首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
外泌蛋白易于分离纯化,有利于以较低的生产成本获得大量的目标蛋白,因此分泌表达是一种理想的外源基因的表达方式。芽胞杆菌由于其具有较好的分泌能力,被认为是一种理想的表达外源基因的宿主。到目前为止已有大量来源于不同生物的外源基因在芽胞杆菌中实现了高效分泌表达。但是芽胞杆菌的分泌表达系统仍然存在很多问题,如对某些目的蛋白的分泌量低等,限制了其作为“细胞工厂”生产目标蛋白的应用。综述了芽胞杆菌的外泌系统,分析了芽胞杆菌分泌蛋白过程中的限制因素,并总结了相关的解决方案。  相似文献   

2.
Most of the examples of protein translocation across a membrane (such as the import of classical secretory proteins into the endoplasmic reticulum, import of proteins into mitochondria and peroxisomes, as well as protein import into and export from the nucleus), are understood in great detail. In striking contrast, the phenomenon of unconventional protein secretion (also known as nonclassical protein export or ER/Golgi-independent protein secretion) from eukaryotic cells was discovered more than 10 years ago and yet the molecular mechanism and the molecular identity of machinery components that mediate this process remain elusive. This problem appears to be even more complex as several lines of evidence indicate that various kinds of mechanistically distinct nonclassical export routes may exist. In most cases these secretory mechanisms are gated in a tightly controlled fashion. This review aims to provide a comprehensive overview of our current knowledge as a basis for the development of new experimental strategies designed to unravel the molecular machineries mediating ER/Golgi-independent protein secretion. Beyond solving a fundamental problem in current cell biology, the molecular analysis of these processes is of major biomedical importance as these export routes are taken by proteins such as angiogenic growth factors, inflammatory cytokines, components of the extracellular matrix which regulate cell differentiation, proliferation and apoptosis, viral proteins, and parasite surface proteins potentially involved in host infection.  相似文献   

3.
Translocation of proteins across the cell envelope of Gram-positive bacteria   总被引:23,自引:0,他引:23  
In contrast to Gram-negative bacteria, secretory proteins of Gram-positive bacteria only need to traverse a single membrane to enter the extracellular environment. For this reason, Gram-positive bacteria (e.g. various Bacillus species) are often used in industry for the commercial production of extracellular proteins that can be produced in yields of several grams per liter culture medium. The central components of the main protein translocation system (Sec system) of Gram-negative and Gram-positive bacteria show a high degree of conservation, suggesting similar functions and working mechanisms. Despite this fact, several differences can be identified such as the absence of a clear homolog of the secretion-specific chaperone SecB in Gram-positive bacteria. The now available detailed insight into the organization of the Gram-positive protein secretion system and how it differs from the well-characterized system of Escherichia coli may in the future facilitate the exploitation of these organisms in the high level production of heterologous proteins which, so far, is sometimes very inefficient due to one or more bottlenecks in the secretion pathway. In this review, we summarize the current knowledge on the various steps of the protein secretion pathway of Gram-positive bacteria with emphasis on Bacillus subtilis, which during the last decade, has arisen as a model system for the study of protein secretion in this industrially important class of microorganisms.  相似文献   

4.
In contrast to other organisms, gram-negative bacteria have evolved numerous systems for protein export. Eight types are known that mediate export across or insertion into the cytoplasmic membrane, while eight specifically mediate export across or insertion into the outer membrane. Three of the former secretory pathway (SP) systems, type I SP (ISP, ABC), IIISP (Fla/Path) and IVSP (Conj/Vir), can export proteins across both membranes in a single energy-coupled step. A fourth generalized mechanism for exporting proteins across the two-membrane envelope in two distinct steps (which we here refer to as type II secretory pathways [IISP]) utilizes either the general secretory pathway (GSP or Sec) or the twin-arginine targeting translocase for translocation across the inner membrane, and either the main terminal branch or one of several protein-specific export systems for translocation across the outer membrane. We here survey the various well-characterized protein translocation systems found in living organisms and then focus on the systems present in gram-negative bacteria. Comparisons between these systems suggest specific biogenic, mechanistic and evolutionary similarities as well as major differences.  相似文献   

5.
In contrast to other organisms, gram-negative bacteria have evolved numerous systems for protein export. Eight types are known that mediate export across or insertion into the cytoplasmic membrane, while eight specifically mediate export across or insertion into the outer membrane. Three of the former secretory pathway (SP) systems, type I SP (ISP, ABC), IIISP (Fla/Path) and IVSP (Conj/Vir), can export proteins across both membranes in a single energy-coupled step. A fourth generalized mechanism for exporting proteins across the two-membrane envelope in two distinct steps (which we here refer to as type II secretory pathways [IISP]) utilizes either the general secretory pathway (GSP or Sec) or the twin-arginine targeting translocase for translocation across the inner membrane, and either the main terminal branch or one of several protein-specific export systems for translocation across the outer membrane. We here survey the various well-characterized protein translocation systems found in living organisms and then focus on the systems present in gram-negative bacteria. Comparisons between these systems suggest specific biogenic, mechanistic and evolutionary similarities as well as major differences.  相似文献   

6.
Protein secretion from Bacillus species is a major industrial production tool with a market of over $1 billion per year. However, standard export technologies, based on the well-characterised general secretory (Sec) pathway, are frequently inapplicable for the production of proteins. The recently discovered twin-arginine translocation (Tat) pathway offers additional potential to transport proteins. Here we review the use of functional genomic and proteomic approaches to explore the Tat pathway of Bacillus subtilis. The properties of Tat pathway components and the twin-arginine signal peptides that direct proteins into this pathway are discussed. Where appropriate, a comparison is made with Tat systems from other organism, such as Escherichia coli. Recent findings with the latter organism in particular provide proof-of-principle that the Tat pathway can be exploited for the production of Sec-incompatible proteins.  相似文献   

7.
《The Journal of cell biology》1996,133(5):1017-1026
Several physiologically important proteins lack a classical secretory signal sequence, yet they are secreted from cells. To investigate the secretion mechanism of such proteins, a representative mammalian protein that is exported by a nonclassical mechanism, galectin-1, has been expressed in yeast. Galectin-1 is exported across the yeast plasma membrane, and this export does not require the classical secretory pathway nor the yeast multidrug resistance-like protein Ste6p, the transporter for the peptide a factor. A screen for components of the export machinery has identified genes that are involved in nonclassical export. These findings demonstrate a new pathway for protein export that is distinct from the classical secretory pathway in yeast.  相似文献   

8.
Many Gram-negative plant and animal pathogenic bacteria use a specialized type III secretion system (TTSS) as a molecular syringe to inject effector proteins directly into the host cell. Protein translocation across the eukaryotic host cell membrane is presumably mediated by a bacterial translocon. The structure of this predicted transmembrane complex and the mechanism of transport are far from being understood. In bacterial pathogens of animals, several putative type III secretion translocon proteins (TTPs) have been identified. Interestingly, TTP sequences are not conserved among different bacterial species, however, there are structural similarities such as transmembrane segments and coiled-coil regions. Accumulating evidence suggests that TTPs are components of oligomeric protein channels that are inserted into the host cell membrane by the TTSS.  相似文献   

9.
Much progress has been made in recent years regarding the mechanisms of targeting of secretory proteins to, and across, the endoplasmic reticulum (ER) membrane. Many of the cellular components involved in mediating translocation across this bilayer have been identified and characterized. Polypeptide domains of secretory proteins, termed signal peptides, have been shown to be necessary, and in most cases sufficient, for entry of preproteins into the lumen of the ER. These NH2-terminal segments appear to serve multiple roles in targeting and translocation. The structural features which mediate their multiple functions are currently the subject of intense study.  相似文献   

10.
Secretion systems enable bacteria to import and secrete large macromolecules including DNA and proteins. While most components of these systems have been identified, the molecular mechanisms of macromolecular transport remain poorly understood. Recent findings suggest that various bacterial secretion systems make use of the translocation ratchet mechanism for transporting polymers across the cell envelope. Translocation ratchets are powered by chemical potential differences generated by concentration gradients of ions or molecules that are specific to the respective secretion systems. Bacteria employ these potential differences for biasing Brownian motion of the macromolecules within the conduits of the secretion systems. Candidates for this mechanism include DNA import by the type II secretion/type IV pilus system, DNA export by the type IV secretion system, and protein export by the type I secretion system. Here, we propose that these three secretion systems employ different molecular implementations of the translocation ratchet mechanism.  相似文献   

11.
Synthesis of OmpA protein of Escherichia coli K12 in Bacillus subtilis   总被引:5,自引:0,他引:5  
We have inserted a C-terminally truncated gene of the major outer membrane protein OmpA of Escherichia coli downstream from the promoter and signal sequence of the secretory alpha-amylase of Bacillus amyloliquefaciens in a secretion vector of Bacillus subtilis. B. subtilis transformed with the hybrid plasmid synthesized a protein that was immunologically identified as OmpA. All the protein was present in the particulate fraction. The size of the protein compared to the peptide synthesized in vitro from the same template indicated that the alpha-amylase derived signal peptide was not removed; this was verified by N-terminal amino acid sequence determination. The lack of cleavage suggests that there was little or no translocation of OmpA protein across the cytoplasmic membrane. This is an unexpected difference compared with periplasmic proteins, which were both secreted and processed when fused to the same signal peptide. A requirement of a specific component for the export of outer membrane proteins is suggested.  相似文献   

12.
Apicomplexans are a diverse group of obligate parasites occupying different intracellular niches that require modification to meet the needs of the parasite. To efficiently manipulate their environment, apicomplexans translocate numerous parasite proteins into the host cell. Whereas some parasites remain contained within a parasitophorous vacuole membrane (PVM) throughout their developmental cycle, others do not, a difference that affects the machinery needed for protein export. A signal‐mediated pathway for protein export into the host cell has been characterized in Plasmodium parasites, which maintain the PVM. Here, we functionally demonstrate an analogous host‐targeting pathway involving organellar staging prior to secretion in the related bovine parasite, Babesia bovis, a parasite that destroys the PVM shortly after invasion. Taking into account recent identification of a similar signal‐mediated pathway in the coccidian parasite Toxoplasma gondii, we suggest a model in which this conserved pathway has evolved in multiple steps from signal‐mediated trafficking to specific secretory organelles for controlled secretion to a complex protein translocation process across the PVM.  相似文献   

13.
Tjalsma H 《Proteomics》2007,7(1):73-81
Proteomics-based verification of computer-assisted predictions on bacterial protein export have indicated that problems occur with the distinction between (Sec-type) signal peptides that govern protein secretion, and lipoprotein signal peptides or amino-terminal membrane anchors that cause protein retention in the membrane. Therefore, the main aim of this study was to investigate whether feature-based predictions by the SecretomeP (SecP) algorithm will aid the proteomics-based analysis of protein export in Bacillus subtilis. The SecP algorithm is trained to recognize features such as secondary structure and disordered regions, which are generally present in secreted proteins. The results showed that membrane-retained proteins receive, in general, high SecP scores, similar to the scores of secretory proteins. Importantly, the SecP algorithm aided in the re-evaluation of a class of previously identified proteins that remain attached to the membrane despite the presence of an apparent Sec-type signal peptide. These so-called 'Sec-attached' proteins receive on average a lower SecP score, and several of these proteins could be unmasked as transmembrane proteins by combined SecP and signal peptide analyses. Finally, the present study suggests that feature-based outlier analysis may provide leads towards the discovery of novel special-purpose pathways for bacterial protein export.  相似文献   

14.
Many Gram-negative bacteria initiate infections by injecting effector proteins into host cells through the type III secretion apparatus, which is comprised of a basal body, a needle, and a tip. The needle channel is formed by the assembly of a single needle protein. To explore the export mechanisms of MxiH needle protein through the needle of Shigella flexneri, an essential step during needle assembly, we have performed steered molecular dynamics simulations in implicit solvent. The trajectories reveal a screwlike rotation motion during the export of nativelike helix-turn-helix conformations. Interestingly, the channel interior with excessive electronegative potential creates an energy barrier for MxiH to enter the channel, whereas the same may facilitate the ejection of the effectors into host cells. Structurally known basal regions and ATPase underneath the basal region also have electronegative interiors. Effector proteins also have considerable electronegative potential patches on their surfaces. From these observations, we propose a repulsive electrostatic mechanism for protein translocation through the type III secretion apparatus. Based on this mechanism, the ATPase activity and/or proton motive force could be used to energize the protein translocation through these nanomachines. A similar mechanism may be applicable to macromolecular channels in other secretion systems or viruses through which proteins or nucleic acids are transported.  相似文献   

15.
16.
Bacillus species are valuable producers of industrial enzymes and biopharmaceuticals, because they can secrete large quantities of high-quality proteins directly into the growth medium. This requires the concerted action of quality control factors, such as folding catalysts and 'cleaning proteases'. The expression of two important cleaning proteases, HtrA and HtrB, of Bacillus subtilis is controlled by the CssRS two-component regulatory system. The induced CssRS-dependent expression of htrA and htrB has been defined as a protein secretion stress response, because it can be triggered by high-level production of secreted alpha-amylases. It was not known whether translocation of these alpha-amylases across the membrane is required to trigger a secretion stress response or whether other secretory proteins can also activate this response. These studies show for the first time that the CssRS-dependent response is a general secretion stress response which can be triggered by both homologous and heterologous secretory proteins. As demonstrated by high-level production of a nontranslocated variant of the alpha-amylase, AmyQ, membrane translocation of secretory proteins is required to elicit this general protein secretion stress response. Studies with two other secretory reporter proteins, lipase A of B. subtilis and human interleukin-3, show that the intensity of the protein secretion stress response only partly reflects the production levels of the respective proteins. Importantly, degradation of human interleukin-3 by extracellular proteases has a major impact on the production level, but only a minor effect on the intensity of the secretion stress response.  相似文献   

17.
The gram-positive bacterium Bacillus subtilis secretes high levels of proteins into its environment. Most of these secretory proteins are exported from the cytoplasm in an unfolded state and have to fold efficiently after membrane translocation. As previously shown for alpha-amylases of Bacillus species, inefficient posttranslocational protein folding is potentially detrimental and stressful. In B. subtilis, this so-called secretion stress is sensed and combated by the CssRS two-component system. Two known members of the CssRS regulon are the htrA and htrB genes, encoding potential extracytoplasmic chaperone proteases for protein quality control. In the present study, we investigated whether high-level production of a secretory protein with two disulfide bonds, PhoA of Escherichia coli, induces secretion stress in B. subtilis. Our results show that E. coli PhoA production triggers a relatively moderate CssRS-dependent secretion stress response in B. subtilis. The intensity of this response is significantly increased in the absence of BdbC, which is a major determinant for posttranslocational folding of disulfide bond-containing proteins in B. subtilis. Our findings show that BdbC is required to limit the PhoA-induced secretion stress. This conclusion focuses interest on the BdbC-dependent folding pathway for biotechnological production of proteins with disulfide bonds in B. subtilis and related bacilli.  相似文献   

18.
Polypeptide translocation across the endoplasmic reticulum membrane.   总被引:6,自引:0,他引:6  
Many polypeptides have been postulated to play direct roles in secretory protein translocation based on genetic criteria, cross-linking, and antibody inhibition. Much of the excitement in the next few years will come from the resolution of current controversies. What is the nature of the ribosome receptor, and is it essential for translocation? Is BiP required for translocation in mammalian cells? Are all of the polypeptides of signal peptidase and oligosaccharyltransferase required for catalytic function, or do some of them mediate steps of protein translocation? One of the best ways to resolve these problems will be to determine the importance of each in reconstituted translocation reactions by fractionation or immunodepletion, or by analysis in a purified reaction. Another approach is to identify homologues of these molecules in S. cerevisiae and to assess their importance in in vivo translocation. Several mechanistic questions remain to be addressed as well. Does the protein translocation apparatus consist of protein, or lipid, or both? How are integral membrane proteins inserted? How is the translocon gated to admit only unfolded or partially folded secretory polypeptides and to exclude cytoplasmic molecules? The answers to these questions will illuminate a basic enigma in cell biology that has remained unanswered for many years.  相似文献   

19.
S MacIntyre  U Henning 《Biochimie》1990,72(2-3):157-167
Presently available data are reviewed which concern the role of the mature parts of secretory precursor proteins in translocation across the plasma membrane of Escherichia coli. The following conclusions can be drawn; i) signals, acting in a positive fashion and required for translocation do not appear to exist in the mature polypeptides; ii) a number of features have been identified which either affect the efficiency of translocation or cause export incompatibility. These are: alpha) protein folding prior to translocation; beta) restrictions regarding the structure of N-terminus; gamma) presence of lipophilic anchors; delta) too low a size of the precursor. Efficiency of translocation is also enhanced by binding of chaperonins (SecB, trigger factor, GroEL) to precursors. Binding sites for chaperonins appear to exist within the mature parts of the precursors but the nature of these sites has remained rather mysterious. Mutant periplasmic proteins with a block in release from the plasma membrane have been described, the mechanism of this block is not known. The mature parts of secretory proteins can also be involved in the regulation of their synthesis. It appears that exported proteins are already recognized as such before they are channelled into the export pathway and that their synthesis can be feed-back inhibited at the translational level.  相似文献   

20.
Defective plasma membrane assembly in yeast secretory mutants.   总被引:11,自引:2,他引:9       下载免费PDF全文
Yeast mutants that are conditionally blocked at distinctive steps in secretion and export of cell surface proteins have been used to monitor assembly of integral plasma membrane proteins. Mutants blocked in transport from the endoplasmic reticulum (sec18), from the Golgi body (sec7 and sec14), and in transport of secretory vesicles (sec1) show dramatically reduced assembly of galactose and arginine permease activities. Simultaneous induction of galactose permease and alpha-galactosidase (a secreted glycoprotein) in sec mutant cells at the nonpermissive temperature (37 degrees C) shows that both activities accumulate and can be exported coordinately when cells are returned to the permissive temperature (24 degrees C) in the presence or absence of cycloheximide. Plasma membrane fractions isolated from sec mutant cells radiolabeled at 37 degrees C have been analyzed by two-dimensional sodium dodecyl sulfate-gel electrophoresis. Although most of the major protein species seen in plasma membranes from wild-type cells are not efficiently localized in sec18 or sec7, several of these proteins appear in plasma membranes from sec1 cells. These results may be explained by contamination of plasma membrane fractions with precursor vesicles that accumulate in sec1 cells. Alternatively, some proteins may branch off during transport along the secretory pathway and be inserted into the plasma membrane by a different mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号