首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
Sulfation is important in the metabolism and inactivation of steroidal compounds and hormone replacement therapeutic (HRT) agents in human tissues. Although generally inactive, many steroid sulfates are hydrolyzed to their active forms by sulfatase activity. Therefore, the specific sulfotransferase (SULT) isoforms and the levels of steroid sulfatase (STS) activity in tissues are important in regulating the activity of steroidal and HRT compounds. Tibolone (Tib) is metabolized to three active metabolites and all four compounds are readily sulfated. Tib and the Δ4-isomer are sulfated at the 17β-OH group by SULT2A1 and the 17-sulfates are resistant to hydrolysis by human placental STS. 3-OH and 3β-OH Tib can form both 3- and 17-monosulfates as well as disulfates. Only the 3β-sulfates are susceptible to STS hydrolysis. Raloxifene monosulfation was catalyzed by at least seven SULT isoforms and SULT1E1 also synthesizes raloxifene disulfate. SULT1E1 forms both monosulfates in a ratio of approximately 8:1 with the more abundant monosulfate migrating on HPLC identical to the SULT2A1 synthesized monosulfate. The raloxifene monosulfate formed by both SULT isoforms is sensitive to STS hydrolysis whereas the low abundance monosulfate formed by SULT1E1 is resistant. The benzothiophene sulfates of raloxifene and arzoxifene were hydrolyzed by STS whereas the raloxifene 4′-phenolic sulfate was resistant. These results indicate that tissue specific expression of SULT isoforms and STS could be important in the inactivation and regeneration of the active forms of HRT agents.  相似文献   

3.
Enzymes with 17β-hydroxysteroid dehydrogenase (17β-HSD) activity catalyse reactions between the low-active female sex steroid, estrone, and the more potent estradiol, for example. 17β-HSD activity is essential for glandular (endocrine) sex hormone biosynthesis, but it is also present in several extra-gonadal tissues. Hence, 17β-HSD enzymes also take part in local (intracrine) estradiol production in the target tissues of estrogen action. Four distinct 17β-HSD isozymes have been characterized so far, and the data strongly suggests that different 17β-HSD isozymes have distinct roles in endocrine and intracrine metabolism of sex steroids. Current data suggest that 17β-HSD type 1 is the principal isoenzyme involved in glandular estradiol production both in humans and rodents. During ovarian follicular development and luteinization, rat 17β-HSD type 1 is regulated by gonadotropins, and the effects of gonadotropins are modulated by steroid hormones and paracrine growth factors. Human 17β-HSD type 1 favors the reduction reaction, thereby converting estrone to estradiol both in vitro and in cultured cells. Hence, the enzymatic properties of the enzyme are also in line with its suggested role in estradiol biosynthesis. Interestingly, 17β-HSD type 1 is also expressed in certain target tissues of estrogen action such as normal and malignant human breast and endometrium. Hence, 17β-HSD type 1 could be one of the factors leading to a relatively high tissue/plasma ratio of estradiol in breast cancer tissues of postmenopausal women. We conclude that 17β-HSD type 1 has a central role in regulating the circulating estradiol concentration as well as its local production in estrogen target cells.  相似文献   

4.
We have examined the metabolism in vitro of [4-14C]pregnenolone by the following organs of 2.4-year-old rats: submandibular gland, stomach, duodenum, liver, lung, heart, spleen, kidney, skin, prostate, testis and adrenal. All tissues converted pregnenolone to progesterone, the highest yields being observed with adrenal, testis and skin. Androgen formation was intense in the testis and absent in the adrenal. Moreover, 17-hydroxylation of pregnenolone occurred moderately in kidney, skin and submandibular gland and markedly in duodenum and stomach, which also produced high amounts of dehydroepiandrosterone and/or 5-androstene-3β,17β-diol. Extratesticular synthesis of androstenedione and testosterone was very low. A significant formation of 20-dihydropregnenolone was observed in all tissues but stomach, duodenum and steroidogenic endocrines. Corticosteroids were not synthesized extraadrenally, except a small amount of 11-deoxycorticosterone in the testis. These results indicate that key steroid-biosynthetic enzymes, such as 3β-hydroxysteroid dehydrogenase/Δ5′Δ4 isomerase, 17β- and 20-hydroxysteroid dehydrogenases and steroid 17-monooxygenase/17,20-lyase are also expressed extraglandularly in the rat.  相似文献   

5.
Estradiol is active in proliferation and differentiation of sex-related tissues like ovary and breast. Glandular steroid metabolism was for a long time believed to dominate the estrogenic milieu around any cell of the organism. Recent reports verified the expression of estrogen receptors in “non-target” tissues as well as the extraglandular expression of steroid metabolizing enzymes. Extraglandular steroid metabolism proved to be important in the brain, skin and in stromal cells of hormone responsive tumors. Aromatase converts testosterone into estradiol and androstenedione into estrone, thereby activating estrogen precursors. The group of 17β-hydroxysteroid dehydrogenases catalyzes the oxidation and/or reduction of the forementioned compounds, e.g. estradiol/estrone, thereby either activating or inactivating estradiol. Aromatase is expressed and regulated in the human THP 1 myeloid leukemia cell line after vitamin D/GMCSF-propagated differentiation. Aromatase expression is stimulated by dexamethasone, phorbolesters and granulocyte/macrophage stimulating factor (GMCSF). Exons I.2 and I.4 are expressed in PMA-stimulated cells only, exon I.3 in both PMA- and dexamethasone-stimulated cells. Vitamin D-differentiated THP 1 cells produce a net excess of estradiol in culture supernatants, if testosterone is given as aromatase substrate. In contrast, the 17β-hydroxysteroid dehydrogenase type 4 (17β-HSD 4) is abundantly expressed in unstimulated THP 1 cells and is further stimulated by glucocorticoids (2-fold). The expression is unchanged after vitamin D/GMCSF-propagated differentiation. 17β-HSD 4 expression is not altered by phorbolester treatment in undifferentiated cells but is abolished after vitamin D-propagated differentiation along with downregulation of β-action. Protein kinase C activation therefore appears to dissociate the expression of aromatase and 17β-HSD 4 in this differentiation stage along the monocyte/phagocyte pathway of THP 1 myeloid cells. The expression of steroid metabolizing enzymes in myeloid cells is able to create a microenvironment which is uncoupled from dominating systemic estrogens. These findings may be relevant in the autocrine, paracrine or iuxtacrine cellular crosstalk of myeloid cells in their respective states of terminal differentiation, e.g. in bone metabolism and inflammation.  相似文献   

6.
Steroid glucuronides: Human circulatory levels and formation by LNCaP cells   总被引:3,自引:0,他引:3  
We studied the relationship between circulating androsterone glucuronide, androstane-3,17β-diol glucuronide and androstane-3β,17β-diol glucuronide concentrations and adrenal as well as testicular C-19 steroids in men. Among the three 5-reduced steroid glucuronides, androsterone glucuronide is the predominant C-19 steroid measured in plasma and its levels are markedly elevated compared to those of the non-conjugated steroid. The marked rise in testosterone during puberty was strongly correlated with the increase in both androsterone glucuronide and androstane-3,17β-diol glucuronide, thus suggesting that testicular C-19 steroids are the main precursors of the steroid glucuronides. We also found that the presence of testicular androgen in plasma contributes to approx. 70% of plasma androsterone glucuronide and androstane-3,17β-diol glucuronide. Our data suggest that the adrenal C-19 steroids remaining in circulation after castration in men are converted into potent androgen which are then glucuronidated by UDP-glucuronyltransferase. We also demonstrated that the human prostate cell line LNCaP is capable of converting to a large extent androstenedione into androsterone glucuronide. Our data further confirm that glucuronidation is a major pathway of steroid metabolism in steroid target tissues.  相似文献   

7.
17β-hydroxysteroid dehydrogenases (17β-HSD) catalyze the conversion of estrogens and androgens at the C17 position. The 17β-HSD type I, II, III and IV share less than 25% amino acid similarity. The human and porcine 17β-HSD IV reveal a three-domain structure unknown among other dehydrogenases. The N-terminal domains resemble the short chain alcohol dehydrogenase family while the central parts are related to the C-terminal parts of enzymes involved in peroxisomal β-oxidation of fatty acids and the C-terminal domains are similar to sterol carrier protein 2. We describe the cloning of the mouse 17β-HSD IV cDNA and the expression of its mRNA. A probe derived from the human 17β-HSD IV was used to isolate a 2.5 kb mouse cDNA encoding for a protein of 735 amino acids showing 85 and 81% similarity with human and porcine 17β-HSD IV, respectively. The calculated molecular mass of the mouse enzyme amounts to 79,524 Da. The mRNA for 17β-HSD IV is a single species of about 3 kb, present in a multitude of tissues and expressed at high levels in liver and kidney, and at low levels in brain and spleen. The cloning and molecular characterization of murine, human and porcine 17β-HSD IV adds to the complexity of steroid synthesis and metabolism. The multitude of enzymes acting at C17 might be necessary for a precise control of hormone levels.  相似文献   

8.
Intratumoral metabolism and synthesis of biologically active steroids such as estradiol and 5-dihydrotestosterone as a result of interactions of various enzymes are considered to play very important roles in the pathogenesis and development of hormone-dependent breast carcinoma. Among these enzymes involved in estrogen metabolism, intratumoral aromatase play an important role in converting androgens to estrogens in situ from serum and serving as the source of estrogens, especially in postmenopausal patients with breast carcinoma. However, other enzymes such as 17β-hydroxysteroid dehydrogenase (17β-HSD) isozymes, estrogen sulfatase (STS), and estrogen sulfotransferase, which contribute to in situ availability of biologically active estrogens, also play pivotal roles in this intratumoral estrogen production above. Androgen action on human breast carcinoma has not been well-studied but are considered important not only in hormonal regulation but also other biological features of carcinoma cells. Intracrine mechanisms also play important roles in androgen actions on human breast carcinoma cells. Among the enzymes involved in biologically active androgen metabolism and/or synthesis, both 17β-hydroxysteroid dehydrogenase type 5 (17βHSD5; conversion from circulating androstenedione to testosterone) and 5-reductase (5Red; reduction of testosterone to DHT (5-dihydrotestosterone) were expressed in breast carcinoma tissues, and in situ production of DHT has been proposed in human breast cancer tissues. However, intracrine mechanisms of androgens as well as their biological or clinical significance in the patients with breast cancer have not been fully elucidated in contrast to those in estrogens.  相似文献   

9.
The interconversion of estrone (E1) and 17β-estradiol (E2), androstenedione (4-ene-dione) and testosterone (T), as well as dehydroepiandrosterone and androst-5-ene-3β,17β-diol is catalyzed by 17β-hydroxysteroid dehydrogenase (17β-HSD). The enzyme 17β-HSD thus plays an essential role in the formation of all active androgens and estrogens in gonadal as well as extragonadal tissues. The present study investigates the tissue distribution of 17β-HSD activity in the male and female rat as well as in some human tissues and the distribution of 17β-HSD mRNA in some human tissues. Enzymatic activity was measured using 14C-labeled E1, E2, 4-ene-dione and T as substrates. Such enzymatic activity was demonstrated in all 17 rat tissues examined for both androgenic and estrogenic substrates. While the liver had the highestlevel of 17β-HSD activity, low but significant levels of E2 as well as T formation were found in rat brain, heart, pancreas and thymus. The oxidative pathway (E2→E1, T→4-ene-dione) was favored over the reverse reaction in almost all rat tissues while in the human, almost equal rates were found in most of the 15 tissues examined. The widespread distribution of 17β-HSD in rat and human tissues clearly indicates the importance of this enzyme in peripheral sex steroid formation or intracrinology.  相似文献   

10.
17β-Hydroxysteroid dehydrogenase/17-ketosteroid reductases (17HSD/KSR) play a key role in regulating steroid receptor occupancy in normal tissues and tumors. Although 17HSD/KSR activity has been detected in ovarian epithelial tumors, our understanding of which isoforms are present and their potential for steroid metabolism is limited. In this investigation, 17HSD/KSR activity from a series of ovarian epithelial tumors was assayed in cytosol and microsomes under conditions which differentiate between isoforms. Inhibition studies were used to further characterize the steroid specificities of isoforms in the two subcellular fractions. Activity varied widely between tumors of the same histopathologic classification. The highest levels of activity were observed in mucinous tumors. Michaelis constants, maximum velocities, estradiol-17β/testosterone (E2/T) activity ratios and inhibition patterns were consistent with a predominance of microsomal 17HSD/KSR2 and cytosolic 17HSD/KSR5, isoforms reactive with both E2 and T, with evidence of estrogenic 17HSD/KSR1 in cytosol from some samples. In tumors where activity and mRNA expression were both characterized, Northern blots, PCR and sequence analysis indicated 17HSD/KSR5 was the predominant isoform. The presence of 17HSD/KSR5, which also has both 3-HSD/KSR and 20HSD/KSR activity, and 17HSD/KSR2 which also has 20-HSD activity, could influence not only estrogen and androgen binding but progesterone receptor occupancy, as well, in receptor-containing tumors.  相似文献   

11.
An overview of the application of kinetic methods to the delineation of 17β-hydroxysteroid dehydrogenase (17β-HSD) heterogeneity in mammalian tissues is presented. Early studies of 17β-HSD activity in animal liver and kidney subcellular fractions were suggestive of multiple forms of the enzyme. Subsequently, detailed characterization of activity in cytosol and subcellular membrane fractions of human placenta, with particular emphasis on inhibition kinetics, yielded evidence of two kinetically-differing forms of 17β-HSD in that organ. Gene cloning and transfection experiments have confirmed the identity of these two proteins as products of separate genes. 17β-HSD type 1 is a cytosolic enzyme highly specific for C18 steroids such as 17β-estradiol (E2) and estrone (E1). 17β-HSD type 2 is a membrane bound enzyme reactive with testosterone (T) and androstenedione (A), as well as E2 and E1. Useful parameters for the detection of multiple forms of 17β-HSD appear to be the E2/T activity ratio, NAD/NADP activity ratios, steroid inhibitor specificity and inhibition patterns over a wide range of putative inhibitor concentrations. Evaluation of these parameters for microsomes from samples of human breast tissue suggests the presence of 17β-HSD type 2. The 17β-HSD enzymology of human testis microsomes appears to differ from placenta. Analysis of human ovary indicates granulosa cells are particularly enriched in the type 1 enzyme with type 2-like activity in stroma/theca. Mouse ovary appears to contain forms of 17β-HSD which differ from 17β-HSD type 1 and type 2 in their kinetic properties.  相似文献   

12.
13.
14.
17β-estradiol induces the synthesis of massive amounts of the hepatic mRNA encoding the Xenopus laevis egg yolk precursor protein, vitellogenin. Vitellogenin mRNA exhibits a half life of approx. 500 h when 17β-estradiol is present, and 16 h after removal of 17β-estradiol from the culture medium. We recently reported that Xenopus liver contains a protein, which is induced by 17β-estradiol and binds with a high degree of specificity to a binding site in a segment of the 3′-untranslated region (3′-UTR) of vitellogenin mRNA implicated in 17β-estradiol stabilization of vitellogenin mRNA. To determine if this mRNA binding protein was specific to this system, or if it was present elsewhere, and regulated by other steroids, we examined the tissue distribution and androgen regulation of this protein. Substantial amounts of the vitellogenin 3′-UTR binding protein were found in several Xenopus tissues including testis, ovary and muscle. In the absence of hormone treatment, lung and intestine contained minimal levels of the mRNA binding protein. Testosterone administration induced the vitellogenin 3′-UTR RNA binding protein in several tissues. Additionally, we found a homologous mRNA binding protein in MCF-7, human breast cancer cells. Although the MCF-7 cell protein was not induced by 17β-estradiol, the MCF-7 cell mRNA binding protein appears to be closely related to the Xenopus protein since: (i) the human and Xenopus proteins elicit gel shifted bands with the same electrophoretic mobility using the vitellogenin mRNA 3′-UTR binding site; (ii) The human and Xenopus proteins exhibit similar binding specificity for the vitellogenin 3′-UTR RNA binding site; and (iii) RNA from MCF-7 cells is at least as effective as RNA from control male Xenopus liver in blocking the binding of the Xenopus and human proteins to the vitellogenin mRNA 3′-UTR binding site. Its broad tissue distribution and regulation by both 17β-estradiol and testosterone suggests that this mRNA binding protein may play a significant role in steroid hormone regulation of mRNA metabolism in many vertebrate cells.  相似文献   

15.
The use of specific and non-specific antisera for estradiol-17β (E217β) were compared in the radioimmunoassay of the steroid. The effects of various “blank” mateirials on the standard curve and on the accuracy of recovery of E217β added to plasma before and after chromatography on LH-20 Sephadex were examined. It was concluded that the use of the specific antiserum (anti-6-oxoE217β -6-(O-carboxymethyl)oxime-bovine serum albumin(antiE217β-6-BSA) was an improvement on the non-specific serum anti-E217β-17-hemisuccinyl-bovine serum albumin (antiE2 17β-17-BSA) following chromatography of extracts. However, although a precise result could be obtained with the anti-E217β-6-BSA without the Chromatographic step, recovery of E217β added to plasma was only possible if the step was included.

The cross-reactivity of estrone (E1)with E217β using anti-E217β-17-BSA as defined by Abraham (J. Clin. Endocr. , 866 (1969) was examined under conditions of constant and of changing E1:E217β ratio.  相似文献   


16.
The well-established neuroprotective effect of dehydroepiandrosterone (DHEA) has been attributed to its metabolism in the brain to provide estrogens known to be neuroprotective and to enhance memory and learning in humans and animals. However, our previous work showed that the conversion of DHEA to 4-androstenedione (AD), the precursor of estrone (E1) and estradiol (E2), is very low in several different types of neural cells, and that the main product is 7-hydroxy-DHEA (7-OH-DHEA). In this study, we found that microglia are an exception and produce mainly 5-androstene-3β,17β-diol (Δ5-Adiol), a C19 steroid with estrogen-like activity from DHEA. Virtually, no other products, including testosterone (T) were detected by TLC or HPLC in incubations of 3H-labeled DHEA with the BV2 microglial cell line. Microglia are important brain cells that are thought to play a house-keeping role during the steady state, and that are crucial to the brain's immune reaction to injury and the healing process. Our findings suggest that the microglia-produced Δ5-Adiol might have a role in modulating estrogen-sensitive neuroplastic events in the brain, in the absence of adequate local synthesis of estrone and estradiol.  相似文献   

17.
Oocytes of Rana pipiens exposed to exogenous progesterone in order to induce maturation have been observed to extensively metabolize this hormone. When progesterone was injected directly into the oocytes, they did not mature, but similar metabolism of progesterone occurred. The metabolites have been tentatively identified as the 5α-reduced derivatives, 5α-pregnanedione, 5α-pregnan-20α-ol-3-one, and 5α-pregnan-3β, 20α-diol, and the pathway of conversion has been examined. Samples of these steroids obtained from commercial sources and those extracted from progesterone-treated oocytes were effective in inducing maturation when added to the medium. Evidence is presented which suggests that steroid metabolism is not a prerequisite for maturation and that the metabolites like progesterone must interact with the oocyte surface to be effective.  相似文献   

18.
The non-aromatizable androgen dihydrotestosterone (DHT) has been shown to exert a potent inhibitory effect on the proliferation of some human breast cancer cell lines. DHT, however, has little or no significant inhibition on MCF-7 cell proliferation in either the presence or absence of estradiol (E2). Since the metabolism of DHT into non-active compounds may be responsible for the observed lack of androgenic effect in this cell line, we have investigated the metabolic fate of labeled DHT in MCF-7 cells. A time course incubation was performed with 1 nM [3H]DHT and analysis of the various metabolites formed revealed a time-dependent increase in glucuronidated steroids which was stimulated more than 4-fold by 0.1 nM E2. The major glucuronidated steroid was androstane-3, 17β-diol in both control and E2-stimulated cells, comprising 22 ± 1.2% and 30 ± 0.6% of the total radioactivity in the medium, respectively. Other steroid glucuronides observed included DHT, androstane-3β, 17β-diol, and androsterone, all of which were elevated in the E2-treated cells relative to control values. The present data show that E2 exerts a stimulatory effect on the glucuronidation of androgens and their metabolites in the estrogen-dependent breast cancer celll line MCF-7. Since glucuronidation is an effective means of cellular elimination of active steroids, such a pathway may be considered as a possible site of regulation of breast cancer cell growth by hormones.  相似文献   

19.
In on-going studies of ‘classical’ and ring B-unsaturated oestrogens in equine pregnancy, the products of metabolism of [2,2,4,6,6-2H5]-testosterone and [16,16,17-2H3]-5,7-androstadiene-3β,17β-diol with equine placental subcellular preparations and allantochorionic villi have been identified. Using mixtures of unlabelled and [2H]-labelled steroid substrates has allowed the unequivocal identification of metabolites by twin-ion monitoring in gas chromatography–mass spectrometry (GC–MS). Two types of incubation were used: (i) static in vitro and (ii) dynamic in vitro. The latter involved the use of the Oxycell™ cartridge (Integra Bioscience Systems, St Albans, UK) whereby the tissue preparation was continuously supplied with supporting medium plus appropriate cofactors in the presence of uniform oxygenation. [2H5]-Testosterone was converted into [2H4]-oestradiol-17β, [2H4]-oestrone and [2H3]-6-dehydro-oestradiol-17 in both placental and chorionic villi preparations, but to a greater extent in the latter, confirming the importance of the chorionic villi in oestrogen production in the horse.

On the basis of GC–MS characteristics (M+ m/z 477/482 (as O-methyl oxime-trimethyl silyl ether), evidence for 19-hydroxylation of testosterone was found in static incubations, while the presence of a 6-hydroxy-oestradiol-17 was recorded in dynamic incubations (twin peaks in the mass spectrum at m/z 504/507, the molecular ion M+). It was not possible to determine the configuration at C-6. The formation of small, but significant, quantities of [2H4]-17β-dihydroequilin was also shown, and a biosynthetic pathway is proposed.

In static incubations of placental microsomal fractions, the 17β-dihydro forms of both equilin and equilenin were shown to be major metabolites of [2H3]-5,7-androstadiene-3,17-diol. Using static incubations of chorionic villi, the deuterated substrate was converted into the 17β-dihydro forms of both equilin and equilenin, together with an unidentified metabolite (base peak, m/z 504/506). The isomeric 17-dihydroequilins were also obtained using the dynamic in vitro incubation of equine chorionic villi, together with the 17β-isomer of dihydroequilenin. Confirmation of the identity of 17β-dihydroequilin and 17β-dihydroequilenin was obtained by co-injection of the authentic unlabelled steroids with the phenolic fraction obtained from various incubations. Increases in the peak areas for the non-deuterated steroids (ions at m/z 414 (17β-dihydroequilin) and 412 (17β-dihydroequilenin) (both as bis-trimethyl silyl ether derivatives) were observed. Biosynthetic pathways for formation of the ring B-unsaturated oestrogens from 5,7-androstadiene-3β,17β-diol are proposed.  相似文献   


20.
The enzyme 3β-hydroxysteroid dehydrogenase isomerase (3β-HSD/I) in an essential step in the biosynthesis of steroid such as progesterone, mineralo- and gluco-corticoids, estrogens and androgens in steroidogenic tissues. It is considered to be mainly localized in microsomes; however, 3β-HSD/I activity has also been described to be associated with mitochondrial preparations. In this study, we examined the subcellular distribution of 3β-HSD/I in bovine adrenocortical tissue and we characterized the catalytic properties of the enzyme present in the various cell compartments. About 30% of the total 3β-HSD/I activity was found to remain tightly associated with the purified mitochondrial pellet. The 3β-HSD/I and 3-ketoreductase activities were found in microsomes as well as in mitochondria. The 3β-HSD/I associated with the mitochondrial fraction did not required addition of exogenous NAD+. When the pyridine nucleotide was reduced ollowing addition of substrate of the tricarboxyllic acids cycle, the mitochondrial 3β-HSD/I activity decreased, suggesting that the enzyme utilizes NAD+ available from the matrix space. By contrast, the microsomal enzyme was inactive in the absence of exogenous NAD+. Submitochondrial fraction disclosed that 3β-HSD/I was associated (i) with the inner membrane and (ii) with a particulate fraction sedimenting in a density gradient between inner and outer membranes. This fraction was characterized as contact sites between the two membranes. 3β-HSD/I specific activity was much higher in this fraction than in the inner mitochondrial membrane. Altogether, these observations suggest that these mitochondrial intermembrane contact sites may represent a spacial organization of functional significance, facilitating both the access of cholesterol to the inner membrane where cytochrome P-450scc is located and the rapid transformation of its product, pregnenolone, to progesterone, through 3β-HSD/I activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号