  相似文献   

5.
Summary Various inhibitors of polyamine biosynthesis were used to study the role of polyamines in DNA synthesis and cell division in suspension cultures of Catharanthus roseus (L.) G. Don. Arginine decarboxylase (ADC; EC 4.1.1.19) was the major enzyme responsible for putrescine production. DL -difluoromethylarginine inhibited ADC activity, cellular putrescine content, DNA synthesis, and cell division. The effect was reversible by exogenous putrescine. Ornithine decarboxylase (ODC; EC 4.1.1.17) activity was always less than 10% of the ADC activity. Addition of DL -difluoromethylornithine had no effect on ODC activity, cellular polyamine levels, DNA synthesis, and cell division within the first 24 h but by 48 to 72 h it did inhibit these activities. Methylglyoxal bis(guanyl-hydrazone) inhibited S-adenosylmethionine decarboxylase (EC 4.1.1.50) activity without affecting DNA synthesis and cell division.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - SAMDC S-adenosylmethionine decarboxylase - DFMA DL -difluoro-methylarginine - DFMO DL -difluoromethylornithine - MGBG methylglyoxal bis(guanylhydrazone)  相似文献   

6.
Histidine decarboxylase, the synthetic enzyme for histamine, was partially purified from regions of rat or rabbit brain rich in the enzyme. The enzyme was purified using ion exchange and hydrophobic column chromatography and chromatofocusing. Approximately 70-fold and 110-fold enrichments were attained from rat and rabbit brain, respectively. Rat and rabbit brain histidine decarboxylase had isoelectric points of pH 5.4 and 5.6, Km values of 80 M and 120 M histidine and Vmax values of 210 and 625 pmol histamine formed/hr-mg protein, respectively. The partially purified histidine decarboxylase from both sources was dependent on pyridoxal phosphate for maximal activity and was inhibited by -fluoromethylhistidine, nickel chloride and cobaltous chloride but was not inhibited by impromidine, -methyldopa, DTNB, zinc chloride or mercuric chloride. The enzyme had a broad pH optimum between pH 7.2 and 8.0. These studies provide further information on the characteristics of mammalian histidine decarboxylase from brain.  相似文献   

7.
A Togari  K Kojima  T Nagatsu 《Life sciences》1985,37(17):1605-1611
Newly synthesized tyrosine hydroxylase (TH) induced by reserpine was compared with the enzyme in control rats in terms of the molecular and physiological properties. When repeated doses of reserpine were given at daily intervals for three days, the enzyme activity measured in homogenates of the adrenal glands was increased 3-fold. Furthermore, when TH in the adrenal glands from both control and reserpine-treated rats was purified, both total activity of the enzyme and the enzyme protein content purified from reserpine-treated rats were also about 3-fold higher than those of the control rats. The two purified enzymes revealed similar properties; a single subunit with a Mr of 60,000 was observed by SDS polyacrylamide gel electrophoresis, and the Km value for a pterin cofactor, 6-methyl-tetrahydropterin was about 300 microM. In contrast, in situ TH activity measured under physiological conditions at pH 7.2 in adrenal tissue slices was elevated 6-fold by reserpine pretreatment for 3 days, and was stimulated by carbachol (0.1 mM) and elevated K+ (52 mM) in a roughly proportional rather than additive way relative to slices from untreated rats. These results indicate that newly synthesized TH induced by reserpine in rat adrenal gland had similar properties as the enzyme in control rats and that reserpine increased not only the amount of TH molecules but also the in situ activity of TH. Since reserpine also increases the biosynthesis of tetrahydrobiopterin as demonstrated by Viveros and co-workers, this 6-fold increase in in situ TH activity may depend both upon the 3-fold increase in the amount of enzyme molecules and upon the increase of the physiologically available tetrahydrobiopterin in the adrenal gland.  相似文献   

8.
The enzymatic activities in post-mortem rat brain kept at 4°C and at 25°C were determined for a number of enzymes localized in specific cell types in the central nervous system. Choline acetyltransferase (CAT), glycerol-3-phosphate dehydrogenase (GPDH), glutamine synthetase (GS), lactate dehydrogenase (LDH) and 2,3-cyclic nucleotide phosphohydrolase (CNPase) were found to be very stable at both 4°C and 25°C with only slight, if any, losses of activity being seen even at periods as long as 72 hr. Glutamic acid decarboxylase (GAD) activity was less stable than that of the other enzymes. In brains kept at 4°C GAD activity was stable out to 24 hr after which it began to decline rapidly to 65% of control at 72 hr. In brains kept at 25°C, GAD activity was stable for 6–8 hr and then began to steadily decline to 58% of control at 24 hr and 29% of control at 72 hr. Assuming that these enzymes have similar stabilities in post-mortem human brain, the effect of post-mortem delay in processing tissues may be of lesser significance than other factors with regard to the measured enzyme activities in human brain samples.  相似文献   

9.
Ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), and thymidine kinase (TK) activities and polyamine concentrations on the kidneys of male castrated rats were studied following sc injection of estradiol. Estradiol caused an 11-fold increase in ODC activity 24 hours after administration. SAMDC activity doubled but TK activity decreased by two-thirds 2 days after estradiol treatment. The concentrations of polyamines, especially putrescine, showed sharp elevations 2 days following estradiol treatment, 1 day after the peak of ODC activity. The increase in ODC activity was suppressed by cycloheximide and by actinomycin D. Estradiol and diethylstilbestrol (DES), but not progesterone increased ODC activity. Estradiol suppressed ODC activities of liver, thymus, adrenal glands, testes and prostate. A specific estradiol-binding protein was demonstrated in the rat kidney. The dissociation constant (Kd) was 1.64 × 10?10 M and numbers of binding sites were 31 fmoles/mg protein. Correlation between the binding of estradiol to the cytosol protein and elevation of ODC by estradiol was observed.  相似文献   

10.
Changes in levels of biogenic amines and metabolites were measured using high performance liquid chromatography fitted with an electrochemical detection in various rat brain regions after acute administration of and abrupt withdrawal from continuous intracerebroventricular infusion of butorphanol (a // mixed opioid receptor agonist) or morphine (a -opioid receptor agonist). A single dose of butorphanol (26 nmol/5 l) or morphine (26 nmol/5 l) increased levels of 3,4-dihydroxyphenylacetic acid in the striatum and limbic region and of homovanilic acid in the cortex, striatum, and limbic region. In animals which had been infused with butorphanol (26 nmol/l/hr) or morphine (26 nmol/l/hr) for 3 days, an increase in dopamine turnover was observed. The levels of 3,4-dihydroxyphenylacetic acid was decreased and that of homovanilic acid was increased in the striatum, limbic region, and midbrain immediately after termination of opioid infusion. Both dopamine metabolites (in these areas) were decreased at 2 and 6 hr after butorphanol or morphine withdrawal. Changes in norepinephrine, serotonin, and 5-hydroxyindoleacetic acid levels in some brain regions were observed in the morphine-, but not in butorphanol-dependent rats. These data suggest that the increase and the decrease in dopaminergic activity, but not noradrenergic and serotonergic neurons, in the some brain regions are closely associated with the production of antinociception of and the expression of withdrawal syndrome from butorphanol and morphine, respectively.  相似文献   

11.
Ornithine decarboxylase (ODC; EC 4.1.1.17) is a highly inducible, rate-limiting enzyme of the polyamine pathway. We have studied the mechanisms that lead to the induction of ODC activity in response to electrical stimulation in three brain regions. Hippocampal ODC activity was found to exhibit much larger elevations than that of the neocortex and the cerebellum. The levels of ODC gene expression were also followed to examine its relationship to the existing regional differences in ODC activity. In the neocortex, there was an elevation of both the ODC mRNA and enzyme activity. However, the hippocampal ODC mRNA level was not increased by electroconvulsive shock. Furthermore, the effects of hormonal changes and seizures on these regional differences in ODC induction were also examined. Adrenalectomy did not affect ODC activity, but pretreatment with the anticonvulsant MK-801 caused a depression of the induced levels of enzyme activity. Our data suggest that ODC activity in all the brain regions studied is directly elevated by electrically stimulated seizures. However, this induced ODC activity may or may not involve enhanced gene expression.  相似文献   

12.
Tyrosine hydroxylase (TH) activity and the concentrations of norepinephrine (NE), serotonin (5-HT), and cyclic adenosine 3, 5-monophosphate (c-AMP) were measured in the heart, adrenals, and brain stem of paraplegic rats. Following spinal cord transection NE concentration in the heart dropped to 30% within 24 hours and that of 5-HT decreased to 60% of control. Tyrosine hydroxylase activity and c-AMP levels in the brain stem were elevated while NE concentration remained low. At seven days, however, NE and 5-HT levels were higher than in controls while TH activity and c-AMP concentration dropped to control levels. The increase in TH activity in the brain stem may be due to curtailed end-product feedback inhibition and to reduced receptor activation. The sustained induction of the adrenal TH is probably a consequence of a continual stimulation of splanchnic nerves.  相似文献   

13.
1. Elevated proinflammatory cytokines within the central nervous system (CNS) of individuals infected with human immunodeficiency virus (HIV) may contribute to altered CNS processes prior to the onset of AIDS. Most studies of HIV-induced alterations in cytokine expression within the CNS have focused on interleukin (IL)-1 and tumor necrosis factor (TNF).2. We used a ribonuclease protection assay (RPA) to elucidate further the pattern of cytokine mRNA expression in the rat CNS in response to HIV envelope glycoprotein 160 (gp160). Male Sprague–Dawley rats were surgically implanted with a guide cannula directed into a lateral cerebral ventricle. HIV gp160 was injected intracerebroventricularly and rats were sacrificed immediately (time = 0) or at 1, 2, or 4 hr postinjection. Discrete brain regions were dissected, and peripheral glands removed. All tissues were frozen in liquid nitrogen until RNA extraction and assay.3. IL-1, IL-1, TNF-, and TNF mRNAs were constitutively expressed in brain tissues. Central administration of gp160 dramatically increased mRNA expression for IL-1 and TNF in the hypothalamus, hippocampus, brainstem, and cerebellum. Furthermore, although mRNA expression for IL-5, IL-6, and IL-10 was never detected under basal conditions, these mRNAs were increased in brain tissue after administration of gp160. Peak expression in each brain region was detected 2 hr after administration. Multiple cytokine mRNAs were detected in peripheral tissues, but their expression was not altered by central administration of gp160.4. Our results indicate that gp160 induces mRNA expression in brain for cytokines other than IL-1 and TNF. Screening for multiple cytokine mRNA in this manner provides extensive information concerning the particular cytokines that may be involved in HIV-induced pathologies and alterations in CNS processes.  相似文献   

14.
Ornithine decarboxylase (ODC) was induced in the liver, lung and brain of the mouse injected intraperitoneally with 12-O-tetradecanoylphorbol 13-acetate (TPA), showing maximal enzyme activity four hours after the injection. The increase of ODC activity was due to the enhanced syntheses of mRNA and protein. The induction of ODC activity by TPA was specifically blocked by methylglyoxal bis(butylamidinohydrazone) (MGBB), a competitive inhibitor of ODC and S-adenosylmethionine decarboxylase, but not by the analog methylglyoxal bis(guanylhydrazone) (MGBG).  相似文献   

15.
Pyrithiamine, a thiamine phosphokinase inhibitor, was fed to rats on a thiamine-deficient diet, producing weight loss, ataxia and loss of righting reflex in 10 days. Some rats were then sacrificed; others were returned to a normal diet, to be sacrificed only when their weight had returned to pre-experimental levels. Rats were sacrificed for assay of glutamic acid decarboxylase (GAD) and choline acetyltransferase (ChAT) activities in homogenates of eight brain regions or were perfused for -aminobutyric acid transaminase (GABA-T) histochemistry. GAD activity was significantly reduced in symptomatic rats in the thalamus > cerebellum > midbrain > pons/medulla. GABA-T staining was similarly reduced, with greatest losses in the thalamus > inferior colliculus > pons > medulla. ChAT activity was not significantly altered in any brain area. Following return to a normal diet, GAD activity was significantly recovered in all areas except the thalamus. GABA-T staining recovered, at least partially, in all areas affected.  相似文献   

16.
Summary Eggplant (Solanum melongena L. cv. Violetta lunga 2) cotyledon expiants grown on hormone-free medium (controls) or on medium containing either naphthaleneacetic acid alone (root forming) or in combination with zeatin riboside (shoot forming) showed minor differences in free polyamine titres during culture. In contrast, conjugated polyamines (particularly those in the trichloroacetic acid-soluble fraction) accumulated only in hormonetreated explants, but not in controls. The extent and the temporal changes in soluble-conjugate levels differed between root-forming and shoot-forming expiants; in the former, accumulation began earlier (within 1 day of culture) and reached the highest levels. In both organogenic programmes, maximum conjugate accumulation occurred just before and during organ emergence. Adventitious roots and shoots were formed along the cut surfaces. The regions closest to these (borders) displayed a significantly higher ratio of conjugated to free spermidine and/or putrescine than the nonorganogenic regions (centres) of the explant. Ornithine decarboxylase activity was higher than arginine decarboxylase activity both in control and hormone-treated explants. However, both activities increased markedly on day 2 of culture in the presence of hormones. Thereafter ornithine decarboxylase activity remained high in shoot-forming explants, but not in root-forming ones. Putrescine oxidising activity was also enhanced by exogenously supplied hormones starting from day 4 of culture. This activity remained high up to day 12 in the presence of auxin plus cytokinin, whereas it peaked on day 6 in auxin-treated explants. Spermidine oxidising activity was the only enzyme activity which was consistently higher in controls than in hormone-treated tissue. Differences between the two organogenic programmes with respect to temporal changes in polyamine content, and putrescine biosynthetic and oxidative activities are discussed in relation to the timing of organ formation. The latter was monitored both histologically and macroscopically.Abbreviations PA polyamine - Put putrescine - Spd spermidine - Spm spermine - NAA naphthaleneacetic acid - ZR zeatin riboside - TCA trichloroacetic acid - ODC ornithine decarboxylase - ADC arginine decarboxylase  相似文献   

17.
Pyridoxal phosphate-dependent DOPA decarboxylase has been purified from bovine striatum to a specific activity of 1.6 U/mg protein. After ammonium sulfate precipitation (30–60%) it was purified by DEAE-Sephacel, Sephacryl S-200, and TSK Phenyl 5 PW chromatography. The purified enzyme showed a single silver staining band with polyacrylamide gel electrophoresis under both denaturing and non-denaturing conditions. The bovine striatal DOPA decarboxylase is a dimer (subunit Mr = 56000 by SDS-PAGE) with a native Mr of 106000 as judged by chromatography on Sephacryl S-200 and by sedimentation analysis. Similar to the DOPA decarboxylase purified from non-CNS tissues, the bovine striatal enzyme requires free sulfhydryl groups for activity, is strongly inhibited by heavy metal ions, and can decarboxylate 5-hydroxytryptophan as well. It should be noted, however, that the final enzyme preparation is enriched in DOPA decarboxylase activity. The distribution of the DOPA decarboxylase and 5-HTP decarboxylase activities also varies among several bovine brain regions. In addition, heat treatment of the enzyme preparation inactivated the two decarboxylation activities at different rates.Abbreviations AADC Aromatic L-amino Acid Decarboxylase - CNS Central Nervous System - DOPA 3,4-dihydroxyphenylalanine - DTT Dithiothreitol, 5-HTP - 5-hydroxytryptophan - Mr relative molecular weight - PLP pyridoxal 5-phosphate - SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis Part of this paper was presented at the 1987 Annual Pharmacology and Toxicology Conferences held at University of North Dakota School of Medicine, North Dakota, USA Res Commun Psychol Psychiat Behav 12: 227–228, 1987 (Abstr).  相似文献   

18.
The administration of -acetylenic GABA or di-n-propylacetate to mice delayed the onset of hyperbaric oxygen-induced seizures in the animals. The former compound caused large increases in brain GABA content and strong inhibition of glutamate decarboxylase activity, whereas the latter compound brough about only moderate increases in brain GABA level and had little or no effect on the enzyme activity. It is suggested that the GABA system is not involved in the anticonvulsant mechanism of -acetylenic GABA but may play a role in the action of di-n-propylacetate.  相似文献   

19.
  • 1.1. Putrescine and spermidine content increased in hepatocytes during culture. In the presence of 10 μM Berenil, putrescine content was further increased, while the increase of spermidine was prevented.
  • 2.2. Ornithine decarboxylase activity was markedly reduced, and to a lesser extent also S-adenosyl-methionine decarboxylase activity.
  • 3.3. Berenil appears to promote an increase in the transformation of spermidine into putrescine, and to inhibit the polyamine efflux.
  相似文献   

20.
Ornithine decarboxylase (ODC) activity was measured in procyclic forms of Trypanosoma brucei brucei grown in semidefined medium. ODC activity rapidly increased in late log-phase cells which were resuspended in fresh medium. A biphasic induction curve similar to that observed in mammalian cells was observed over an 18-hr period. ODC activity increased 4.5- to 25-fold over control levels measured at zero time. Actinomycin D and cycloheximide inhibited induction by greater than 90%. Polyamines at a level not inhibitory to growth (10 microM) inhibited ODC induction, but only by 30-50%, late in the induction period. Putrescine inhibited the first peak of induction and suppressed activity at 14 hr by 75%. Polyamine analogs such as bis(ethyl)spermidine were not effective suppressors of ODC activity. The half-life of ODC in procyclic forms grown in the presence of cycloheximide was greater than 6 hr, while that of bloodstream trypomastigotes in mice treated with cycloheximide was 5 hr. A single dose of the ODC inhibitor DL-alpha-difluoromethylornithine given to infected rats or mice suppressed trypanosome ODC activity greater than 90% for more than 7 hr. These studies indicate that although trypanosome ODC increases rapidly under log growth conditions, it is less susceptible to fluctuation and external control than the enzyme from mammalian sources. The latter may be a factor in the clinical efficacy of ODC inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号