首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Microsatellites are widely distributed in plant genomes and comprise unstable regions that undergo mutational changes at rates much greater than that observed for non-repetitive sequences. They demonstrate intrinsic genetic instability, manifested as frequent length changes due to insertions or deletions of repeat units. Detailed analysis of 1600 clones containing genomic sequences of Vicia bithynica revealed the presence of microsatellite repeats in its genome. Based on the screening of a partial DNA library of plasmids, 13 clones harbouring (GA/TC)n tracts of various lengths of repeated motif were identified for further analysis of their internal sequence organization. Sequence analyses revealed the precise length, number of repeats, interruptions within tracts, as well as sequence composition flanking the repeat motifs. Representative plasmids containing different lengths of (GA/TC)n embedded in their original flanking sequence were used to investigate the genetic stability of the repeats. In the study presented herein, we employed a well characterised and tractable bacterial genetic system. Recultivations of Escherichia coli harbouring plasmids containing (GA/TC)n inserts demonstrated that the genetic instability of (GA/TC)n microsatellites depends highly on their length (number of repeats). These observations are in agreement with similar studies performed on repetitive sequences from humans and other organisms.  相似文献   

2.
Microsatellites were isolated from P. monodon genomic libraries by direct sequencing of recombinant clones without probe screening. Forty-nine out of 83 clones sequenced contained 99 microsatellite arrays of three or more repeats. When five or more and ten or more repeats were considered, 28 and 14 microsatellites were detected, respectively. The 99 microsatellites were classified as perfect (75%), imperfect (6%), compound perfect (3%) and compound imperfect (16%). The abundance of di-, tri-, tetra- and hexanucleotide repeats were 67%, 20%, 9% and 3%, respectively. The dinucleotide repeats included 36 (CT)n, 31 (GT)n, 17(AT)n and 3 (CG)n. One octanucleotide repeat (ATTTATTC)5 was found within a large repeat sequence. Optimal annealing temperatures were determined for PCR using 11 primer sets encompassing 15 microsatellites. Ten primer sets provided successful amplifications with allele sizes generally ranging from 139 to 410 bp. All these primers amplified polymorphic loci with PIC values ranging from 0.63 to 0.96. Two primer sets amplified additional bands which can easily be distinguished from the bands of the main locus. Three out of 10 P. monodon microsatellites also amplified alleles in P. vannamei. The abundance and informative nature of P. monodon microsatellites and their potential for cross-species amplification make them useful for genetic studies.  相似文献   

3.
Microsatellites were isolated from a Aegilops tauschii (the D-genome donor of bread wheat) library enriched for various motifs. Primers generated from the flanking region of the microsatellites were used successfully to amplify the corresponding loci in the D genome of bread wheat. Additional amplification sometimes also occurred from the A and B genomes. The majority of the microsatellites contained (GA)(n) and (GT)(n) motifs. GA and GT repeats appeared to be both more abundant in this library and more polymorphic than other types of repeats. The allele number for both types of dinucleotide repeats fitted a Poisson distribution. Deviance analysis showed that GA and GT were more polymorphic than other motifs in bread wheat. Within each motif type (di-, tri- and tetra-nucleotide repeats), repeat number has no influence on polymorphism. The microsatellites were mapped using the Triticum aestivum Courtot x Chinese Spring mapping population. A total of 100 markers was developed on this intraspecific map, mainly on the D genome. For polyploid species, isolation of microsatellites from an ancestral diploid donor seems to be an efficient way of developing markers for the corresponding genome in the polyploid plant.  相似文献   

4.
Microsatellite markers are widely used in linkage mapping, parentage testing, population genetic studies, and molecular evolution studies in many agricultural species, while only a limited number of ostrich (Struthio camelus) microsatellites have been isolated. Thus, we constructed a random small-insert genomic library and a microsatellite-enriched library containing CA repeats. Fourteen clones containing CA repeats were isolated from 3462 clones in the non-enriched library by radioactive screening and 248 positive clones were isolated from 300 sequenced clones from the enriched library by PCR screening. After the enrichment procedures, the proportion of clones containing CA repeats was raised to 78.8%, compared with 0.4% in the non-enriched libraries, indicating that the enrichment value approaches 200 fold, which decreased the time and cost of cloning. The number of complete simple CA repeats in these positive clones ranged from 5 to 29. The primers for 94 of these microsatellites were developed and used to detect polymorphisms, of which 61 loci exhibited length polymorphisms in 17 unrelated ostrich individuals. The new polymorphic microsatellite markers we have identified and characterized will contribute to the ostrich genetic map, parentage testing, and comparative genomics between avian species.  相似文献   

5.
Microsatellites are islands of long repeats of mono-, di- or trinucleotides evenly distributed in the eukaryotic genome with an average distance of 50–100 kb. They display a high degree of length polymorphism and heterozygosity at individual loci, making them highly useful as markers in the development of genomic maps of eukaryotes. In the present work, we examined the dinucleotide repeat motif (dG-dT)n in the Atlantic salmon, Salmo salar L., genome. The frequency of (dG-dT)n microsatellites in salmon correlates well with earlier published estimations. Cloning and sequencing of 45 salmon microsatellites revealed perfect and imperfect repeats, but no compound microsatellites. The distribution of number of repeat units in salmon microsatellites differ significantly from that of higher vertebrates. Salmon tends to have more long repeat stretches and less intermediate length repeats.  相似文献   

6.
Efforts to construct a genetic linkage map of channel catfish have involved identification of random genomic microsatellite markers, as well as anchored Type I loci (expressed genes) from channel catfish. To identify Type I markers we constructed a directional cDNA library from brain tissue to obtain expressed catfish sequences that could be used for single nucleotide polymorphism (SNP) marker development. These cDNA sequences surprisingly contained a high proportion of microsatellites (about 14%) in noncoding regions of expressed sequence tags (ESTs), many of which were not associated with known sequences. To further identify cDNAs with microsatellites and reduce the number of sequencing reactions needed for marker development, we enriched this library for repeat sequences and sequenced clones from both directions. A total of 1644 clones from seven repeat-enriched captures (CA, GT, CT, GA, MTT, TAG, and TAC) were sequenced from both ends, and 795 nonredundant clones were assembled. Thirty-seven percent of the clones contained microsatellites in the trimmed sequence. After assembly in the TIGR Catfish Gene Index (CfGI), 154 contigs matched known vertebrate genes and 92 contigs contained microsatellites. When BLAST-matched orthologues were available for similarity alignments, 28% of these contigs contained repeats in the 5'-UTR, 72% contained repeats in the 3'-UTR, and 8% contained repeats at both ends. Using biotinylated repeat oligonucleotides coupled with streptavidin-coated magnetic beads, and rapid, single-pass hybridization, we were able to enrich our plasmid library greater than two-fold for repeat sequences and increase the ability to link these ESTs with known sequences greater than six-fold.  相似文献   

7.
Efforts to construct a genetic linkage map of channel catfish have involved identification of random genomic microsatellite markers, as well as anchored Type I loci (expressed genes) from channel catfish. To identify Type I markers we constructed a directional cDNA library from brain tissue to obtain expressed catfish sequences that could be used for single nucleotide polymorphism (SNP) marker development. These cDNA sequences surprisingly contained a high proportion of microsatellites (about 14%) in noncoding regions of expressed sequence tags (ESTs), many of which were not associated with known sequences. To further identify cDNAs with microsatellites and reduce the number of sequencing reactions needed for marker development, we enriched this library for repeat sequences and sequenced clones from both directions. A total of 1644 clones from seven repeat-enriched captures (CA, GT, CT, GA, MTT, TAG, and TAC) were sequenced from both ends, and 795 nonredundant clones were assembled. Thirty-seven percent of the clones contained microsatellites in the trimmed sequence. After assembly in the TIGR Catfish Gene Index (CfGI), 154 contigs matched known vertebrate genes and 92 contigs contained microsatellites. When BLAST-matched orthologues were available for similarity alignments, 28% of these contigs contained repeats in the 5'-UTR, 72% contained repeats in the 3'-UTR, and 8% contained repeats at both ends. Using biotinylated repeat oligonucleotides coupled with streptavidin-coated magnetic beads, and rapid; single-pass hybridization, we were able to enrich our plasmid library greater than two-fold for repeat sequences and increase the ability to link these ESTs with known sequences greater than six-fold.  相似文献   

8.

Background

Microsatellites in cDNA are useful as molecular markers because they represent transcribed genes and can be used as anchor markers for linkage and comparative mapping, as well as for studying genome evolution. Microsatellites in cDNA can be detected in existing ESTs by data mining. However, in most fish species, no ESTs are available or the number of ESTs is limited, although fishes represent half of the vertebrates on the earth. We developed a simple and efficient method for isolation of microsatellites from cDNA in fish.

Results

The method included normalization of 150 ng cDNA using 0.5 U duplex-specific nuclease (DSN) at 65°C for 30 min, enrichment of microsatellites using biotinylated oligonucleotides and magnetic field, and directional cloning of cDNA into a vector. We tested this method to enrich CA- and GA-microsatellites from cDNA of Asian seabass, and demonstrated that enrichment of microsatellites from normalized cDNA could increased the efficiency of microsatellite isolation over 30 times as compared to direct sequencing of clones from cDNA libraries. One hundred and thirty-nine (36.2%) out of 384 clones from normalized cDNA contained microsatellites. Unique microsatellite sequences accounted for 23.6% (91/384) of sequenced clones. Sixty microsatellites isolated from cDNA were characterized, and 41 were polymorphic. The average allele number of the 41 microsatellites was 4.85 ± 0.54, while the expected heterozygosity was 0.56 ± 0.03. All the isolated microsatellites inherited in a Mendelian pattern.

Conclusion

Normalization of cDNA substantially increased the efficiency of enrichment of microsatellites from cDNA. The described method for isolation of microsatellites from cDNA has the potential to be applied to a wide range of fish species. The microsatellites isolated from cDNA could be useful for linkage and comparative mapping, as well as for studying genome evolution.  相似文献   

9.
We isolated novel dinucleotide, trinucleotide, and tetranucleotide microsatellites from the genome of Asian sea bass (Lates calcarifer). Two genomic DNA libraries were established, one was enriched for (CA)n repeats, while the other for (GATA)n, (GACA)n, and (AAC)n repeats. Sixty clones containing an insert between 250 and 1000 bp in size were sequenced from each library; altogether 50 (43%) of them contained microsatellites. Forty microsatellites were characterized in 16 unrelated Asian sea bass individuals. Twenty-eight of them (70%) showed specific amplification and polymorphism. The allele number per loci varied between 2 and 20 with an average of 5.3, while expected heterozygosity ranged from 0.31 to 0.95 with an average of 0.64. At some loci allele sizes spread over a wide range (>100 bp). No significant correlation (r = 0.23, df = 31, P > 0.05) was found between the repeat number and the number of alleles. A whole broodstock containing 170 individuals was analyzed by using 8 selected polymorphic microsatellites. The average number of alleles per locus was 11.8 (range, 4–21). The expected heterozygosity ranged from 0.57 to 0.90 with an average of 0.75, while the fixation index was 0.02. Genetic similarity between individuals ranged from 0 to 0.72. Comparison of allele frequencies between the broodstock and the 24 nonrelated individuals revealed some unique alleles.  相似文献   

10.
In the last decade microsatellites have become one of the most useful genetic markers used in a large number of organisms due to their abundance and high level of polymorphism. Microsatellites have been used for individual identification, paternity tests, forensic studies and population genetics. Data on microsatellite abundance comes preferentially from microsatellite enriched libraries and DNA sequence databases. We have conducted a search in GenBank of more than 16,000 Schistosoma mansoni ESTs and 42,000 BAC sequences. In addition, we obtained 300 sequences from CA and AT microsatellite enriched genomic libraries. The sequences were searched for simple repeats using the RepeatMasker software. Of 16,022 ESTs, we detected 481 (3%) sequences that contained 622 microsatellites (434 perfect, 164 imperfect and 24 compounds). Of the 481 ESTs, 194 were grouped in 63 clusters containing 2 to 15 ESTs per cluster. Polymorphisms were observed in 16 clusters. The 287 remaining ESTs were orphan sequences. Of the 42,017 BAC end sequences, 1,598 (3.8%) contained microsatellites (2,335 perfect, 287 imperfect and 79 compounds). The 1,598 BAC end sequences 80 were grouped into 17 clusters containing 3 to 17 BAC end sequences per cluster. Microsatellites were present in 67 out of 300 sequences from microsatellite enriched libraries (55 perfect, 38 imperfect and 15 compounds). From all of the observed loci 55 were selected for having the longest perfect repeats and flanking regions that allowed the design of primers for PCR amplification. Additionally we describe two new polymorphic microsatellite loci.  相似文献   

11.
Rate and pattern of mutation at microsatellite loci in maize   总被引:30,自引:0,他引:30  
Microsatellites are important tools for plant breeding, genetics, and evolution, but few studies have analyzed their mutation pattern in plants. In this study, we estimated the mutation rate for 142 microsatellite loci in maize (Zea mays subsp. mays) in two different experiments of mutation accumulation. The mutation rate per generation was estimated to be 7.7 x 10(-4) for microsatellites with dinucleotide repeat motifs, with a 95% confidence interval from 5.2 x 10(-4) to 1.1 x 10(-3). For microsatellites with repeat motifs of more than 2 bp in length, no mutations were detected; so we could only estimate the upper 95% confidence limit of 5.1 x 10(-5) for the mutation rate. For dinucleotide repeat microsatellites, we also determined that the variance of change in the number of repeats (sigma(m)2) is 3.2. We sequenced 55 of the 73 observed mutations, and all mutations proved to be changes in the number of repeats in the microsatellite or in mononucleotide tracts flanking the microsatellite. There is a higher probability to mutate to an allele of larger size. There is heterogeneity in the mutation rate among dinucleotide microsatellites and a positive correlation between the number of repeats in the progenitor allele and the mutation rate. The microsatellite-based estimate of the effective population size of maize is more than an order of magnitude less than previously reported values based on nucleotide sequence variation.  相似文献   

12.
 The sequencing of 831 clones from an enriched microsatellite library of Melaleuca alternifolia (Myrtaceae) yielded 715 inserts containing repeat motifs. The majority of these (98%) were dinucleotide repeats or trinucleotide repeats averaging 22 and 8 repeat motifs respectively. The AG/GA motif was the most common, accounting for 43% of all microsatellites. From a total of 139 primer pairs designed, 102 produced markers within the expected size range. The majority of these (93) were polymorphic. Primer pairs were tested on five selected M. alternifolia genotypes. Loci based on dinucleotide repeats detected on average a greater number of alleles (4.2) than those based on trinucleotide repeats (2.9). The loci described will provide a large pool of polymorphisms useful for population studies, genetic mapping, and possibly application in other Myrtaceae. Received: 28 July 1998 / Accepted: 8 October 1998  相似文献   

13.
The generation of long uninterrupted DNA repeats is important for the study of repeat instability associated with several human genetic diseases, including myotonic dystrophy type 1. However, obtaining defined lengths of long repeats in vitro has been problematic. Strand slippage and/or DNA secondary structure formation may prevent efficient ligation. For example, a purified (CTG)140.(CAG)140 repeat fragment containing 4-bp AGCA/TGCT overhanging ends ligated poorly using T4 or Escherichia coli DNA ligase, although limited repeat ligation occurred using thermostable DNA ligase. Here we describe a general procedure for ligating multimers of DNA repeats. Multimers are efficiently ligated when slippage is prevented or when DNA repeats contain a single G/C overhang. A cloning vector is designed from which pure repeat fragments containing a G/C overhang can be generated for further ligation. (CAG)n.(CTG)n DNA molecules longer than 800 bp were generated using this approach. This approach also worked for (GAA)n.(TTC)n, (CCTG)n-(CAGG)n, and (ATTCT)n.(AGAAT)n tracts associated with Friedreich ataxia, DM2, and spinocerebellar ataxia type 10, respectively.  相似文献   

14.
Microsatellites consisting of tetranucleotide repeats are more easily, and consequently efficiently, scored than loci consisting of dinucleotides. However, they are much less frequent in the genome. A hybridisation selection protocol was therefore employed to generate a chicken genomic library enriched for inserts containing the tetranucleotide repeat motif (TTTC)n. Forty-five new microsatellite sequences were isolated that mainly consisted of perfect repeats of the tetranucleotide (TTTC) motif. Nineteen markers were mapped in one or both of the East Lansing and Compton international chicken reference populations.  相似文献   

15.
We have developed the first set of trinucleotide and tetranucleotide markers for the Japanese flounder, Paralichthys olivaceus. One hundred and sixty-seven polymorphic trinucleotide and tetranucleotide microsatellites were isolated using clones derived from two libraries. Of almost 200,000 clones analysed, 0.5% presented trinucleotide or tetranucleotide repeat regions. Among the trinucleotide repeats analysed in this study, the most frequent one was (CAG)(n) and the most common tetranucleotide repeat was (GATA)(n). The position of the new markers in the genetic linkage map was determined. Markers were evenly distributed along the P. olivaceus linkage groups, without distinction between the kinds of repeats and library of origin. The markers isolated in this study contribute significantly to the genetic linkage map of the Japanese flounder.  相似文献   

16.
Cloning of highly polymorphic microsatellites in the horse   总被引:22,自引:0,他引:22  
We have isolated equine microsatellites by screening a genomic library with (TG)n and (TC)n probes. TG microsatellites were found to be more abundant than TC repeats, with an estimated frequency of one per 100,000bp. Sequence analysis of eight TG-positive clones revealed varying structures of the repeat regions; perfect stretches of TG repeats, imperfect stretches of TG repeats and compound regions of TG and TC repeats. Five loci were analysed by PCR and showed extensive polymorphism; three to seven alleles and heterozygosities of 0.40-0.76 were observed when screening 20-30 unrelated individuals. The high degree of polymorphism, their abundance and the possibility of automating the typing procedure make these loci ideal for standardized paternity testing in the horse. Furthermore, we demonstrate that single hairs can be used as starting material for the PCR analysis.  相似文献   

17.
 Microsatellites are highly variable DNA sequences that can be used as markers for the genetic analysis of plants. The potential of microsatellite markers for use in a genetic diversity study in Elymus species was evaluated. Genomic libraries of Elymus caninus were constructed. The libraries were screened with two dinucleotide, (GA)n and (GT)n, and two trinucleotide repeats, (TCT)n and (CAC)n. A total of 19 positive clones were found for the two dinucleotide repeats; no positive clone was found for the trinucleotide repeats. Positive clones were sequenced to confirm the presence of microsatellites and to generate polymerase chain reaction (PCR) primers based on the sequences flanking the microsatellite. All sequenced (GA)n clones have repeats of n>10; over half of the (GT)n microsatellites have n<10 repeats. Primer pairs were designed and evaluated for 8 selected microsatellites. PCR products were amplified from 15 Elymus caninus accessions. The number of alleles found for the eight loci varied from 1 for ECGA89 and ECGT35 to 13 for ECGA22, as determined by non-denaturing polyacrylamide electrophoresis. Six microsatellite loci were found to be polymorphic in E. caninus. The eight primer pairs were tested on three other species; seven were successful in amplifying DNA from Elymus alaskanus and E. mutabilis, and four amplified DNA from E. caucasicus. Based on these results, microsatellites appear to be useful markers in detecting variation in E. caninus. Received: 8 September 1997/Accepted: 6 October 1997  相似文献   

18.
Microsatellites, such as (TG)n found at random throughout the genome, or as 3' extensions of Alu sequences are being increasingly used as genetic markers because of their pluriallelic character. The search for polymorphic microsatellites is time consuming, however, as it is necessary to sequence clones containing the microsatellites sequences in order to design specific PCR primers before testing for polymorphism, which does not always occur. We propose here a new approach to generate polymorphic markers, based on the amplification of microsatellites at the 3' end of Alu sequences, without the need for cloning or sequencing steps.  相似文献   

19.
A Norway spruce (Picea abies K.) cDNA library obtained from vegetative bud tissue was screened for the presence of (AG)n and (AC)n microsatellite repeats. Ten (AG)n and six (AC)n microsatellites were found, with an average length of 25.5 repeat units. Most of the microsatellites are simple perfect repeats. The microsatellite distribution within the clones is clearly non-random, with different classes of repeats lying in different positions relative to the coding region and in a highly conserved orientation. An estimate of the frequency of dinucleotide microsatellites in expressed regions was obtained, showing that SSRs (simple sequence repeats) are found in genes about 20 times less frequently than in random genomic clones, with (AG)n repeats more frequent than (AC)n repeats. Potential applications of these sequences as expressed region-based molecular markers are shown by developing six SSR markers for the detection of natural variation in Norway spruce populations and testing two of them for the identification of illegitimate progenies from a mapping population.  相似文献   

20.
During a search of polymorphic microsatellites for bovine genome mapping, we found that microsatellites often occur as tails of artiodactyl C-A retroposon elements. In this element, C (85bp) is a tRNA derivative, while A (117bp) is of unknown origin. The A element also occurs as dimer element with a connecting 27bp linker sequence comprising hexanucleotide CACTTT repeats. In 10 clones (45% of those selected deliberately for dinucleotide repeats), the microsatellite motif is associated with the C-A retroposon. In 50% of 44 database artiodactyl C-A sequences, the element also has a microsatellite tail. The microsatellite is usually a simple (CA)n repeat, but in some cases it is an apparent derivative of the linker sequence CACTTT. All but one of 33 database dimer elements have trinucleotide repeat tails (AGC)n, n = 1-9. Microsatellites, retroposons, and their truncated versions (C and/or A) often occur as clusters. We derived the consensus sequence (202bp) of the C-A element, and designed four primers for inter-SINE amplification with the aim of finding SINEmorph polymorphisms. The method is potentially powerful for rapidly producing polymorphic markers for artiodactyl genome mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号