首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
McAllister AK 《Neuron》2002,36(4):549-550
In this issue of Neuron, Zhang and Poo present evidence for localized BDNF-induced synaptic potentiation that is accompanied by spatially restricted calcium influx and requires local axonal protein synthesis. These results are consistent with a synapse-specific role for BDNF and provide a potentially novel way to think about cellular mechanisms for potentiation of neurotransmitter release.  相似文献   

5.
6.
MicroRNAs (miRs), endogenous small RNAs, regulate gene expression through repression of translational activity after binding to target mRNAs. miRs are involved in various cellular processes including differentiation, metabolism, and apoptosis. Furthermore, possible involvement of miRs in neuronal function have been proposed. For example, miR-132 is closely related to neuronal outgrowth while miR-134 plays a role in postsynaptic regulation, suggesting that brain-specific miRs are critical for synaptic plasticity. On the other hand, numerous studies indicate that BDNF (brain-derived neurotrophic factor), one of the neurotrophins, is essential for a variety of neuronal aspects such as cell differentiation, survival, and synaptic plasticity in the central nervous system (CNS). Interestingly, recent studies, including ours, suggest that BDNF exerts its beneficial effects on CNS neurons via up-regulation of miR-132. Here, we present a broad overview of the current knowledge concerning the association between neurotrophins and various miRs.  相似文献   

7.
Brain-derived neurotrophic factor (BDNF) mediates energy metabolism and feeding behavior. As a neurotrophin, BDNF promotes neuronal differentiation, survival during early development, adult neurogenesis, and neural plasticity; thus, there is the potential that BDNF could modify circuits important to eating behavior and energy expenditure. The possibility that "faulty" circuits could be remodeled by BDNF is an exciting concept for new therapies for obesity and eating disorders. In the hypothalamus, BDNF and its receptor, tropomyosin-related kinase B (TrkB), are extensively expressed in areas associated with feeding and metabolism. Hypothalamic BDNF and TrkB appear to inhibit food intake and increase energy expenditure, leading to negative energy balance. In the hippocampus, the involvement of BDNF in neural plasticity and neurogenesis is important to learning and memory, but less is known about how BDNF participates in energy homeostasis. We review current research about BDNF in specific brain locations related to energy balance, environmental, and behavioral influences on BDNF expression and the possibility that BDNF may influence energy homeostasis via its role in neurogenesis and neural plasticity.  相似文献   

8.
9.
In acute hippocampal slices, we found that the presence of extracellular brain-derived neurotrophic factor (BDNF) is essential for the induction of spike-timing-dependent long-term potentiation (tLTP). To determine whether BDNF could be secreted from postsynaptic dendrites in a spike-timing-dependent manner, we used a reduced system of dissociated hippocampal neurons in culture. Repetitive pairing of iontophoretically applied glutamate pulses at the dendrite with neuronal spikes could induce persistent alterations of glutamate-induced responses at the same dendritic site in a manner that mimics spike-timing-dependent plasticity (STDP)—the glutamate-induced responses were potentiated and depressed when the glutamate pulses were applied 20 ms before and after neuronal spiking, respectively. By monitoring changes in the green fluorescent protein (GFP) fluorescence at the dendrite of hippocampal neurons expressing GFP-tagged BDNF, we found that pairing of iontophoretic glutamate pulses with neuronal spiking resulted in BDNF secretion from the dendrite at the iontophoretic site only when the glutamate pulses were applied within a time window of approximately 40 ms prior to neuronal spiking, consistent with the timing requirement of synaptic potentiation via STDP. Thus, BDNF is required for tLTP and BDNF secretion could be triggered in a spike-timing-dependent manner from the postsynaptic dendrite.  相似文献   

10.
BDNF与抑郁症的研究现状及进展   总被引:2,自引:0,他引:2  
Qiao H  An SC  Xu C 《生理科学进展》2011,42(3):195-200
脑源性神经营养因子(brain-derived neurothrophic factor,BDNF)在中枢和外周均广泛存在,基于对其神经再生和修复功能的普遍认识,越来越多的研究开始关注BDNF在抑郁发生过程中对神经可塑性的影响以及BDNF在抗抑郁药物治疗中发挥的作用.本文综述了BDNF与抑郁症关系的基础性研究成果,以及近两年的相关研究趋势,更多的关于BDNF与其前体(precursor of brain derived neurothrophic factor,proBDNF)以及BDNF与其它神经递质在神经网络中的相互作用的研究需要被深入开展.  相似文献   

11.
12.
Brain-derived neurotrophic factor (BDNF) centrally mediates growth, differentiation and survival of neurons, and the synaptic plasticity that underlies learning and memory. Recent meta-analyses have reported significantly lower peripheral BDNF among individuals with schizophrenia, bipolar disorder, and depression, compared with controls. To evaluate the role of BDNF in autism, and to compare autism to psychotic-affective disorders with regard to BDNF, we conducted a meta-analysis of BDNF levels in autism. Inclusion criteria were met by 15 studies, which included 1242 participants. The meta-analysis estimated a significant summary effect size of 0.33 (95 % CI 0.21–0.45, P < 0.001), suggesting higher BDNF in autism than in controls. The studies showed notable heterogeneity, but no evidence of publication biases. Higher peripheral BDNF in autism is concordant with several neurological and psychological theories on the causes and symptoms of this condition, and it contrasts notably with the lower levels of BDNF found in schizophrenia, bipolar disorder, and depression.  相似文献   

13.
14.
Brain-derived neurotrophic factor (BDNF) is the most-abundant neurotrophin in the brain. In mammals, it is synthesized as a precursor called proBDNF, which is proteolytically cleaved to generate mature BDNF. The BDNF gene is located on chromosome 11p13, and a functional single nucleotide polymorphism (SNP) of this gene has been shown to produce a valine (Val)-to-methionine (Met) substitution in the proBDNF protein at codon 66 (Val66Met). Several papers suggest that this SNP is related to decreased hippocampal volume and hippocampus-mediated memory performance in humans. Recently, Chen et al. generated a variant BDNF mouse (BDNF(Met/Met)) that reproduces the phenotypic hallmarks in humans with a variant Met allele. In the behavioral analysis, BDNF(Met/Met) mice show increased anxiety-related behaviors. This mini-review examines the impact of Met substitution of proBDNF on anxiety-related behaviors.  相似文献   

15.
Brain-derived neurotrophic factor (BDNF) modulates hippocampal plasticity and hippocampal-dependent memory in cell models and in animals. We examined the effects of a valine (val) to methionine (met) substitution in the 5' pro-region of the human BDNF protein. In human subjects, the met allele was associated with poorer episodic memory, abnormal hippocampal activation assayed with fMRI, and lower hippocampal n-acetyl aspartate (NAA), assayed with MRI spectroscopy. Neurons transfected with met-BDNF-GFP showed lower depolarization-induced secretion, while constitutive secretion was unchanged. Furthermore, met-BDNF-GFP failed to localize to secretory granules or synapses. These results demonstrate a role for BDNF and its val/met polymorphism in human memory and hippocampal function and suggest val/met exerts these effects by impacting intracellular trafficking and activity-dependent secretion of BDNF.  相似文献   

16.
The brain‐derived neurotrophic factor (BDNF), a neurotrophin fundamental for brain development and function, has previously been implicated in autism. In this study, the levels of BDNF in platelet‐rich plasma were compared between autistic and control children, and the role of two genetic factors that might regulate this neurotrophin and contribute to autism etiology, BDNF and NTRK2, was examined. We found that BDNF levels in autistic children (n = 146) were significantly higher (t = 6.82; P < 0.0001) than in control children (n = 50) and were positively correlated with platelet serotonin distribution (r = 0.22; P = 0.004). Heritability of BDNF was estimated at 30% and therefore candidate genes BDNF and NTRK2 were tested for association with BDNF level distribution in this sample, and with autism in 469 trio families. Genetic association analysis provided no evidence for BDNF or NTRK2 as major determinants of the abnormally increased BDNF levels in autistic children. A significant association with autism was uncovered for six single nucleotide polymorphisms (SNPs) [0.004 (Z(1df) = 2.85) < P < 0.039 (Z(1df) = 2.06)] and multiple haplotypes [5 × 10?4(χ(3df) = 17.77) < P < 0.042 (χ(9df) = 17.450)] in the NTRK2 gene. These results do not withstand correction for multiple comparisons, however, reflect a trend toward association that supports a role of NTRK2 as a susceptibility factor for the disorder. Genetic variation in the BDNF gene had no impact on autism risk. By substantiating the previously observed increase in BDNF levels in autistic children in a larger patient set, and suggesting a genetic association between NTRK2 and autism, this study integrates evidence from multiple levels supporting the hypothesis that alterations in BDNF/tyrosine kinase B (TrkB) signaling contribute to an increased vulnerability to autism.  相似文献   

17.
18.
Kaplan DR  Miller FD 《Neuron》2007,55(1):1-2
During development, newly born neurons migrate away from their initial birth sites to their final positions in the mature brain. The neurotrophin BDNF has been shown to regulate the migration of granule cells in the cerebellum. The cellular mechanisms that mediate this chemotactic response have not been resolved. In this issue of Neuron, Zhou et al. show that vesicle trafficking is critical for allowing neurons to respond to a gradient of BDNF.  相似文献   

19.
Neurotrophins are a family of proteins that regulate neural survival, development, function and plasticity in the central and the peripheral nervous system. There are four neurotrophins: NGF, BDNF, NT-3 and NT-4. Among them, BDNF is mostly studied in the taste system due to its high expression. Recent studies have shown BDNF play an important role in the developmental and mature taste system, by regulating survival of taste cells and geniculate ganglion neurons, and maintaining and guiding taste nerve innervations. These studies imply BDNF has great potentialities for therapeutic usage to enhance sensory regeneration following nerve injury, with aging, and in some neurodegenerative diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号