首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Almitrine bimesylate is a potent and long-lasting respiratory stimulant in adult species. It acts by stimulating the peripheral chemoreceptors, where it has been shown to accumulate specifically, although its exact mechanism of action is uncertain. In the fetal lamb, however, it produces a profound inhibition of breathing even after denervation of the peripheral chemoreceptors. In this respect its action is similar to hypoxia. To investigate whether almitrine is hypoxia mimetic, we examined the effect of almitrine in nine fetal lambs of 120-130 days gestation. Five had lesions in the lateral pons that changed the fetal depressive response to hypoxia to one of stimulation. In the remaining four fetuses, the lesions did not bilaterally encompass the appropriate area of the pons; thus they still showed the normal fetal depressive response to hypoxia and so acted as controls. Almitrine (10 mg iv) caused a pronounced stimulation of breathing that lasted 406 +/- 26 min in all five fetuses with lesions that caused a stimulatory response to hypoxia. However, in the remaining four fetuses, in which the response to hypoxia was inhibitory, almitrine caused an inhibition of breathing that lasted 184 +/- 28 min. We conclude that the action of almitrine is like that of hypoxia and that, because it acts specifically on the chemoreceptors, it may prove to be a useful tool in the study of possible central chemoreceptor mechanisms.  相似文献   

2.
As interactions between peripheral chemoreceptors stimulation (PCS) and pulmonary vasomotor tone remain controversial, experiments were made in rats in order to clear up the effects of PCS on pulmonary arterial pressure (PAP). Different stimulations varying in intensities were used, in rats nervously intact (IR-rats), after vagotomy (XT-rats), after chemodenervation obtained without vagotomy (CDN not XT-rats) or with XT (CDN + XT) and finally after alpha 1-receptors blockade (P-rats = pretreated rats). The observed variations were analysed in view of disentangling reflex part of PCS from a direct activity on the pulmonary vascular bed. Ventilation, PAP and systemic blood pressure (BP) were studied in anaesthetized rats. N2 test, NaCN test, 20 s of 5% O2 inhalation and almitrine bismesylate (ALM) were used as PCS, ranged in the order of their relative intensities, from the ventilatory responses observed in IR-rats. In IR-rats, N2-and CN test produced a similar transient increase of PAP, slightly more extended than the hyperventilation. After XT, the responses were prolonged, but amplified only in CN test. Ventilatory responses disappear after CDN, but as far as pulmonary hypertension is concerned, CDN + XT is more potent than CDN without XT to reduce or even suppress them. This fact is particularly evident with ALM who is the strongest PCS used. Similar reduction of PAP rise was also produced in P-rats in which ventilatory responses remain unchanged. Prolonged hypoxic inhalation induced a progressive fall of systolic BP and of PAP. The return to normal air breathing is followed by BP restoration and a long-lasting PAP increase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Whilst hypoxia stimulates fetal peripheral chemoreceptors, fetal breathing movements do not increase as hypoxia also has central effects. We wondered whether specific stimulation of the arterial chemoreceptors by almitrine would produce a stimulation of fetal breathing movements. When almitrine was given to 5 intact and 3 peripherally-chemodenervated fetal sheep in utero, fetal breathing movements rapidly ceased for 1-12 h. There was also a decrease in the amount of time spent in low voltage electrocortical activity. The effects of almitrine are therefore similar to those of hypoxia, and are independent of the peripheral chemoreceptors. Thus it may be a valuable tool in the study of the control of fetal breathing.  相似文献   

4.
In pentobarbitalized rats, hypoxia induced by inhalation of O2 8%-N2 92%, produces a transient hyperventilation which is followed by a respiratory depression and an apnea. A cardiovascular collapse is then observed. Correction of the hypocapnia depending on the initial hyperventilation, by inhalation of a gas mixture containing 4% CO2 maintains the hyperventilation and suppresses the cardiovascular collapse. Carbon dioxide activity is both a direct one by stimulation of respiratory centers and an indirect one by increasing the sensitivity of the peripheral arterial chemoreceptors to hypoxia. Four percent carbon dioxide just compensating hypocapnia are sufficient to prevent apnea and vascular collapse. The increase of this concentration up to hypercapnia complicates the interpretation of the results by addition of hypoxic and hypercapnic effects.  相似文献   

5.
The cardiovascular effects of the stimulation of arterial chemoreceptors are different in spontaneously breathing and artificially ventilated animals. Respiratory failure and long term sojourn at high altitude coincide frequently with the occurrence of gastric ulceration. In both these situations a profound stimulation of arterial chemoreceptors is present. The purpose of the paper was to investigate the reflex effect of stimulation carotid chemoreceptors on gastric mucosal blood flow in the rat. Arterial chemoreceptors were stimulated by two methods (I) substitution gas mixture of 10% oxygen in nitrogen for room air and (II) direct injection of acid saline ( 0.05 ml, pH = 6.8) into the distal part of left common carotid artery. In artificially ventilated rats stimulation of arterial chemoreceptors caused significant increase in gastric mucosal vascular resistance, accompanied by marked decline in blood flow. This effect was mediated by adrenergic mechanism. On the contrary to artificially ventilated rats, decline of gastric mucosal vascular resistance with concomitant increase in blood flow was found in spontaneously breathing animals. This effect was not abolished either by phentolamine or atropine. As vasodilatatory effect of arterial chemoreceptors stimulation was abolished by bilateral vagotomy, we postulate that non adrenergic and non cholinergic vagal fibers mediate observed vascular changes in gastric mucosa in spontaneously breathing rats. We hypothesize that in artificially ventilated patients with respiratory failure stimulation of arterial chemoreceptors by hypoxemia and or acidosis may contribute to the development of gastric mucosal lesions.  相似文献   

6.
Almitrine increases breathing by stimulating peripheral chemoreceptors. Previous studies suggest clinical usefulness in the adult with chronic obstructive pulmonary disease, but little data are available to decide whether almitrine would be helpful in diseases involving pharyngeal airway obstruction, such as apnea of prematurity or obstructive sleep apnea. We investigated the effect of intravenous almitrine on hypoglossal (HG), an upper airway nerve, and phrenic (PHR) neural activity in eight alpha-chloralose-urethan anesthetized, paralyzed, vagotomized, and artificially ventilated cats. Recordings were made of raw and integrated HG and PHR electroneurograms (ENGs), alveolar PCO2, arterial PO2, arterial blood pressure, and rectal temperature. A dose-response study of cumulative almitrine doses ranging from 0.1 to 4.0 mg/kg was performed in three cats. The interactive effects of almitrine and hypoxic stimulation were investigated in four cats. The interactive effects of almitrine and hypercapnic stimulation were investigated in five cats. The interactive effects of almitrine and ventilatory timing were investigated in six cats. We found that 1) almitrine doses as low as 0.1 mg/kg iv increased both HG and PHR ENG activity, with a maximum effect at approximately 1.0 mg/kg; 2) almitrine markedly increased HG and PHR ENG activity at all arterial PO2 values from 35-175 Torr; 3) almitrine increased HG and PHR ENG activity at all arterial PCO2 values from 30-70 Torr; and 4) almitrine increased the ratio of tidal volume to inspiratory time and decreased the inspiratory muscle duty cycle at normoxia and eucapnia.  相似文献   

7.
Diuresis at altitude was thought to be the result of chemoreceptor stimulation leading to a reduction of cardiac volume overload. This hypothesis was tested in ten young, healthy subjects by infusion of almitrine (0.5 mg.kg-1 body mass within 30 min) assuming analogous sites of action, i.e. arterial chemoreceptors and pulmonary vessels, for almitrine as for hypoxic hypoxia. The results show that almitrine increases ventilation, heart rate, systolic blood pressure, central venous pressure and natriuresis, but fails to increase significantly atrial natriuretic peptide plasma concentration and diuresis. It is concluded: (1) that almitrine has similar sites of action as hypoxic hypoxia at about 5000 m, (2) that natriuresis during arterial chemoreceptor stimulation might reduce cardiac volume overload, (3) that the volume excretion hypothesis, in particular the pathways from the cardiac volume overload to the water diuresis, need, for an understanding of the hypoxia-induced diuresis, further direct investigations at altitude.  相似文献   

8.
This study was designed to identify the various controllers of thyroarytenoid (TA) activity in lambs during resting breathing, hypocapnic hypoxia, and isocapnic hypoxia. The TA muscle is known as the major adductor of the laryngeal aperture. We assumed that both the chemoreceptors and vagal nerves would interact to inhibit TA activity during hypoxia and to favor the occurrence of hyperpnea as a defense against hypoxia. We recorded TA activity directly in 11 awake lambs, aged 11 to 22 days, and studied them in three groups: four normals, four carotid body denervated, and three vagotomized. To test the contribution of the chemoreceptors to TA activity, we used pure O2 tests (Dejours' test) to silence the effects of the peripheral arterial chemoreceptors on the larynx during resting breathing and during the course of two hypoxia tests (the first: hypocapnic hypoxia; the second: isocapnic hypoxia). Our results confirmed 1) that both the peripheral arterial chemoreceptors and the vagal nerves inhibit the TA activity of 15-day-old lambs, during both resting and hypocapnic hypoxia conditions, and 2) that their effects override the hypocapnic effects that would otherwise recruit the TA muscle and close the glottis during hypocapnic hypoxia. We also found that vagotomy, or the pure O2 test, causes major recruitment of TA activity. These findings confirm that 15-day-old lambs are capable of using sustained hyperventilation as a means of fighting hypoxia, and that, because of the control of both the vagus nerves and the chemoreceptors, the laryngeal dynamic is able to keep the glottis aperture actively open, thereby favoring the hyperpnea.  相似文献   

9.
The effect of phentolamine, an alpha-adrenergic blocker, on hepatic oxygen supply, plasma glucose, and lactate, and survival in fasted male rats administered Echerichia coli endotoxin (25 mg/kg, ip) has been studied. Survival at 24 h was 8% in untreated endotoxic rats, 83% in rats receiving phentolamine (5 mg/kg, ip) and endotoxin, and 100% in phentolamine controls. Measurements during the initial 8 h postendotoxin recorded transiently lower systemic arterial pressure in the phentolamine-endotoxic rats. Arterial PO2 and increases of pH and heart rate were similar in both endotoxic groups. Lactacidemia, present by 4 h in untreated endotoxic rats, did not develop in the phentolamine group and plasma glucose was significantly higher at 8 h (98 +/- 2.5 vs. 77 +/- 5.6 mg%, mean +/- SE). Mean hepatic PO2 at 6 h in phentolamine-endotoxic rats was 9.6 mmHg with 28% of the values below 5 mmHg. By contrast, the mean in untreated endotoxic rats was 1.9 mmHg with 88% of values below 5 mmHg. Phentolamine controls were stable over 8 h; mean hepatic PO2 was 17.7 mmHg. The differences in plasma glucose and lactate suggest protection of hepatic metabolism in phentolamine-treated endotoxic rats by prevention of excessive hepatic hypoxia.  相似文献   

10.
We investigated the effects of surgical peripheral chemoreceptor denervation, chemical sympathectomy with 6-hydroxydopamine (6-OHDA), and the peripheral chemoreceptor stimulant almitrine on multipoint pulmonary arterial pressure-cardiac index (PAP/Q) plots in 30 pentobarbital sodium-anesthetized dogs ventilated alternatively in hyperoxia [fraction of inspired O2, (FIO2) = 0.4] and hypoxia (FIO2 = 0.1). A hypoxic pulmonary vasoconstriction (HPV), i.e., a hypoxia-induced increase in PAP over the entire range of Q studied, from 2 to 5 l.min-1.m-2, was elicited in all the animals. Surgical denervation of the carotid and aortic chemoreceptors in a first group of nine dogs increased PAP at the lowest Q of 2 and 3 l.min-1.min-2 in hyperoxia and increased PAP at all levels of Q in hypoxia, so that HPV was enhanced. Chemical sympathectomy in a second group of eight dogs increased PAP at all levels of Q to a comparable extent in hyperoxia and hypoxia so that HPV remained unchanged. Almitrine (8 micrograms.kg-1.min-1 iv) in a third group of eight dogs increased PAP at all levels of Q in hyperoxia but had no effect on PAP/Q plots in hypoxia, so that HPV was inhibited. Almitrine had these same pulmonary vascular effects when administered to the chemodenervated and the sympathectomized dogs. Sham operation and a 2-h delay in a final group of five dogs had no effect on hyperoxic or hypoxic PAP/Q plots. We conclude that in intact dogs 1) the sympathetic nervous system reduces both hyperoxic and hypoxic pulmonary vascular tone, 2) stimulation of the peripheral chemoreceptors inhibits HPV, and 3) almitrine has direct pulmonary vasoconstricting effects in hyperoxia but not hypoxia.  相似文献   

11.
Almitrine, a long-lasting peripheral chemoreceptor stimulant, was given to nine dogs via intracarotid injection. Carotid chemoreceptor activity was recorded from single or few-fiber afferent nerve preparations. Doses of 10-20 microgram/kg were generally sufficient to produce a brisk stimulatory response of less than 30 min duration. In four dogs decreasing arterial PO2 was found to allow a greater than additive response to almitrine. Infusions of NaHCO3 appeared to depress the response to almitrine whereas changing arterial PCO2 had little effect on the carotid chemoreceptor response to almitrine. Neither dopamine infusion nor dopamine receptor blockade altered the responsiveness of the carotid chemoreceptors to almitrine.  相似文献   

12.
The hypothesis that augmentation of the carotid chemoreceptor response to hypoxia by almitrine is due in part to an increased response to CO2 was tested by using single or few fiber preparation of carotid body chemosensory fibers in 12 cats anesthetized with alpha-chloralose. To differentiate between the plausible mechanisms of effects, we also tested the responsiveness of the afferents to cyanide and nicotine before and after almitrine. After a saturation dose of almitrine (1 mg.kg-1 followed by 0.5 mg.kg-1.h-1) the chemosensory responses to CO2 strikingly increased even during hyperoxia: the afferents showing an increased transient peak activity at the onset of hypercapnia, an augmented steady-state response to CO2 stimulus, and a decreased arterial PCO2 stimulus threshold. Thus, the effect of almitrine on carotid chemoreceptor response to hypoxia could be explained, at least in part, by its multiplicative stimulus interaction with CO2. After almitrine, the chemoreceptor response to cyanide, which is dependent on arterial PO2, was not particularly augmented relative to those of nicotine. Accordingly, the O2-sensing mechanism does not appear to be the primary site of almitrine effect. The results also indicate that the site of CO2 chemoreception resides downstream from those of hypoxia.  相似文献   

13.
The respiratory and circulatory activities of patients who underwent carotid body resection (CBR) more than two decades ago were reviewed. No significant ventilatory response to continuous hypoxia was observed. However, in response to stimulation of peripheral chemoreceptors, transient hyperventilation occurred before hypoxemic blood arrived at the central nervous system (single-breath test), which indicated the presence of weak peripheral chemosensitivity. Because of this slight residual peripheral chemosensitivity, which was found shortly after the operation and apparently remained more or less unchanged for greater than 20 years, peripheral chemoreceptor activity, which has been reported in other animal species, does not seem to have returned. Delayed hypoxic hyperventilation reported in dogs and cats with CBR was not observed. Hypoxia significantly depressed the ventilatory response to CO2, but the delayed ventilatory depression with time that has been demonstrated in normal subjects did not occur. In our circulatory studies, hypoxia augmented the heart rate and slightly depressed the stroke volume and total peripheral resistance in the systemic circulation but induced no appreciable changes in arterial blood pressure or cardiac output. We used these results to partition the relative contributions to the overall circulatory response of carotid body stimulation, pulmonary inflation, and other modifying influences. From these calculations, it was inferred that the carotid body reflex plays a dominant role in vascular activities whereas the pulmonary inflation reflex dominates in cardiac activities in humans.  相似文献   

14.
Chronic hypoxia induces lung vascular remodeling, which results in pulmonary hypertension. We hypothesized that a previously found increase in collagenolytic activity of matrix metalloproteinases during hypoxia promotes pulmonary vascular remodeling and hypertension. To test this hypothesis, we exposed rats to hypoxia (fraction of inspired oxygen = 0.1, 3 wk) and treated them with a metalloproteinase inhibitor, Batimastat (30 mg/kg body wt, daily ip injection). Hypoxia-induced increases in concentration of collagen breakdown products and in collagenolytic activity in pulmonary vessels were inhibited by Batimastat, attesting to the effectiveness of Batimastat administration. Batimastat markedly reduced hypoxic pulmonary hypertension: pulmonary arterial blood pressure was 32 +/- 3 mmHg in hypoxic controls, 24 +/- 1 mmHg in Batimastat-treated hypoxic rats, and 16 +/- 1 mmHg in normoxic controls. Right ventricular hypertrophy and muscularization of peripheral lung vessels were also diminished. Batimastat had no influence on systemic arterial pressure or cardiac output and was without any effect in rats kept in normoxia. We conclude that stimulation of collagenolytic activity in chronic hypoxia is a substantial causative factor in the pathogenesis of pulmonary vascular remodeling and hypertension.  相似文献   

15.
Our objective was to test the hypothesis that exposure to prolonged hypoxia results in altered responsiveness to chemoreceptor stimulation. Acclimatization to hypoxia occurs rapidly in the awake goat relative to other species. We tested the sensitivity of the central and peripheral chemoreceptors to chemical stimuli before and after 4 h of either isocapnic or poikilocapnic hypoxia (arterial PO2 40 Torr). We confirmed that arterial PCO2 decreased progressively, reaching a stable value after 4 h of hypoxic exposure (poikilocapnic group). In the isocapnic group, inspired minute ventilation increased over the same time course. Thus, acclimatization occurred in both groups. In goats, isocapnic hypoxia did not result in hyperventilation on return to normoxia, whereas poikilocapnic hypoxia did cause hyperventilation, indicating a different mechanism for acclimatization and the persistent hyperventilation on return to normoxia. Goats exposed to isocapnic hypoxia exhibited an increased slope of the CO2 response curve. Goats exposed to poikilocapnic hypoxia had no increase in slope but did exhibit a parallel leftward shift of the CO2 response curve. Neither group exhibited a significant change in response to bolus NaCN injections or dopamine infusions after prolonged hypoxia. However, both groups demonstrated a similar significant increase in the ventilatory response to subsequent acute exposure to isocapnic hypoxia. The increase in hypoxic ventilatory sensitivity, which was not dependent on the modality of hypoxic exposure (isocapnic vs. poikilocapnic), reinforces the key role of the carotid chemoreceptors in ventilatory acclimatization to hypoxia.  相似文献   

16.
Noradrenaline showed a negative inotropic effect on the isolated electrically triggered atrium of the perch. The effect was stronger at lower temperature and was antagonized by an alpha adrenergic blocker, phentolamine. The inotropic effect of adrenaline was dependent on incubation temperature. The effect was negative at 15 C but biphasic at 24 C, where with increasing adrenaline concentration a positive inotropic effect was followed by negative inotropy. Phentolamine not only antagonized the negative inotropic effect of adrenaline at 15 degrees C but changed it to positive. This positive inotropic effect was antagonized by a beta adrenergic blocker, propranolol. On the triggered ventricular strip adrenaline had no effect at 6 or 15 C, but increased contraction force at 24 C. It can be suggested that in the perch heart atrium there is an activity balance of alpha and beta receptors, which mediate the negative and positive inotropic control, respectively. As in higher vertebrates, alpha adrenergic activation decreases and beta activation increases by agonists in the following order: noradrenaline, adrenaline and isoprenaline. The balance changes towards increased beta activity when temperature rises.  相似文献   

17.
18.
The role of chemoreflexes originating from carotid body and central chemoreceptors in the regulation of cervical preganglionic sympathetic nerve (PSN) activity was studied in anesthetized and spontaneously breathing cats. PSN efferents which responded to hypoxia were selected for the study. The PSN activity, breath-by-breath inspiratory tidal volume, tracheal PO2 and PCO2, and arterial systemic blood pressure were recorded simultaneously. The responses of PSN efferents to transient changes in and steady-state levels of arterial PO2 and PCO2 and to graded bolus injections of intravenous sodium cyanide (50-100 micrograms), nicotine (50-100 micrograms), and dopamine hydrochloride (30-60 micrograms) were compared before and after bilateral section of carotid sinus nerves (CSN). CSN section raised the base-line PSN activity and practically eliminated the responses to brief pharmacological stimuli, but it did not eliminate the responses to transient changes in and steady-state levels of arterial PO2 and PCO2. However, CSN section diminished PSN responses and abolished ventilatory responses to hypoxia. Thus the PSN response to hypoxia was partly independent of peripheral chemoreflex and of respiratory drive. We conclude that carotid body chemoreflex elicits fast PSN responses and that a moderate decline in arterial PO2 causes an additional slow, direct excitation of sympathetic nervous system. The latter indicates O2 chemosensitivity of the system in the physiological range of arterial PO2. This O2-sensing property may allow sympathetic nervous system to initiate chemoreflex responses independent of the peripheral chemoreceptors.  相似文献   

19.
The purpose of this study was to investigate the possible participation of atrial natriuretic factor (ANF) in the natriuretic and diuretic response occurring after stimulation of the peripheral arterial chemoreceptors by almitrine bismesylate in normoxic humans. The experiments were performed in 14 healthy male volunteers undergoing water diuresis. Each subject participated in two experiments. In one of them they ingested 100-mg almitrine at 12 p.m. The other study served as a control. Surprisingly, our subjects responded to almitrine with an elevation of urine flow only, whereas sodium excretion remained almost unchanged over the whole period of the experiments. As regards ANF plasma concentrations, no statistically significant differences between the control and the almitrine group could be observed. Moreover, no direct connection between ANF plasma concentrations and renal volume excretion was detectable. We conclude that a specific stimulation of peripheral arterial chemoreceptors by almitrine in humans undergoing water diuresis did not seem to raise ANF plasma concentrations as is the case at high altitude. Therefore we would suggest that there exists no specific reflex influence of these receptors on ANF release.  相似文献   

20.
We determined the effects of carotid body excision (CBX) on eupneic ventilation and the ventilatory responses to acute hypoxia, hyperoxia, and chronic hypoxia in unanesthetized rats. Arterial PCO2 (PaCO2) and calculated minute alveolar ventilation to minute metabolic CO2 production (VA/VCO2) ratio were used to determine the ventilatory responses. The effects of CBX and sham operation were compared with intact controls (PaCO2 = 40.0 +/- 0.1 Torr, mean +/- 95% confidence limits, and VA/VCO2 = 21.6 +/- 0.1). CBX rats showed 1) chronic hypoventilation with respiratory acidosis, which was maintained for at least 75 days after surgery (PaCO2 = 48.4 +/- 1.1 Torr and VA/VCO2 = 17.9 +/- 0.4), 2) hyperventilation in response to acute hyperoxia vs. hypoventilation in intact rats, 3) an attenuated increase in VA/VCO2 in acute hypoxemia (arterial PO2 approximately equal to 49 Torr), which was 31% of the 8.7 +/- 0.3 increase in VA/VCO2 observed in control rats, 4) no ventilatory acclimatization between 1 and 24 h hypoxia, whereas intact rats had a further 7.5 +/- 1.5 increase in VA/VCO2, 5) a decreased PaCO2 upon acute restoration of normoxia after 24 h hypoxia in contrast to an increased PaCO2 in controls. We conclude that in rats carotid body chemoreceptors are essential to maintain normal eupneic ventilation and to the process of ventilatory acclimatization to chronic hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号