首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Abstract Progeny of Sarcophaga bullata produced from mothers with a history of short day will not enter pupal diapause even if they are reared in a strong diapause-inducing environment (LD 12:12 h at 20oC). Short-day exposure and diapause commitment are normally inseparable, but this maternal effect provides a tool for examining separately the effect of photoperiod and diapause commitment. Duration of the wandering period of the third instar is longer in diapause-destined larvae than in non-diapause-destined larvae, and fecundity of flies that have experienced pupal diapause is lower than in long-day flies that have not been through diapause. The puparia of diapausing pupae contain more hydrocarbons than puparia of nondiapausing pupae, and this contributes to higher rates of net transpiration for the nondiapausing flies. Flies showing the maternal effect (short-day experience but no diapause) show an intermediate response: length of wandering, fecundity rate and quantities of puparial hydrocarbon are between the extremes observed in the other two groups of flies. Thus, the maternal effect switches the developmental programme to nondiapause, but the progeny retain some characteristics of diapause. Evidence from reciprocal crosses indicates that the photoperiodic history of the female, rather than the male, is responsible for the influence on fecundity.  相似文献   

2.
Pupal diapause in the flesh fly, Sarcophaga crassipalpis, can be terminated by exposure to high temperatures or, artificially, with a topical application of organic solvents. To analyze the molecular mechanisms involved in diapause termination we explored the possibility that the mitogen-activated protein kinases (MAPK) are involved in this response. Levels of phospho-ERK increased within 10 min after hexane application. Extracellular signal-regulated kinase (ERK) was also activated when pupae were transferred from 20 to 25 degrees C, thus suggesting that ERK activation is a likely component of the signal transduction pathway used to initiate development in response to diapause-terminating signals. 20-Hydroxyecdysone and cyclic GMP terminate diapause in this fly, and the juvenile hormone analog methoprene shortens the diapause, but none of these agents activated ERK. ERK was readily activated in isolated abdomens treated with hexane, thus we conclude that ERK is directly activated by the hexane treatment. ERK activation was evident in the brain, epidermis, midgut and fat body, but not in the ventral nerve mass or ring gland, thus suggesting that ERK does not act directly on the ring gland to promote ecdysteroid synthesis but exerts its effect through stimulation of the brain.  相似文献   

3.
Larvae of Sarcophaga crassipalpis destined for pupal diapause (light:dark 12:12, 20°C) contain nearly twice as much lipid and twice the haemolymph protein concentration as larvae that will not enter diapause (light:dark 15:9, 20°C). This conspicuous difference in metabolic reserves provides the earliest indication of the developmental fate of the larva. Lipid reserves are utilized rapidly during the first half of diapause and then remain stable until adult eclosion. In contrast, residual dry weight changes very little early in diapause but drops sharply late in diapause, thus implying a transition from lipid utilization to protein or carbohydrate utilization in mid-diapause. We suggest that this metabolic transition marks the end of the “fixed latency period”: pupae readily respond to environmental or hormonal stimulation after this point. Diapause-destined larvae did not accumulate more glycogen than nondiapause-destined larvae, but an 80% decrease in glycogen at the onset of diapause and its elevation at the end of diapause suggests the utilization of glycerol or related compounds as cryoprotectants during diapause. Profiles of water content are very similar in short-day and long-day flies, thus suggesting that dehydration is not a mechanism exploited by the flesh fly to achieve cold hardiness. Adult flies that have experienced pupal diapause emerge from the puparium with lipid, glycogen, and water content nearly identical to flies that have not experienced diapause, but the residual dry weight is much lower. The severe depletion of protein may account for the reduced fecundity of flies that have experienced diapause.  相似文献   

4.
When non-diapause and diapause pupae of Deliaantiqua were exposed to various thermoperiods where thermophase (T) was 25 °C and the cryophase (C) was 15 or 20 °C (TC15 or TC20) in constant darkness (DD), the majority of both types of flies emerged before the rise in temperature. Eclosion time was delayed at the lower cryophase temperature. Moreover, there was a significant difference in the time of adult eclosion between non-diapause and diapause pupae; diapause pupae eclosed earlier than non-diapause pupae. When the two types of pupae were transferred to a constant low temperature (15 or 20 °C) after having experienced TC15 or TC20 12:12 h, they showed circadian rhythmicity in eclosion. The free-running period (τ) of the eclosion rhythm changed after transfer to constant low temperatures in both non-diapause and diapause pupae, suggesting that this change represents a transient cycle until the temperature-sensitive oscillator is coupled again to the temperature-insensitive pacemaker. However, diapause pupae tended to show a shorter τ than non-diapause pupae. This observation suggests that the difference in adult eclosion time under thermoperiodic conditions between non-diapause and diapause pupae is related to their different τ s.  相似文献   

5.
Pupal diapause in Sarcophaga crassipalpis can be immediately terminated with high doses of ecdysterone or 5,β-hydroxyecdysterone. Within a range of lower doses diapause is not immediately terminated, but the duration of diapause is shortened. Injection of small doses at 3-day intervals is more effective than a single application of the same total amount. 5,β-hydroxy-ecdysterone is more effective than ecdysterone. The juvenoid isopropyl (2E,4E)-11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate does not cause immediate termination of diapause but diapause is shortened. Simultaneous application of ecdysterone and the juvenoid synergistically produce a shorter duration of diapause than either hormone applied separately. Topical application of acetone and several other organic compounds can cause an immediate break of diapause. Neckligated pupae, however, do not respond to acetone treatment. Temperature shocks caused by brief exposure to high or low temperatures are ineffective.Although high doses of ecdysoids cause immediate termination of diapause, subsequent adult morphogenesis is protracted in direct proportion to the dose of ecdysoid. With the highest doses many flies fail to complete adult morphogenesis. Flies receiving high doses of ecdysoid are characterized by developmental abnormalities such as underdeveloped antennae, compound eyes, and mouthparts. By contrast, adultoids produced with juvenoids are characterized by abdominal abnormalities.  相似文献   

6.
Abstract.
  • 1 Generation time, diapause phenology and cold tolerance of the flesh fly, Sarcophaga bullata, were examined under confined natural conditions in central Ohio. In this locality, the fly can complete a maximum of four generations annually.
  • 2 Very few pupae entered diapause in the first and second generations (May to July in 1988). In the third generation (August) 37% of the pupae entered an overwintering diapause, as did all pupae from the fourth generation (September).
  • 3 The adult eclosion date in the spring and annual generation time can be predicted accurately from degree day data.
  • 4 Cold tolerance of the field-overwintering portion of the population was high. After 30 days under field conditions, diapausing pupae readily survived a 7-day exposure to — 17°C. Glycerol appears to be the major cryoprotectant in S.bullata, and glycerol concentrations in the field population (95–142 mm ) remained high throughout the winter.
  • 5 In contrast, diapausing flies reared under laboratory conditions (20°C, 12:12 LD) were less cold tolerant, and glycerol concentrations were lower (6.9–21.2 mm ). Field conditions thus promote the acquisition of high levels of cold tolerance, presumably as a consequence of the accumulation of higher concentrations of glycerol.
  • 6 In spite of differences in the cold tolerance of laboratory and field flies, the supercooling points of the two groups of flies were nearly the same, thus implying that the supercooling point is not a good indicator of cold tolerance.
  相似文献   

7.
8.
Developmental patterns of low-temperature tolerance and glycerol production were determined for larval, pupal and adult stages of the flesh fly Sarcophaga crassipalpis Macquart (Diptera: Sarcophagidae). Both diapause and non-diapause-destined flies were reared at relatively high temperatures, 20° or 25°C, prior to testing. Cold tolerance was greatest for diapause pupae aged 12–35 days after pupariation. Among non-diapause-destined flies, pupae exhibited a greater level of low temperature tolerance than larvae or adults. Although diapause pupae were more tolerant than non-diapause pupae maximal cold tolerance was not attained in either group until 10 days after pupariation. Non-diapause-destined feeding and wandering larvae had higher glycerol levels than larvae destined for diapause. During the first 6 weeks after pupariation glycerol titres increased steadily in diapause pupae. Rapid loss of glycerol is associated with the termination of pupal diapause.  相似文献   

9.
Abstract. Larvae of Calliphora vicina R.-D. (Diptera: Calliphoridae) hatching from eggs laid by adult females exposed to short day length, and then raised in darkness at 11oC, normally enter diapause rather than undergoing prompt pupariation. However, if the feeding stage is curtailed by premature extraction of larvae from their food, or if the larvae are subjected to severe overcrowding, smaller larvae side-step the diapause programme to become miniature puparia, whereas larger larvae proceed to diapause as fully-fed ones. In addition, smaller diapausing larvae show a shorter (or less intense) diapause than full-sized larvae. Apart from the smallest individuals, flies can emerge from these miniature puparia and in some cases are capable of laying eggs; this suggests that avoidance of diapause may allow undersized individuals an opportunity to reproduce before winter sets in. Fat determinations performed on larvae and pupae of various sizes, however, showed that short-day (diapause-destined) individuals lay down the same proportion of fat as long-day (non-diapause) individuals, and the same proportion of fat across all size classes. The possible functional significance of this phenomenon is discussed.  相似文献   

10.
ABSTRACT. Supercooling points (SCP) and low temperature tolerance were determined for larval, pupal and adult stages of Sarcophaga crassipalpis Macquart (Diptera: Sarcophagidae). No stage tolerates tissue-freezing. Ontogenetic changes in SCP profiles are similar for comparable developmental stages of diapause and non-diapause groups. Feeding larvae have SCPs near -7°C which decrease to -11°C in the postfeeding wandering phase of the final larval instar. The lowest SCPs are recorded for pupae at -23°C. The capacity to survive at -17°C varies with age of the diapausing pupae: 10-day-old pupae are less cold tolerant than pupae that have been in diapause for 45–80 days. Although the SCP of non-diapausing pupae is as low as in diapausing pupae, non-diapausing pupae are extremely sensitive to low temperature exposure and do not survive to adult eclosion when exposed to -17°C for as little as 20 min. The use of hexane to break pupal diapause has no effect on SCPs or low temperature tolerance.  相似文献   

11.
The various diapause and post-diapause stages entered by cabbage root fly pupae during the overwintering period are shown schematically. Although diapause induction started in mid-Aug., the early-pupating insects did not develop further but were maintained in diapause by the warm autumn temperatures. Therefore, diapause development was simultaneous in all Wellesbourne pupae, whether of second or third generation origin. Diapause development started only in mid-Oct., when mean soil temperatures fell below 10°. In the field, 90% of the overwintering population of cabbage root fly pupae had completed pleted diapause by 5 March 1980, 17 Feb. 1981 and 18 Feb. 1982. This was equivalent to a duration of 19 weeks from mid-Oct. onwards, during the winters of 1979–80, 1980–81 and 1981–82 respectively. A further break between the completion of diapause and the warm conditions required to start post-diapause development also helps to condense the emergence of flies in the spring. Hence, an accurate forecast of the time of spring attack by populations of flies similar to those at Wellesbourne should be possible.This study was financed partly by the Commission of the European Communities as CEC Contract No. 0771.  相似文献   

12.
When pupae of Delia antiqua were transferred to constant darkness (DD) from light-dark (LD) cycles or constant light (LL), the sensitivity to light of the circadian clock controlling eclosion increased with age. The daily rhythm of eclosion appeared in both non-diapause and diapause pupae only when this transfer was made during late pharate adult development. When transferred from LL to DD in the early pupal stage, the adult eclosion was weakly rhythmic in non-diapause pupae but arrhythmic in diapause pupae. However, the sensitivity of the circadian clock to temperature cycles or steps was higher in diapause pupae than in non-diapause pupae; in the transfer to a constant 20 degrees C from a thermoperiod of 25 degrees C (12 h)/20 degrees C (12 h) on day 10 after pupation or from chilling (7.5 degrees C) in DD, the adult eclosion from diapause pupae was rhythmic but that from non-diapause pupae arrhythmic. In a transfer to 20 degrees C from the thermoperiod after the initiation of eclosion, rhythmicity was observed in both types of pupae. The larval stage was insensitive to the effect of LD cycle initiating the eclosion rhythm. In D. antiqua pupae in the soil under natural conditions, therefore, the thermoperiod in the late pupal stage would be the most important 'Zeitgeber' for the determination of eclosion timing.  相似文献   

13.
14.
Characteristics of summer diapause in the onion maggot, Delia antiqua, were clarified by laboratory experiments. Temperature was the primary factor for the induction of summer diapause in this species. The critical temperature for diapause induction was approximately 24 degrees C, regardless of the photoperiod. At 23 degrees C, the development of the diapausing pupae was arrested the day after pupariation, when about 7% of the total pupal development had occurred in terms of total effective temperature (degree-days). The most sensitive period for temperature with regard to diapause induction was estimated to be between pupariation and "pupation" (i.e., evagination of the head in cyclorrhaphous flies). Completion of diapause occurred at a wide range of temperatures (4-25 degrees C): The optimal temperature was approximately 16 degrees C, at which temperature only five days were required for diapause completion. The characteristics of summer diapause in D. antiqua are discussed in comparison with those of summer dormancy in a congener D. radicum and those of winter diapause in D. antiqua.  相似文献   

15.
Abstract Sericinus montelus overwinters as diapausing pupae. In the present study, the effects of photoperiod and temperature on diapause induction and termination of diapause are investigated. The results obtained demonstrate that high temperature can reverse the effect of short day‐lengths on diapause induction. Under an LD 12 : 12 h photoperiod, all pupae enter diapause at 15, 20 and 25 °C, whereas all pupae develop without diapause at 35 °C. No pupae enter diapause under an LD 14 : 10 h photoperiod when the temperature is above 20 °C. Photoperiodic response curves obtained at 25 and 30 °C indicate that S. montelus is a long‐day species and the critical day‐length is approximately 13 h at 25 °C. At 25 °C, the duration of diapause is shortest when the diapausing pupae are maintained under an LD 16 : 8 h photoperiod and increases under LD 14 : 10 h and LD 12 : 12 h photoperiods. Under an LD 16 : 8 h photoperiod, the duration of diapause is shortest when the diapausing pupae are maintained at 25 °C, followed by 20 and 30 °C, and then at 15 °C. These results suggest that a moderate temperature favours diapause development under a diapause‐averting photoperiod in this species. The duration of diapause induced by an LD 12 : 12 h photoperiod is significantly longer at 25 °C than those at 15, 20 and 30 °C, and is shortest at 15 °C. At 25 °C, the duration of diapause induced by LD 6 : 18, LD 12 : 12 and LD 13 : 11 h photoperiods is similar and longer than 90 days. Thus, the diapause‐inducing conditions may affect diapause intensity and a photoperiod close to the critical day‐length has significant influence on diapause intensity in S. montelus.  相似文献   

16.
The present study investigated the pharmacological properties of dopamine receptors that functioned in the termination of pupal diapause in the Chinese oak silkmoth, Antheraea pernyi (Lepidoptera: Saturniidae). Dopamine receptors are classified according to their structure and function into two subfamilies as D1‐ and D2‐like receptors. D1‐like receptors activate, whereas D2‐like receptors inhibit, adenylate cyclase. We examined the effects of agonists and antagonists selective for D1‐ and D2‐like receptors on the diapause state. As A. pernyi is a long‐day species, pupal diapause is maintained during short days and can be terminated by exposure to a long‐day photoperiod. The D2‐like receptor‐selective agonist quinpirole delayed the timing of adult emergence under long days, and the D2‐receptor‐selective antagonist sulpiride terminated pupal diapause even under a short‐day photoperiod. The D1‐like receptor‐selective agonist and antagonist, SKF‐38393 and SCH‐23390, respectively, caused no significant effects on diapause pupae. These results suggest that not D1‐ but D2‐like receptors mediated diapause regulation in A. pernyi. This dopamine pathway appeared to block the termination of pupal diapause. Furthermore, the actions of the cAMP analog 8‐CPT‐cAMP and dopamine receptor antagonists upon diapause pupae were similar, which supports the notion that D2‐like receptors involved in diapause of this insect prevent adenylate cyclase from producing cAMP like vertebrate D2‐like receptors. Taken together, our findings suggest that dopamine blocked diapause termination through D2‐like receptors that inhibited adenylate cyclase in A. pernyi. During short days under which diapause was maintained in pupae, the dopaminergic mechanism might be stimulated to suppress cAMP levels in cells regulating diapause.  相似文献   

17.
Failure of the brain to stimulate the prothoracic gland to release ecdysone has been widely regarded as the basis for diapause in insect pupae. In diapause-destined flesh flies, the absence of a peak of moulting hormone around the time of pupal head eversion supports this contention, but in addition, major pulses of juvenile hormone (JH) activity with a rhythmicity of 24 hr are unique to flesh flies destined for pupal diapause. JH activity persists during diapause, and a pulse of JH precedes the rise of moulting hormone that initiates adult development.  相似文献   

18.
Abstract. Face flies overwinter as adults in reproductive diapause. Administration of 20-hyroxyecdysone and/or methoprene induced reproductive development in diapausing flies which were maintained in a diapause-inducing environment. Hormone effects were additive and female flies were more sensitive than males. Release of vitellogenin from cultured fat body was stimulated by 20-hydroxyecdysone or methoprene. Transfer of flies from diapause to diapause-breaking environments induced some to break diapause, but this decreased with the time flies had been in a diapause-inducing environment. In contrast, topical application of methoprene to diapausing flies induced reproductive development irrespective of their ages even when they were kept in the diapause-inducing environment for 80 day degrees above a 12°C base temperature (14.5 days). Therefore diapause induction must depend on hormone levels less than some threshold level. The putative threshold varied according to diapause propensities of different genetic lines. Lines showing high frequencies of diapause required greater amounts of methoprene for reproductive development in diapause conditions than did lines showing low frequencies of diapause.  相似文献   

19.
Diapause, an alternative developmental pathway characterized by changes in developmental timing and metabolism, is coordinated by molecular mechanisms that are not completely understood. MicroRNA (miRNA) mediated gene silencing is emerging as a key component of animal development and may have a significant role in initiating, maintaining, and terminating insect diapause. In the present study, we test this possibility by using high-throughput sequencing and qRT-PCR to discover diapause-related shifts in miRNA abundance in the flesh fly, Sarcophaga bullata. We identified ten evolutionarily conserved miRNAs that were differentially expressed in diapausing pupae compared to their nondiapausing counterparts. miR-289-5p and miR-1-3p were overexpressed in diapausing pupae and may be responsible for silencing expression of candidate genes during diapause. miR-9c-5p, miR-13b-3p, miR-31a-5p, miR-92b-3p, miR-275-3p, miR-276a-3p, miR-277-3p, and miR-305-5p were underexpressed in diapausing pupae and may contribute to increased expression of heat shock proteins and other factors necessary for the enhanced environmental stress-response that is a feature of diapause. In S. bullata, a maternal effect blocks the programming of diapause in progeny of females that have experienced pupal diapause, and in this study we report that several miRNAs, including miR-263a-5p, miR-100-5p, miR-125-5p, and let-7-5p were significantly overexpressed in such nondiapausing flies and may prevent entry into diapause. Together these miRNAs appear to be integral to the molecular processes that mediate entry into diapause.  相似文献   

20.
Coping with seasonal and daily variation in environmental conditions requires that organisms are able to adjust their reproduction and stress tolerance according to environmental conditions. Females of Drosophila montana populations have adapted to survive over the dark and cold winters at high latitudes and altitudes by spending this season in photoperiodically controlled reproductive diapause and reproducing only in spring/summer. The present study showed that flies of a northern population of this species are quite tolerant of low temperatures and show high seasonal and short-term plasticity in this trait. Culturing the flies in short day length (nearly all females in reproductive diapause), as well as allowing the flies to get cold hardened before the cold treatment, increased the cold tolerance of both sexes both in chill coma recovery time test and in mortality assay. Chill coma recovery time test performed for the females of two additional D. montana populations cultured in a day length where about half of the females enter diapause, also showed that diapause can increase female cold tolerance even without a change in day length. Direct linkage between diapause and cold tolerance was found in only two strains representing a high-altitude population of the species, but the phenomenon will certainly be worth of studying in northern and southern populations of the species with larger data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号