首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
To test whether gaps resulting from sequence alignment contain phylogenetic signal concordant with those of base substitutions, we analyzed the occurrence of indel mutations upon a well-resolved, substitution-based tree for three nuclear genes in bumble bees (Bombus, Apidae: Bombini). The regions analyzed were exon and intron sequences of long-wavelength rhodopsin (LW Rh), arginine kinase (ArgK), and elongation factor-1alpha (EF-1alpha) F2 copy genes. LW Rh intron had only a few uninformative gaps, ArgK intron had relatively long gaps that were easily aligned, and EF-1alpha intron had many short gaps, resulting in multiple optimal alignments. The unambiguously aligned gaps within ArgK intron sequences showed no homoplasy upon the substitution-based tree, and phylogenetic signals within ambiguously aligned regions of EF-1alpha intron were highly congruent with those of base substitutions. We further analyzed the contribution of gap characters to phylogenetic reconstruction by incorporating them in parsimony analysis. Inclusion of gap characters consistently improved support for nodes recovered by substitutions, and inclusion of ambiguously aligned regions of EF-1alpha intron resolved several additional nodes, most of which were apical on the phylogeny. We conclude that gaps are an exceptionally reliable source of phylogenetic information that can be used to corroborate and refine phylogenies hypothesized by base substitutions, at least at lower taxonomic levels. At present, full use of gaps in phylogenetic reconstruction is best achieved in parsimony analysis, pending development of well-justified and generally applicable methods for incorporating indels in explicitly model-based methods.  相似文献   

2.
In the continuing quest for informative genes for use in molecular systematics, the protein-coding gene Elongation factor-1alpha (EF-1alpha) has rapidly become one of the most prevalent "single-copy" nuclear genes utilized, particularly in arthropods. This paper explores the molecular evolutionary dynamics and phylogenetic utility of EF-1alpha in the salticid spider genus Habronattus. As has been reported for other arthropod lineages, our studies indicate that multiple (two) copies of EF-1alpha exist in Habronattus. These copies differ in intron structure and thus in size, making it possible to easily separate PCR amplification products. We present data for an intronless EF-1alpha copy for three Habronattus species. The presence of nonsense mutations and generally elevated rates of amino acid change suggest that this copy is evolving under relaxed functional constraints in Habronattus. A larger taxon sample (50 species plus outgroups) is presented for an EF-1alpha copy that includes both intron and exon regions. Characteristics of both regions suggest that this is a functional, orthologous copy in the species sampled. Maximum-likelihood relative-rate comparisons show that exon third codon sites are evolving more than 100 times as fast as second codon sites in these sequences and that intron sites are evolving about twice as fast as exon third sites. In combination, the EF-1alpha data provide robust, species-level phylogenetic signal that is largely congruent with morphologically well supported areas of Habronattus phylogeny. The recovery of some novel clades, and the unexpected fragmentation of others, suggests areas requiring further phylogenetic attention.  相似文献   

3.
To test its phylogenetic utility, nucleotide sequence variation in a 1,240-bp fragment of the elongation factor-1 alpha (EF-1 alpha) gene was examined in 49 moth species representing the major groups of the superfamily Noctuoidea. Both parsimony and distance analyses supported the monophyly of nearly all groups for which there are clear morphological synapomorphies. Clades of subfamily rank and lower, probably mid-Tertiary and younger, were strongly supported. The third codon position contains 88% of variable sites, and approaches saturation at approximately 20% sequence divergence, possibly due to among-site rate heterogeneity and composition bias; higher divergences occur only in association with shifts in composition. Surprisingly, the few nonsynonymous changes appear no more phylogenetically reliable than synonymous changes. Signal strength for basal divergences is weak and fails to improve with character weighting; thus, dense taxon sampling is probably needed for strong inference from EF-1 alpha regarding deeper splits in Noctuoidea (probably early Tertiary). EF-1 alpha synonymous changes show promise for phylogeny reconstruction within Noctuidae and other groups of Tertiary age.   相似文献   

4.
Elongation factor 1 alpha (EF-1 alpha) is a highly conserved ubiquitous protein involved in translation that has been suggested to have desirable properties for phylogenetic inference. To examine the utility of EF-1 alpha as a phylogenetic marker for eukaryotes, we studied three properties of EF-1 alpha trees: congruency with other phyogenetic markers, the impact of species sampling, and the degree of substitutional saturation occurring between taxa. Our analyses indicate that the EF-1 alpha tree is congruent with some other molecular phylogenies in identifying both the deepest branches and some recent relationships in the eukaryotic line of descent. However, the topology of the intermediate portion of the EF-1 alpha tree, occupied by most of the protist lineages, differs for different phylogenetic methods, and bootstrap values for branches are low. Most problematic in this region is the failure of all phylogenetic methods to resolve the monophyly of two higher-order protistan taxa, the Ciliophora and the Alveolata. JACKMONO analyses indicated that the impact of species sampling on bootstrap support for most internal nodes of the eukaryotic EF-1 alpha tree is extreme. Furthermore, a comparison of observed versus inferred numbers of substitutions indicates that multiple overlapping substitutions have occurred, especially on the branch separating the Eukaryota from the Archaebacteria, suggesting that the rooting of the eukaryotic tree on the diplomonad lineage should be treated with caution. Overall, these results suggest that the phylogenies obtained from EF-1 alpha are congruent with other molecular phylogenies in recovering the monophyly of groups such as the Metazoa, Fungi, Magnoliophyta, and Euglenozoa. However, the interrelationships between these and other protist lineages are not well resolved. This lack of resolution may result from the combined effects of poor taxonomic sampling, relatively few informative positions, large numbers of overlapping substitutions that obscure phylogenetic signal, and lineage-specific rate increases in the EF-1 alpha data set. It is also consistent with the nearly simultaneous diversification of major eukaryotic lineages implied by the "big-bang" hypothesis of eukaryote evolution.  相似文献   

5.
We report the complete sequence of a paralogous copy of elongation factor-1 alpha (EF-1 alpha) in the honeybee, Apis mellifera (Hymenoptera: Apidae). This copy differs from a previously described copy in the positions of five introns and in 25% of the nucleotide sites in the coding regions. The existence of two paralogous copies of EF-1 alpha in Drosophila and Apis suggests that two copies of EF-1 alpha may be widespread in the holometabolous insect orders. To distinguish between a single, ancient gene duplication and parallel, independent fly and bee gene duplications, we performed a phylogenetic analysis of hexapod EF-1 alpha sequences. Unweighted parsimony analysis of nucleotide sequences suggests an ancient gene duplication event, whereas weighted parsimony analysis of nucleotides and unweighted parsimony analysis of amino acids suggests the contrary: that EF-1 alpha underwent parallel gene duplications in the Diptera and the Hymenoptera. The hypothesis of parallel gene duplication is supported both by congruence among nucleotide and amino acid data sets and by topology-dependent permutation tail probability (T-PTP) tests. The resulting tree topologies are also congruent with current views on the relationships among the holometabolous orders included in this study (Diptera, Hymenoptera, and Lepidoptera). More sequences, from diverse orders of holometabolous insects, will be needed to more accurately assess the historical patterns of gene duplication in EF-1 alpha.   相似文献   

6.
We analyzed the higher level phylogeny of the bee family Halictidae based on the coding regions of three single-copy nuclear genes (long-wavelength [LW] opsin, wingless, and elongation factor 1-alpha [EF-1 alpha]). Our combined data set consisted of 2,234 aligned nucleotide sites (702 base pairs [bp] for LW opsin, 405 bp for wingless, and 1,127 bp for EF-1 alpha) and 779 parsimony-informative sites. We included 58 species of halictid bees from 33 genera, representing all subfamilies and tribes, and rooted the trees using seven outgroups from other bee families: Colletidae, Andrenidae, Melittidae, and Apidae. We analyzed the separate and combined data sets by a variety of methods, including equal weights parsimony, maximum likelihood, and Bayesian methods. Analysis of the combined data set produced a strong phylogenetic signal with high bootstrap and Bremer support and high posterior probability well into the base of the tree. The phylogeny recovered the monophyly of the Halictidae and of all four subfamilies and both tribes, recovered relationships among the subfamilies and tribes congruent with morphology, and provided robust support for the relationships among the numerous genera in the tribe Halictini, sensu Michener (2000). Using our combined nucleotide data set, several recently described halictid fossils from the Oligocene and Eocene, and recently developed Bayesian methods, we estimated the antiquity of major clades within the family. Our results indicate that each of the four subfamilies arose well before the Cretaceous-Tertiary boundary and suggest that the early radiation of halictid bees involved substantial African-South American interchange roughly coincident with the separation of these two continents in the late Cretaceous. This combination of single-copy nuclear genes is capable of recovering Cretaceous-age divergences in bees with high levels of support. We propose that LW opsin, wingless, and EF-1 alpha(F2 copy) may be useful in resolving relationships among bee families and other Cretaceous-age insect lineages.  相似文献   

7.
Phylogenetic relationships within the Erythrobasidium clade as a lineage of the urediniomycetous yeasts were examined using partial regions of 18S rDNA, 5.8S rDNA, 26S rDNA, internal transcribed spacers (ITSs), and elongation factor (EF)-1alpha. Combined data analysis of all segments successfully yielded a reliable phylogeny and confirmed the cohesion of species characterized by Q-10(H2) as a major ubiquinone. Differences in secondary structure predicted for a variable region in 26S rDNA corresponded to major divergences in the phylogenetic tree based on the primary sequence. The common presence of a shortened helix in this region was considered to be evidence of monophyly for species with Q-10(H2), Sakaguchia dacryoides, Rhodotorula lactosa, and Rhodotorula lamellibrachiae, although it was not as strongly supported by the combined data tree. The information on intron positions in the EF-1alpha gene had potential usefulness in the phylogenetic inference between closely related species.  相似文献   

8.
M A Guerrucci  A Monnier  C Delalande  R Bellé 《Gene》1999,233(1-2):83-87
The molecular evolution of two components of elongation factor-1 (EF-1), EF-1beta and EF-1delta was analysed using the distance matrix, the maximum parsimony and the maximum likelihood methods, after careful alignment of protein and cDNA sequences. The topology of the phylogenetic trees obtained supports monophyly of plant EF-1beta and EF-1beta' sequences, and monophyly of higher eukaryotic animal EF-1beta and EF-1delta sequences. EF-1beta and EF-1delta are homologous in their C-terminal domain. EF-1delta, which emerged before arthropods, originates from a beta-type ancestor gene and fusion with a leucine zipper N-terminal motif. Plant EF-1beta and EF-1beta' correspond to paralogous genes whose ancestor was most likely duplicated before the emergence of monocotyledons and dicotyledons.  相似文献   

9.
10.
The eichhorni group lies within the genus Delias (Lepidoptera: Pieridae) which has markedly diversified aposematic wing markings. The phylogenetic relationships among all species of the eichhorni group, representatives of each of the other 21 species groups of Delias butterflies, and some related genera were analyzed based on nucleotide sequences of the mitochondrial NADH dehydrogenase subunit 5 gene. A supplemental study using the nuclear elongation factor-1alpha (EF-1alpha) gene was also carried out. The results are compared with those of morphological studies. Our results confirm the monophyly of the eichhorni group and suggest the monophyly of the genus Delias. They also indicate phylogenetic intragroup relationships, particularly the division of the eichhorni complex into groups I and II. Moreover, they also indicate that the initial diversification of the eichhorni group involved separation of the D. catisa + D. toxopei clade, followed by the divergence of other species including the eichhorni complex. Based on these findings, it is supposed that this group first appeared close to or within the western mountain range of New Guinea Island (135 degrees 30(')-140 degrees E) where D. catisa, D. toxopei, and representatives of other species cohabit.  相似文献   

11.
Stratiomyidae is a cosmopolitan family of Brachycera (Diptera) that contains over 2800 species. This study focused on the relationships of members of the subfamily Clitellariinae, which has had a complicated taxonomic history. To investigate the monophyly of the Clitellariinae, the relationships of its genera, and the ages of Stratiomyidae lineages, representatives for all 12 subfamilies of Stratiomyidae, totaling 68 taxa, were included in a phylogenetic reconstruction. A Xylomyidae representative, Solva sp., was used as an outgroup. Sequences of EF-1alpha and 28S rRNA genes were analyzed under maximum parsimony with bootstrapping, and Bayesian methods to recover the best estimate of phylogeny. A chronogram with estimated dates for all nodes in the phylogeny was generated with the program, r8s, and divergence dates and confidence intervals were further explored with the program, multidivtime. All subfamilies of Stratiomyidae with more than one representative were found to be monophyletic, except for Stratiomyinae and Clitellariinae. Clitellariinae were distributed among five separate clades in the phylogeny, and Raphiocerinae were nested within Stratiomyinae. Dating analysis suggested an early Cretaceous origin for the common ancestor of extant Stratiomyidae, and a radiation of several major Stratiomyidae lineages in the Late Cretaceous.  相似文献   

12.
The elongation factor 1 alpha (EF-1 alpha) has become widely employed as a phylogenetic marker for studying eukaryotic evolution. However, a disturbing problem, the artifactual polyphyly of ciliates, is always observed. It has been suggested that the addition of new sequences will help to circumvent this problem. Thus, we have determined 15 new ciliate EF-1 alpha sequences, providing for a more comprehensive taxonomic sampling of this phylum. These sequences have been analyzed together with a representation of eukaryotic sequences using distance-, parsimony-, and likelihood-based phylogenetic methods. Such analyses again failed to recover the monophyly of Ciliophora. A study of the substitution rate showed that ciliate EF-1 alpha genes exhibit a high evolutionary rate, produced in part by an increased number of variable positions. This acceleration could be related to alterations of the accessory functions acquired by this protein, likely to those involving interactions with the cytoskeleton, which is very modified in the Ciliophora. The high evolutionary rate of these sequences leads to an artificial basal emergence of some ciliates in the eukaryotic tree by effecting a long-branch attraction artifact that produces an asymmetric topology for the basal region of the tree. The use of a maximum-likelihood phylogenetic method (which is less sensitive to long-branch attraction) and the addition of sequences to break long branches allow retrieval of more symmetric topologies, which suggests that the asymmetric part of the tree is most likely artifactual. Therefore, the sole reliable part of the tree appears to correspond to the apical symmetric region. These kinds of observations suggest that the general eukaryotic evolution might have consisted of a massive radiation followed by an increase in the evolutionary rates of certain groups that emerge artificially as early branches in the asymmetric base of the tree. Ciliates in the case of the EF-1 alpha genes would offer clear evidence for this hypothesis.  相似文献   

13.
The elongation factor 1 alpha (EF-1 alpha) is a protein which promotes the GTP-dependent binding of aminoacyl-tRNA to ribosomes in the protein synthesis process. A human gene coding for EF-1 alpha has previously been cloned and sequenced along with a pseudo-gene. Here, we have further analyzed the family of human EF-1 alpha genes. Using an EF-1 alpha cDNA as probe twelve genomic EF-1 alpha-like clones were isolated and analyzed. Four of these were sequenced and found to contain EF-1 alpha retropseudogenes. A Southern blot analysis indicated that the remaining eight clones also contained retropseudogenes. Genomic Southern blot analysis revealed at least twenty loci in the human genome with sequence homology to the EF-1 alpha cDNA. Besides the already described active gene only one potentially active locus was found. The others appeared to be retropseudogenes. EF-1 alpha retropseudogenes were also found to be abundant in the mammalian species mouse and pig, while the chicken contained only one presumably active EF-1 alpha gene.  相似文献   

14.
Multi-gene phylogenetic analyses were conducted to address the evolution of Clavicipitaceae (Ascomycota). Data are presented here for approximately 5900 base pairs from portions of seven loci: the nuclear ribosomal small and large subunit DNA (nrSSU and nrLSU), beta-tubulin, elongation factor 1alpha (EF-1alpha), the largest and second largest subunits of RNA polymerase II (RPB1 and RPB2), and mitochondrial ATP Synthase subunit 6 (mtATP6). These data were analyzed in a complete 66-taxon matrix and 91-taxon supermatrix that included some missing data. Separate phylogenetic analyses, with data partitioned according to genes, produced some conflicting results. The results of separate analyses from RPB1 and RPB2 are in agreement with the combined analyses that resolve a paraphyletic Clavicipitaceae comprising three well-supported clades (i.e., Clavicipitaceae clade A, B, and C), whereas the tree obtained from mtATP6 is in strong conflict with the monophyly of Clavicipitaceae clade B and the sister-group relationship of Hypocreaceae and Clavicipitaceae clade C. The distribution of relative contribution of nodal support for each gene partition was assessed using both partitioned Bremer support (PBS) values and combinational bootstrap (CB) analyses, the latter of which analyzed bootstrap proportions from all possible combinations of the seven gene partitions. These results suggest that CB analyses provide a more consistent estimate of nodal support than PBS and that combining heterogeneous gene partitions, which individually support a limited number of nodes, results in increased support for overall tree topology. Analyses of the 91-taxa supermatrix data sets revealed that some nodes were more strongly supported by increased taxon sampling. Identifying the localized incongruence of mtATP6 and analyses of complete and supermatrix data sets strengthen the evidence for rejecting the monophyly of Clavicipitaceae and much of the current subfamilial classification of the family. Although the monophyly of the grass-associated subfamily Clavicipitoideae (e.g., Claviceps, Balansia, and Epichlo?) is strongly supported, the subfamily Cordycipitoideae (e.g., Cordyceps and Torrubiella) is not monophyletic. In particular, species of the genus Cordyceps, which are pathogens of arthropods and truffles, are found in all three clavicipitaceous clades. These results imply that most characters used in the current familial classification of Clavicipitaceae are not diagnostic of monophyly.  相似文献   

15.
Earlier molecular phylogenetic analyses based on nuclear small subunit ribosomal DNA (nSSU rDNA) suggest that the Zygomycota are polyphyletic within the Chytridiomycota. However, these analyses failed to resolve almost all interordinal relationships among basal fungi (Chytridiomycota and Zygomycota), due to lack of sufficient characters within the nSSU rDNA. To further elucidate the higher-level phylogeny of Zygomycota, we have sequenced partial RPB1 (DNA dependent RNA polymerase II largest subunit) and EF-1alpha (translation elongation factor 1 alpha) genes from 10 and 3 zygomycete fungi, respectively. Independent molecular phylogenetic analyses were performed based on each sequence by distance and maximum likelihood methods. Although deep phylogenetic relationships among basal fungi still remain poorly resolved using either gene, the RPB1-based phylogeny identified a novel monophyletic clade consisting of the Dimargaritales, Harpellales, and Kickxellales. This result suggests that regularly formed septa (cross walls that divide hyphae into segments) with a lenticular cavity are plesiomorphic for this clade, and indicates the importance of septal pore ultrastructure in zygomycete phylogeny. In addition, a peculiar mucoralean genus Mortierella, which was considered to be distantly related to the other Mucorales based on previous nSSU rDNA analyses, was resolved as the basal most divergence within the Mucorales, consistent with traditional phenotypic-based taxonomy. Although the taxa included in our analysis are restricted, the monophyly of each order suggested by nSSU rDNA phylogeny is supported by the present RPB1-based analysis. These results support the potential use of RPB1 as an alternative marker for fungal phylogenetic studies. Conversely, the overall fungal phylogeny based on EF-1alpha sequence is poorly resolved. A comparison of numbers of observed substitutions versus inferred substitutions within EF-1alpha indicates that this gene is much more saturated than RPB1. This result suggests that the EF-1alpha gene is unsuitable for resolving higher-level phylogenetic relationships within the Fungi.  相似文献   

16.
Genes selected for a phylogenetic study need to contain conserved information that reflects the phylogenetic history at the specific taxonomic level of interest. Mitochondrial ribosomal genes have been used for a wide range of phylogenetic questions in general and in anuran systematics in particular. We checked the plausibility of phylogenetic reconstructions in anurans that were built from commonly used 12S and 16S rRNA gene sequences. For up to 27 species arranged in taxon sets of graded inclusiveness, we inferred phylogenetic hypotheses based on different a priori decisions, i.e. choice of alignment method and alignment parameters, including/excluding variable sites, choice of reconstruction algorithm and models of evolution. Alignment methods and parameters, as well as taxon sampling all had notable effects on the results leading to a large number of conflicting topologies. Very few nodes were supported in all of the analyses. Data sets in which fast evolving and ambiguously aligned sites had been excluded performed worse than the complete data sets. There was moderate support for the monophyly of the Discoglossidae, Pelobatoidea, Pelobatidae and Pipidae. The clade Neobatrachia was robustly supported and the intrageneric relationships within Bombina and Discoglossus were well resolved indicating the usefulness of the genes for relatively recent phylogenetic events. Although 12S and 16S rRNA genes seem to carry some phylogenetic signal of deep (Mesozoic) splitting events the signal was not strong enough to resolve consistently the inter‐relationships of major clades within the Anura under varied methods and parameter settings.  相似文献   

17.
Trichoptera are holometabolous insects with aquatic larvae that, together with the Lepidoptera, make up the Amphiesmenoptera. Despite extensive previous morphological work, little phylogenetic agreement has been reached about the relationship among the three suborders--Annulipalpia, Spicipalpia, and Integripalpia--or about the monophyly of Spicipalpia. In an effort to resolve this conflict, we sequenced fragments of the large and small subunit nuclear ribosomal RNAs (1078 nt; D1, D3, V4-5), the nuclear elongation factor 1 alpha gene (EF-1 alpha; 1098 nt), and a fragment of mitochondrial cytochrome oxidase I (COI; 411 nt). Seventy adult and larval morphological characters were reanalyzed and added to molecular data in a combined analysis. We evaluated signal and homoplasy in each of the molecular datasets and attempted to rank the particular datasets according to how appropriate they were for inferring relationships among suborders. This evaluation included testing for conflict among datasets, comparing tree lengths among alternative hypotheses, measuring the left-skew of tree-length distributions from maximally divergent sets of taxa, evaluating the recovery of expected clades, visualizing whether or not substitutions were accumulating with time, and estimating nucleotide compositional bias. Although all these measures cast doubt on the reliability of the deep-level signal coming from the nucleotides of the COI and EF-1 alpha genes, these data could still be included in combined analyses without overturning the results from the most conservative marker, the rRNA. The different datasets were found to be evolving under extremely different rates. A site-specific likelihood method for dealing with combined data with nonoverlapping parameters was proposed, and a similar weighting scheme under parsimony was evaluated. Among our phylogenetic conclusions, we found Annulipalpia to be the most basal of the three suborders, with Spicipalpia and Integripalpia forming a clade. Monophyly of Annulipalpia and Integripalpia was confirmed, but the relationships among spicipalpians remain equivocal.  相似文献   

18.
Detailed analyses of the population-genetic nature of copy number variations (CNVs) and the linkage disequilibrium between CNV and single nucleotide polymorphism (SNP) loci from high-throughput experimental data require a computational tool to accurately infer alleles of CNVs and haplotypes composed of both CNV alleles and SNP alleles. Here we developed a new tool to infer population frequencies of such alleles and haplotypes from observed copy numbers and SNP genotypes, using the expectation-maximization algorithm. This tool can also handle copy numbers ambiguously determined, such as 2 or 3 copies, due to experimental noise. AVAILABILITY: http://emu.src.riken.jp/MOCSphaser/MOCSphaser.zip.  相似文献   

19.
Low copy number nuclear genes have been found to be useful for phylogenetic reconstruction at different taxonomic levels. This study investigated the utility of a single copy gene, cinnamoyl CoA reductase (CCR), for resolving phylogenetic relationships at the sectional level within Eucalyptus. The monophyly of sections Exsertaria and Latoangulatae was explored, using section Maidenaria as an outgroup, and the impact of intragenic recombination on phylogenetic reconstruction examined. Phylogenetic analysis did not resolve monophyletic groups. Latoangulatae and Maidenaria were polyphyletic or paraphyletic. Exsertaria species formed a clade but included a single Latoangulatae species (E. major). Recombination analysis identified two intragenic recombination events that involved species from different sections, which have probably been facilitated by inter-sectional hybridisation. One of the events most likely occurred prior to speciation, with several Latoangulatae species having the recombinant allele. The other event may have occurred after speciation, since only one of two E. globulus samples possessed the recombinant allele. This is the first detailed report of intragenic recombination in both CCR and Eucalyptus, and between species of different sections of a plant genus. The occurrence of intragenic recombination may explain the anomalous positions of some species within the phylogenetic tree, and indicates that phylogenetic analysis of Eucalyptus using nuclear genes will be problematic unless recombination is taken into account.  相似文献   

20.
Recent phylogenetic analyses of cetacean relationships based on DNA sequence data have challenged the traditional view that baleen whales (Mysticeti) and toothed whales (Odontoceti) are each monophyletic, arguing instead that baleen whales are the sister group of the odontocete family Physeteridae (sperm whales). We reexamined this issue in light of a morphological data set composed of 207 characters and molecular data sets of published 12S, 16S, and cytochrome b mitochondrial DNA sequences. We reach four primary conclusions: (1) Our morphological data set strongly supports the traditional view of odontocete monophyly; (2) the unrooted molecular and morphological trees are very similar, and most of the conflict results from alternative rooting positions; (3) the rooting position of the molecular tree is sensitive to choice of artiodactyls outgroup taxa and the treatment of two small but ambiguously aligned regions of the 12S and 16S sequences, whereas the morphological root is strongly supported; and (4) combined analyses of the morphological and molecular data provide a well-supported phylogenetic estimate consistent with that based on the morphological data alone (and the traditional view of toothed-whale monophyly) but with increased bootstrap support at nearly every node of the tree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号