首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several studies have shown that erythropoietin (EPO) can protect the kidneys from ischemia-reperfusion injury and can raise the hemoglobin (Hb) concentration. Recently, the EPO molecule modified by carbamylation (CEPO) has been identified and was demonstrated to be able to protect several organs without increasing the Hb concentration. We hypothesized that treatment with CEPO would protect the kidneys from tubular apoptosis and inhibit subsequent tubulointerstitial injury without erythropoiesis. The therapeutic effect of CEPO was evaluated using a rat ischemia-reperfusion injury model. Saline-treated kidneys exhibited increased tubular apoptosis with interstitial expression of alpha-smooth muscle actin (alpha-SMA), while EPO treatment inhibited tubular apoptosis and alpha-SMA expression to some extent. On the other hand, CEPO-treated kidneys showed minimal tubular apoptosis with limited expression of alpha-SMA. Moreover, CEPO significantly promoted tubular epithelial cell proliferation without erythropoiesis. In conclusion, we identified a new therapeutic approach using CEPO to protect kidneys from ischemia-reperfusion injury.  相似文献   

2.
3.
AimsConsidering the implications that arose from several recent experimental studies using recombinant human erythropoietin in rodents, erythropoietin has been regarded as a pharmacological preconditioning agent. The purpose of the present study was to evaluate whether erythropoietin has a preconditioning effect against ischemia and reperfusion injury in the small intestine of the rat.Main methodsIntestinal ischemia was induced in male Wistar rats by clamping the superior mesenteric artery for 30 min, followed by reperfusion for 180 min. Recombinant human erythropoietin (1000 or 3000 U/kg) or vehicle was administered intraperitoneally 24 h prior to ischemia. After collection of ileal tissue, evaluation of damage was based on measurements of the accumulation of polymorphonuclear neutrophils by technetium-99m-labeled leukocyte uptake, content of malondialdehyde, reduced glutathione, contractile responses to agonists, and an evaluation of histopathological features in intestinal tissue.Key findingsTreatment with erythropoietin 24 h before ischemia significantly reduced the tissue content of malondialdehyde and increased that of reduced glutathione. Pretreatment also significantly suppressed leukocyte infiltration into the postischemic tissue, as evidenced by the lower content of myeloperoxidase and technetium-99m-labeled leukocytes. Physiological and histopathological improvements were also significant with the rHuEpo treatment.SignificanceResults of the present study indicate that rHuEpo is an effective preconditioning agent in ischemic injury of the small intestine. Protection provided by recombinant human erythropoietin is closely related to the inhibition of oxidative stress and leukocyte infiltration, which might be among the possible protective mechanisms of erythropoietin in intestinal ischemia and reperfusion.  相似文献   

4.
5.
6.
ObjectiveThe objective of this study is to explore the protective effect of erythropoietin (EPO) on brain injury induced by intrauterine infection in premature infants and its related mechanism, so as to provide reference for clinical medication.MethodsIntrauterine infection model is established by injecting lipopolysaccharide into pregnant mice, and HE staining of mouse placenta is used to judge whether the model of intrauterine infection is successful or not. Fifteen female rats are successfully pregnant and divided into intrauterine infection group (10 rats) and control group (5 rats). The mice in the intrauterine infection group are intraperitoneally injected with lipopolysaccharide (LPS) at a dose of 0.3 mg/kg. After delivery, 16 newborn mice in the control group are randomly selected as blank control group. 32 newborn mice in the intrauterine infection group are selected as model group, and then divided into infection group and EPO treatment group, 16 mice in each group. After birth, mice in the blank control group are intraperitoneally injected with 0.2 mL saline daily. The infected mice are intraperitoneally injected with 0.2 mL saline daily. The mice in the EPO treatment group are intraperitoneally injected with recombinant human erythropoietin (rhEPO) 5000 IU/kg daily. HE staining results, EPOR protein and NMDAR1 mRNA expression in brain tissue of three groups of neonatal mice were compared.ResultsFirstly, the blood vessels of the mice in the intrauterine infection group are markedly hyperemic and edematous, and the infiltration of neutrophils is increased. The white matter structure of the neonatal mice in the intrauterine infection group is loose and stained lightly. The nerve fibers in the brain are different in thickness and disordered in arrangement. The nucleus is small and dark stained. The number of glial cells in brain tissue increases significantly. Secondly, the EPOR protein expression and physiological level of neonatal mice in intrauterine infection group increase significantly at 3, 7 and 14 days after birth. Compared with the blank control group, the difference is statistically significant (P < 0.05). On the 3rd day after birth, the expression level of EPOR protein in the EPO treated group is significantly higher than that in the intrauterine infection group (P < 0.05). Thirdly, the expression level of NMDA R1mRNA in brain tissue of neonatal mice at birth, on the 3rd and 7th day after EPO treatment is significantly lower than that of intrauterine infection group (P < 0.05).ConclusionEPO can promote the proliferation and differentiation of brain endogenous neural stem cells, and has a certain therapeutic effect on brain injury of premature mice caused by intrauterine infection.  相似文献   

7.
Lipopolysaccharide (LPS)-induced white matter injury in the neonatal rat brain is at least partially associated with oxidative stress. alpha-Phenyl-n-tert-butyl-nitrone (PBN) (100 mg/kg) significantly attenuated LPS (1 mg/kg)-induced brain injury, as indicated by the reduction in bilateral ventricular enlargement, apoptotic cell death of oligodendrocytes (OLs), and the loss of OL immunoreactivity in the neonatal rat brain. Protection of PBN was linked with the attenuated oxidative stress induced by LPS, as indicated by the decreased elevation of 8-isoprostane content and by the reduced number of 4-hydroxynonenal or malondialdehyde positive OLs following LPS exposure. Interestingly, while LPS exposure elevated, rather than depleted, levels of the reduced glutathione (GSH) and the GSH/GSSG (oxidized form) ratio, LPS exposure significantly suppressed glutathione peroxidase activity in the rat brain. PBN attenuated LPS-induced alterations in glutathione homeostasis in the rat brain. Additionally, the inflammatory responses were also reduced in the PBN-treated brain, as indicated by the decreased number of activated microglia following LPS exposure and by the consequently decreased elevation of interleukin1-beta and tumor necrosis factor-alpha contents in the rat brain. The overall results suggest that antioxidant PBN, more than a straightforward free radical scavenger, may also involve anti-inflammatory and anti-apoptotic properties in protection of the neonatal rat brain from LPS-induced injury.  相似文献   

8.
Abstract

To investigate the role of S100B, oxidative stress and the apoptosis signaling pathways in the sevoflurane induced neuroprotective effect on stroke. The brain injury, molecular and cellular damage, and functional recovery were investigated upon ischemic brain injury followed by sevoflurane treatment. Longa rodent stroke scales was used to quantify neurological deficits. TTC staining was used to measure infarct volume of brain tissue. Absolute brain water content was measured by wet/dry weight method. The neuronal morphological change was assessed by H and E staining. The spatial learning and memory ability were measured by water maze test. Serum proteins including S100B, GSH-PX, SOD, Bcl-2, Bax, Caspase-3 were measured by ELISA. The level of NOS and NO in serum was determined by colorimetric method. Compared with control, the serum proteins including S100B, Bax, NO, Caspase-3, and NOS activity in cerebral infarction rats increased significantly while SOD, GSH-PX, and Bcl-2 decreased significantly. Diabetic mellitus complicated with cerebral infarction rats showed more dramatic increase for S100B, Bax, NO, Caspase-3, and NOS activity and dramatic decrease for SOD, GSH-PX, and Bcl-2. Interestingly, sevoflurane reduced the changes significantly. The S100B level positively correlated with brain damage, NO, Bax, caspase-3, and NOS activity but negatively correlated with SOD, Bax, and GSH-PX. Brain damage in sevoflurane groups decreased while behavior outcomes including Longa neurologic score, learning, and memory increased significantly. The neuroprotective effect of sevoflurane is associated with defense mechanisms against free radical-induced oxidative stress and inhibition of apoptosis. S100B protein correlated with oxidative stress and the apoptosis signaling pathways.  相似文献   

9.
Reversible occlusion of the middle cerebral artery (MCA) was used to test hypothesis that hyperbaric oxygen inhibits the neutrophile infiltration into the ischemic brain thus reducing the brain injury. Treatment with hyperbaric oxygen prior to ischemia or during MCA occlusion significantly reduced neutrophile infiltration, motor disorders, and cerebral infarction volume.  相似文献   

10.
11.
12.
We describe here a new strategy for the treatment of stroke, through the inhibition of NAALADase (N-acetylated-alpha-linked-acidic dipeptidase), an enzyme responsible for the hydrolysis of the neuropeptide NAAG (N-acetyl-aspartyl-glutamate) to N-acetyl-aspartate and glutamate. We demonstrate that the newly described NAALADase inhibitor 2-PMPA (2-(phosphonomethyl)pentanedioic acid) robustly protects against ischemic injury in a neuronal culture model of stroke and in rats after transient middle cerebral artery occlusion. Consistent with inhibition of NAALADase, we show that 2-PMPA increases NAAG and attenuates the ischemia-induced rise in glutamate. Both effects could contribute to neuroprotection. These data indicate that NAALADase inhibition may have use in neurological disorders in which excessive excitatory amino acid transmission is pathogenic.  相似文献   

13.
Poly(ADP-ribose) synthase (PARS), an abundant nuclear protein, has been described as an important candidate for mediation of neurotoxicity by nitric oxide. However, in cerebral ischemia, excessive PARS activation may lead to energy depletion and exacerbation of neuronal damage. We examined the effect of inhibiting PARS on the (a) degree of cerebral injury, (b) process of inflammatory responses, and (c) functional outcomes in a neonatal rat model of focal ischemia. We demonstrate that administration of 3-aminobenzamide, a PARS inhibitor, leads to a significant reduction of infarct volume: 63 +/- 2 (untreated) versus 28 +/- 4 mm(3) (treated). The neuroprotective effects currently observed 48 h postischemia hold up at 7 and 17 days of survival time and attenuate neurological dysfunction. Inhibition of PARS activity, demonstrated by a reduction in poly(ADP-ribose) polymer formation, also reduces neutrophil recruitment and levels of nitrotyrosine, an indicator of peroxynitrite generation. Taken together, our results demonstrate that PARS inhibition reduces ischemic damage and local inflammation associated with reperfusion and may be of interest for the treatment of neonatal stroke.  相似文献   

14.
Plant recombinant erythropoietin attenuates inflammatory kidney cell injury   总被引:1,自引:0,他引:1  
Human erythropoietin (EPO) is a pleiotropic cytokine with remarkable tissue-protective activities in addition to its well-established role in red blood cell production. Unfortunately, conventional mammalian cell cultures are unlikely to meet the anticipated market demands for recombinant EPO because of limited capacity and high production costs. Plant expression systems may address these limitations to enable practical, cost-effective delivery of EPO in tissue injury prevention therapeutics. In this study, we produced human EPO in tobacco and demonstrated that plant-derived EPO had tissue-protective activity. Our results indicated that targeting to the endoplasmic reticulum (ER) provided the highest accumulation levels of EPO, with a yield approaching 0.05% of total soluble protein in tobacco leaves. The codon optimization of the human EPO gene for plant expression had no clear advantage; furthermore, the human EPO signal peptide performed better than a tobacco signal peptide. In addition, we found that glycosylation was essential for the stability of plant recombinant EPO, whereas the presence of an elastin-like polypeptide fusion had a limited positive impact on the level of EPO accumulation. Confocal microscopy showed that apoplast and ER-targeted EPO were correctly localized, and N -glycan analysis demonstrated that complex plant glycans existed on apoplast-targeted EPO, but not on ER-targeted EPO. Importantly, plant-derived EPO had enhanced receptor-binding affinity and was able to protect kidney epithelial cells from cytokine-induced death in vitro . These findings demonstrate that tobacco plants may be an attractive alternative for the production of large amounts of biologically active EPO.  相似文献   

15.
Recent studies have shown that erythropoietin, critical for the differentiation and survival of erythrocytes, has cytoprotective effects in a wide variety of tissues, including the kidney and lung. However, erythropoietin has been shown to have a serious side effect-an increase in thrombovascular effects. We investigated whether pyroglutamate helix B-surface peptide (pHBSP), a nonerythropoietic tissue-protective peptide mimicking the 3D structure of erythropoietin, protects against the organ injury/ dysfunction and inflammation in rats subjected to severe hemorrhagic shock (HS). Mean arterial blood pressure was reduced to 35 ± 5 mmHg for 90 min followed by resuscitation with 20 mL/kg Ringer Lactate for 10 min and 50% of the shed blood for 50 min. Rats were euthanized 4 h after the onset of resuscitation. pHBSP was administered 30 min or 60 min into resuscitation. HS resulted in significant organ injury/dysfunction (renal, hepatic, pancreas, neuromuscular, lung) and inflammation (lung). In rats subjected to HS, pHBSP significantly attenuated (i) organ injury/dysfunction (renal, hepatic, pancreas, neuromuscular, lung) and inflammation (lung), (ii) increased the phosphorylation of Akt, glycogen synthase kinase-3β and endothelial nitric oxide synthase, (iii) attenuated the activation of nuclear factor (NF)-κB and (iv) attenuated the increase in p38 and extracellular signal-regulated kinase (ERK)1/2 phosphorylation. pHBSP protects against multiple organ injury/dysfunction and inflammation caused by severe hemorrhagic shock by a mechanism that may involve activation of Akt and endothelial nitric oxide synthase, and inhibition of glycogen synthase kinase-3β and NF-κB.  相似文献   

16.
Traumatic brain injury is a well-recognized environmental risk factor for developing Alzheimer's disease. Repetitive concussive brain injury (RCBI) exacerbates brain lipid peroxidation, accelerates amyloid (Abeta) formation and deposition, as well as cognitive impairments in Tg2576 mice. This study evaluated the effects of vitamin E on these four parameters in Tg2576 mice following RCBI. Eleven-month-old mice were randomized to receive either regular chow or chow-supplemented with vitamin E for 4 weeks, and subjected to RCBI (two injuries, 24 h apart) using a modified controlled cortical impact model of closed head injury. The same dietary regimens were maintained up to 8 weeks post-injury, when the animals were killed for biochemical and immunohistochemical analyses after behavioral evaluation. Vitamin E-treated animals showed a significant increase in brain vitamin E levels and a significant decrease in brain lipid peroxidation levels. After RBCI, compared with the group on regular chow, animals receiving vitamin E did not show the increase in Abeta peptides, and had a significant attenuation of learning deficits. This study suggests that the exacerbation of brain oxidative stress following RCBI plays a mechanistic role in accelerating Alphabeta accumulation and behavioral impairments in the Tg2576 mice.  相似文献   

17.
目的研究microRNA-424(miR-424)对小鼠脑缺血后神经细胞凋亡及转录因子表达的影响。方法将制备的慢病毒Lenti-miR-424(10’U/mL,8斗L)通过脑室注射,7d后采用大脑中动脉线栓闭塞(MCAO)的方法建立小鼠脑缺血模型,动物分4组:假手术组,假手术+miR-424慢病毒,MCAO模型组,MCAO+miR-424慢病毒处理组(n=6)。缺血8h后取脑组织,石蜡切片进行TUNEL染色,观察神经细胞凋亡的情况;Westernblot检测缺血脑组织中转录因子Pu.1、低氧诱导因子-la(hypoxiainduciblefactor-1a,HIF-1a)、凋亡相关蛋白p53的表达。结果TUNEL免疫荧光观察结果显示,miR-424可以减轻小鼠脑缺血后8h的神经细胞凋亡;Westernblot结果显示,在缺血前和缺血8h后,miR-424对正常小鼠或MCAO模型脑组织中转录因子的调节趋势是相同的,均增加转录因子PU.1蛋白、HIF.1a蛋白、以及凋亡相关蛋白p53的表达。结论miR-424可能通过增加小鼠脑组织转录因子PU.1和HIF-la,以及凋亡相关蛋白p53的表达,从而减轻脑缺血后神经细胞的凋亡。  相似文献   

18.
There is an increasing incidence of military traumatic brain injury (TBI), and similar injuries are seen in civilians in war zones or terrorist incidents. Indeed, blast-induced mild TBI has been referred to as the signature injury of the conflicts in Iraq and Afghanistan. Assessment involves schemes that are common in civilian practice but, in common with civilian TBI, takes little account of information available from modern imaging (particularly diffusion tensor magnetic resonance imaging) and emerging biomarkers. The efficient logistics of clinical care delivery in the field may have a role in optimizing outcome. Clinical care has much in common with civilian TBI, but intracranial pressure monitoring is not always available, and protocols need to be modified to take account of this. In addition, severe early oedema has led to increasing use of decompressive craniectomy, and blast TBI may be associated with a higher incidence of vasospasm and pseudoaneurysm formation. Visual and/or auditory deficits are common, and there is a significant risk of post-traumatic epilepsy. TBI is rarely an isolated finding in this setting, and persistent post-concussive symptoms are commonly associated with post-traumatic stress disorder and chronic pain, a constellation of findings that has been called the polytrauma clinical triad.  相似文献   

19.
Expression of erythropoietin receptor mRNA in mouse brain hemispheres   总被引:4,自引:0,他引:4  
Now there is a growing evidence that erythropoietin receptors (Epo-R) are present also in some nonhematopoietic tissues such as endothelial cells and fetal cells of neural origin, although the physiological role of Epo-R at these sites is unclear. There are some speculations that Epo-R may be expressed on cells only in the developing CNS. The objective of this study was to determine whether Epo-R mRNA may be expressed in the brain hemispheres of Balb/c mice of different age groups: 1) newborn mice, 2) young 2 months old mice, 3) old 1.8 year old mice. We also studied the in vivo effect of recombinant erythropoietin on the expression of Epo-R mRNA in the brain hemispheres of (CBA x C57BL)F1 mice by RT-PCR. We have detected the existence of Epo-R mRNA expression in brain hemispheres of all the groups, but in old mice this expression was significantly higher. We have discovered a decrease in Epo-R mRNA expression in brain hemispheres of (CBA x C57BL)F1 mice 24 h after in vivo administration of recombinant erythropoietin. The Epo-R mRNA expression in the left brain hemispheres of (CBA x C57BL)F1 was considerably higher than in the right one.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号