首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between the xylose induced decrease in hexokinase PII activity and the derepression of invertase synthesis in yeast is described. When xylose was added to cells growing in a chemostat under nitrogen limitation, the catabolic repression was supressed as shown by the large increase on invertase levels even if glucose remained high. The glucose phosphorylating-enzymes were separated by hydroxylapatite chromatography and it is shown that the treatment with xylose is accompanied by a loss of 98% hexokinase PII and a 50% of the PI isoenzyme, whereas the levels of glucokinase as well as those of glucose-6-phosphate, fructose-6-phosphate, pyruvate and ATP remained unaffected.The analysis of the enzymes present in cells grown in ethanol, limiting glucose and high glucose, shows that hexokinase PII predominates in cells under catabolic repression, the opposite is true for glucokinase, whereas hexokinase PI remains unaffected.  相似文献   

2.
Changes in the activities and isoenzyme distribution of hexokinase were determined in a number of tissues during the development of the guinea pig. The total activity in the fetal liver showed a large fall during the second half of gestation to reach adult values by term. With normal diet the fetal, neonatal, and adult livers had isoenzymes I and III but little or no detectable IV (glucokinase). The fetal liver had predominantly type I, but the proportion of type III increased during development. The kinetics of the guinea pig isoenzymes were similar to those reported for the rat. Two additional isoenzymes with mobility between I and II were detected in the fetal liver and blood. They appear to have kinetic properties similar to type I. Detectable liver glucokinase activity was induced by glucose administration to adult guinea pigs. The total activity in kidney, brain and skeletal muscle showed a postnatal rise while in the fetal heart it was high and declined after birth. These tissues contained predominantly type I with varying proportions of type III hexokinase. The ratio of particulate-bound to soluble hexokinase varied from tissue to tissue. All except the liver showed a significant increase in binding after birth. The changes are discussed in relation to the control of glucose utilization in the fetal and neonatal periods.  相似文献   

3.
We have analysed the pattern of expression of the hexokinase isoenzyme group in RIN-m5F insulinoma cells. Three hexokinase forms were resolved by DEAE-cellulose chromatography. The most abundant isoenzyme co-eluted with hexokinase type II from rat adipose tissue and displayed a Km for glucose of 0.15 mM, similar to the adipose-tissue enzyme. Hexokinase type II was in large part associated with a particulate subcellular fraction in RIN-m5F cells. The two other hexokinases separated by ion-exchange chromatography were an enzyme similar to hexokinase type I from brain and glucokinase (or hexokinase type IV). The latter isoenzyme was identified as the liver-type glucokinase by the following properties: co-elution with hepatic glucokinase from DEAE-cellulose and DEAE-Sephadex; sigmoid saturation kinetics with glucose with half-maximal velocity at 5.6 mM and Hill coefficient (h) of 1.54; suppression of enzyme activity by antibodies raised against rat liver glucokinase; apparent Mr of 56,500 and pI of 5.6, as shown by immunoblotting after one- and two-dimensional gel electrophoresis; peptide map identical with that of hepatic glucokinase after proteolysis with chymotrypsin and papain. These data indicate that the gene coding for hepatic glucokinase is expressed in RIN-m5F cells, a finding consistent with indirect evidence for the presence of glucokinase in the beta-cell of the islet of Langerhans. On the other hand, the overall pattern of hexokinases is distinctly different in RIN-m5F cells and islets of Langerhans, since hexokinase type II appears to be lacking in islets. Alteration in hexokinase expression after tumoral transformation has been reported in other systems.  相似文献   

4.
Mammalian hexokinase isoenzymes I and II have been shown to differ qualitatively in response to various modifiers. Although both enzymes are inhibited by glucose 6-phosphate, only isoenzyme II exhibits a slow response to the presence of this inhibitor. Pi decreases the affinity of glucose 6-phosphate for Sarcoma 37 hexokinase I, but has no effect on hexokinase II from the same cell. Pi overcomes all of the inhibition of red cell hexokinase by glucose-6-P and hence the two effectors act competitively. At pH 6.5, catecholamines increase the V of isoenzyme I of Sarcoma 37 and brain in the soluble and mitochondrial forms but do not activate these forms of tumor isoenzyme II. Citrate activates brain and tumor isoenzyme I when they are inhibited by tris(hydroxy-methyl)aminomethylethane sulfonate (TES) and ADP; however, tumor isoenzyme II is not activated.  相似文献   

5.
Three glucose-phosphorylating enzymes were separated from cell-free extracts of Saccharomyces cerevisiae by hydroxylapatite chromatography. Variations in the amounts of these enzymes in cells growing on glucose and on ethanol showed that hexokinase PI was a constitutive enzyme, whereas synthesis of hexokinase PII and glucokinase were regulated by the carbon source used. Glucokinase proved to be a glucomannokinase with Km values of 0.04 mM for both glucose and mannose. D-Xylose produced an irreversible inactivation of the three glucose-phosphorylating enzymes depending on the presence or absence of ATP. Hexokinase PI inactivation required ATP, while hexokinase PII was inactivated by D-xylose without ATP in the reaction mixture. Glucokinase was protected by ATP from this inactivation. D-Xylose acted as a competitive inhibitor of hexokinase PI and glucokinase and as a non-competitive inhibitor of hexokinase PII.  相似文献   

6.
The regulation of mitochondrial-bound hexokinases in the liver   总被引:1,自引:0,他引:1  
A functional coupling between bound hexokinase and the inner mitochondrial compartment has been shown. It is based structurally on the binding of hexokinase to a pore protein which is present in zones of contact between the two boundary membranes. The latter was observed by electron microscopic localization of antiporin and hexokinase at the mitochondrial surface. The four isoenzymes present in liver differ considerably in their activity after binding to the mitochondrial surface. This was found by binding studies using the four isoenzymes isolated from the supernatant. Isoenzyme IV did not bind at all. Isoenzymes I-III did bind and became activated: I, 5.9-fold; II, 39-fold; and III, 1.3-fold. These results suggest that the in vivo activity of hexokinase in the mitochondrial fraction is much larger than so far observed. Furthermore the binding of isoenzymes was differently affected by metabolites. Glucose-6-phosphate exclusively desorbed isoenzyme I from the mitochondrial membrane whereas free fatty acids predominantly liberated isoenzymes II and III. A reciprocal change of the levels of free fatty acids and glucose 6-phosphate in livers of starved rats therefore, can explain why exclusively mitochondrial-bound isoenzymes II and III decreased 10-fold while at the same time isoenzyme I increased.  相似文献   

7.
A difference in the mode of inhibition of hexokinase [EC 2.7.1.1] isoenzymes by p-chloromercuribenzenesulfonate was confirmed with respect to glucose between two Type I isoenzyme preparations purified from the kidney and spleen of rat. Essentially the same difference was observed when galactose was used as the substrate in place of glucose, as the kidney Type I isoenzyme was inhibited in a competitive manner while the spleen counterpart was inhibited in a non-competitive manner by sulfhydryl inhibitor. Both the Type I isoenzymes, however, were competitively inhibited by other mercurial sulfhydryl inhibitors, methyl and butyl mercuric chlorides. On the other hand, the Type II hexokinase isoenzymes purified from the muscle, heart, and spleen were all inhibited competitively by p-chloromercuribenzenesulfonate with respect to glucose. The mechanism of competitive inhibition of the hexokinase isoenzymes by sulfhydryl inhibitors was discussed in view of the difference in the mode of action of the mercurials with different isoenzymes.  相似文献   

8.
Summary A difference was observed in the intracellular distribution between type I and II hexokinases in Ehrlich-Lettre hyperdiploid ascites tumor cells (ELD cells). Experiment of the rebinding to the mitochondria for either each or mixture of the partially purified preparations of the two types of hexokinase indicated that the accepting site on the mitochondrial membrane was common for both types. Mild treatment of the two isoenzymes with chymotrypsin resulted in loss of the binding ability to mitochondria without change in the catalytic activity. It was deduced from these results that the essential region in the two types of hexokinase to interact with mitochondria, which was cleaved by chymotrypsin, was the same or near-similar.Secondly, rebinding to and releasing from mitochondria were examined for the two hexokinase isoenzymes in the presence of various factors affecting the interaction between hexokinase and mitochondria, such as divalent cations, glucose 6-phosphate, and Pi. In the absence of divalent cations, about a half of the type I isoenzyme was bound to mitochondria, whereas almost no type II was bound. A difference was also seen between the two types in the concentration of divalent cations required for the saturation of the binding. A more marked difference was observed in the effect of Pi either alone or in combination with glucose 6-phosphate on the activity and binding ability of the two hexokinases. For type I isoenzyme, Pi relieved both inhibitory and releasing effects of glucose 6-phosphate. On the contrary, for type II, Pi had no such a modulating effect on the releasing action of glucose 6-phosphate, and had the inhibitory effect for itself on the enzyme activity.From these results, it is likely that the difference in the intracellular distribution between type I and II hexokinases in ELD cells is due to the difference in their catalytic regions in the reaction with these ligands, which would induce the structural change in the region responsible for the binding to mitochondria.  相似文献   

9.
Summary Histochemical and immunohistochemical procedures have been used to examine the localization of three of the four hexokinase isoenzymes present in the liver of fed female Wistar rats. Distinctive distribution patterns were found for hexokinase type I and glucokinase but hexokinase type II was not detectable. Hexokinase type I was identified in sinusoidal cells and in bile duct epithelia, nerves and arteries in the portal triad. Glucokinase, the major isoenzyme, was confined to parenchymal cells where it was present in much higher amounts in perivenous compared with periportal hepatocytes. Staining within these two zones was not homogeneous and each had a mosaic appearance caused by the presence of a few hepatocytes containing little or no glucokinase amongst the majority of darkly stained cells in perivenous areas and a few darkly stained cells amongst the majority of unstained cells in periportal areas. Hence, hepatocytesin situ are a strikingly heterogeneous population of cells. Their metabolic status cannot be controlled simply by the differential supply of oxygen, substrates and hormones to different regions of the liver acini as proposed in the metabolic zonation model. Phenotypic differences may exist between cells within a given metabolic zone which influence their ability to respond to different environmental conditions.  相似文献   

10.
Activities of hexokinase isoenzymes were determined during insulin-induced hypoglycemia in soluble and total particulate fractions from three regions of rat brain. Type I hexokinase isoenzyme activity showed a small decrease in both soluble and particulate fractions from the cerebral hemispheres. In cerebellum and brain stem, however, Type I isoenzyme showed a decrease only in the soluble fraction. A significant increase was observed in hexokinase Type II isoenzyme from both the fractions, in all the three brain regions 1 h after insulin administration.  相似文献   

11.
The effect of dietary and hormonal variations on the specific activities of hexokinase isoenzymes, N-acetylglucosamine kinase and pyruvate kinase isoenzymes in parenchymal and non-parenchymal liver cells was studied. Hexokinase D was markedly decreased in hepatocytes from animals fasted or fed on the carbohydrate-free diet as well as from diabetic rats, attaining a constant low level of about 17% of normal values. Pyruvate kinase L was also diminished in hepatocytes under the same experimental conditions. In contrast, the three high-affinity hexokinase isoenzymes A, B and C remained without variation in total amount or in their relative proportions in hepatocytes and non-parenchymal liver cells isolated from animals under the various conditions studied. N-Acetylglucosamine kinase activities also did not change either in parenchymal or in non-parenchymal liver cells under all conditions. The results are discussed in relation to the significance of N-acetylglucosamine kinase and the various hexokinase isoenzymes for the phosphorylation of glucose after dietary and hormonal manipulations.  相似文献   

12.
Genetic and biochemical analyses showed that hexokinase PII is mainly responsible for glucose repression in Saccharomyces cerevisiae, indicating a regulatory domain mediating glucose repression. Hexokinase PI/PII hybrids were constructed to identify the supposed regulatory domain and the repression behavior was observed in the respective transformants. The hybrid constructs allowed the identification of a domain (amino acid residues 102-246) associated with the fructose/glucose phosphorylation ratio. This ratio is characteristic of each isoenzyme, therefore this domain probably corresponds to the catalytic domain of hexokinases PI and PII. Glucose repression was associated with the C-terminal part of hexokinase PII, but only these constructs had high catalytic activity whereas opposite constructs were less active. Reduction of hexokinase PII activity by promoter deletion was inversely followed by a decrease in the glucose repression of invertase and maltase. These results did not support the hypothesis that a specific regulatory domain of hexokinase PII exists which is independent of the hexokinase PII catalytic domain. Gene disruptions of hexokinases further decreased repression when hexokinase PI was removed in addition to hexokinase PII. This proved that hexokinase PI also has some function in glucose repression. Stable hexokinase PI overproducers were nearly as effective for glucose repression as hexokinase PII. This showed that hexokinase PI is also capable of mediating glucose repression. All these results demonstrated that catalytically active hexokinases are indispensable for glucose repression. To rule out any further glycolytic reactions necessary for glucose repression, phosphoglucoisomerase activity was gradually reduced. Cells with residual phosphoglucoisomerase activities of less than 10% showed reduced growth on glucose. Even 1% residual activity was sufficient for normal glucose repression, which proved that additional glycolytic reactions are not necessary for glucose repression. To verify the role of hexokinases in glucose repression, the third glucose-phosphorylating enzyme, glucokinase, was stably overexpressed in a hexokinase PI/PII double-null mutant. No strong effect on glucose repression was observed, even in strains with 2.6 U/mg glucose-phosphorylating activity, which is threefold increased compared to wild-type cells. This result indicated that glucose repression is only associated with the activity of hexokinases PI and PII and not with that of glucokinase.  相似文献   

13.
The purification is described of rat hepatic hexokinase type III and kidney hexokinase type I on a large scale by using a combination of conventional and affinity techniques similar to those previously used for the purification of rat hepatic glucokinase [Holroyde, Allen, Storer, Warsy, Chesher, Trayer, Cornish-Bowden & Walker (1976) Biochem. J. 153, 363-373] and muscle hexokinase type II [Holroyde & Trayer (1976) FEBS Lett. 62, 215-219]. The key to each purification was the use of a Sepharose-N-aminoacylglucosamine affinity matrix in which a high degree of specificity for a particular hexokinase isoenzyme could be introduced by either varying the length of the aminoacyl spacer and/or varying the ligand concentration coupled to the gel. This was predicted from a study of the free solution kinetic properties of the various N-aminoacylglucosamine derivatives used (N-aminopropionyl, N-aminobutyryl, N-aminohexanoyl and N-aminooctanoyl), synthesized as described by Holroyde, Chesher, Trayer & Walker [(1976) Biochem. J. 153, 351-361]. All derivatives were competitive inhibitors, with respect to glucose, of the hexokinase reaction, and there was a direct correlation between the Ki for a particular derivative and its ability to act as an affinity matrix when immobilized to CNBr-activated Sepharose 4B. Muscle hexokinase type II could be chromatographed on the Sepharose conjugates of all four N-aminoacylglucosamine derivatives, although the N-aminohexanoylglucosamine derivative proved best. This same derivative was readily able to bind hepatic glucokinase and hexokinase type III, but Sepharose-N-amino-octanoyl-glucosamine was better for these enzymes and was the only derivative capable of binding kidney hexokinase type I efficiently. Separate studies with yeast hexokinase showed that again only the Sepharose-N-amino-octanoylglucosamine was capable of acting as an efficient affinity matrix for this enzyme. Implications of these studies in our understanding of affinity-chromatography operation are discussed.  相似文献   

14.
Summary Two isoenzymes of alcohol dehydrogenase (adh I and adh II) from Saccharomyces cheresiensis have been differentiated by thermal treatment of the crude extracts. The effect of pH on the stability and the K m for ethanol are different for the two isoenzymes.The proportions in which they are present depend on the carbon source used by the yeast: adh I is the major component in cells grown on glucose, and adh II in those grown on ethanol. Cells grown on glucose plus ethanol show high levels of both isoenzymes, indicating that the synthesis of adh I is subjected to nutritional induction by glucose, and that of adh II by ethanol.The physiological roles of the two isoenzymes are discussed in relation with the nutritional characteristics of S. cheresiensis.  相似文献   

15.
One of the most common signatures of highly malignant tumors is their capacity to metabolize more glucose to lactic acid than their tissues of origin. Hepatomas exhibiting this phenotype are dependent on the high expression of type II hexokinase, which supplies such tumors with abundant amounts of glucose 6-phosphate, a significant carbon and energy source especially under hypoxic conditions. Here we report that the distal region of the hepatoma type II hexokinase promoter displays consensus motifs for hypoxia-inducible factor (HIF-1) that overlap E-box sequences known to be related in other gene promoters to glucose response. Moreover, we show that subjecting transfected hepatoma cells to hypoxic conditions activates the type II hexokinase promoter almost 3-fold, a value that approaches 7-fold in the presence of glucose. Consistent with these findings is the induction under hypoxic conditions of the HIF-1 protein. Reporter gene analyses with a series of nested deletion mutants of the hepatoma type II hexokinase promoter show that a significant fraction of the total activation observed under hypoxic conditions localizes to the distal region where the overlapping HIF-1/E-box sequences are located. Finally, DNase I footprint analysis with a segment of the promoter containing these elements reveals the binding of several nuclear proteins. In summary, these novel studies identify and characterize a marked glucose-modulated activation response of the type II hexokinase gene to hypoxic conditions within highly glycolytic hepatoma cells, a property that may help assure that such cells exhibit a growth and survival advantage over their parental cells of origin.  相似文献   

16.
Rabbit antiserum was prepared against hexokinase isoenzyme type I which was purified from rat brain mitochondria. The antiserum inhibited the activity of the mitochondrial hexokinase type I as well as that of the cytosolic type I enzyme prepared from rat brain, kidney and spleen. It did not, however, inhibit the activity of type II hexokinase from muscle and spleen or that of the type III enzyme from spleen. The results suggest that all hexokinase type I isoenzymes may have a common antigenic site irrespective of their sources, though their responses to a thiol inhibitor are different.  相似文献   

17.
Summary Mutants were investigated that had elevated hexokinase activity and had been isolated previously as resistant to carbon catabolite repression (Zimmermann and Scheel 1977). They were allele tested with mutant strains of Lobo and Maitra (1977), which had defects in one or more of the genes coding for glucokinase and unspecific hexokinases. It was shown, that the mutation abolishing carbon catabolite repression had occured in a gene that was not allelic to any of the structural genes coding for hexokinases. This indicated that a regulatory defect was responsible for elevated hexokinase activity. This agreed with observations that hexokinase activities were like wild-type during growth on non-fermentable carbon sources in hex2 mutants. Recombination between the mutant allele hex2 and mutant alleles hxk1 and hxk2, coding for hexokinase PI and PII respectively, clearly demonstrated that only hexokinase PII was elevated in hex2 mutants. When hex2 mutant cells grown on YEP ethanol were shifted to YEP glucose media, hexokinase activity increased after 30min. This increase depended on de novo protein synthesis. hex2 mutants provide evidence, that carbon catabolite repression and synthesis of hexokinase PII are under common regulatory control.  相似文献   

18.
All hexokinase isoenzymes coexist in rat hepatocytes.   总被引:2,自引:1,他引:1  
The cellular distribution of hexokinase isoenzymes, N-acetylglucosamine Kinase and pyruvate kinases in rat liver was studied. Hepatocytes and non-parenchymal cells with high viability and almost no cross-contamination were obtained by perfusion in situ of the liver with collagenase, with the use of an enriched cell-culture medium in all steps of cell isolation. Separation of hexokinase isoenzymes was done by DEAE-cellulose chromatography, and enzyme activities were measured by a specific radioassay. Cytosol from isolated hepatocytes contained high-affinity hexokinases A, B and C, in addition to hexokinase D. The last-mentioned represented about 95% of total glucose-phosphorylating activity. Only hexokinase A was found associated t the particulate fraction. Isolated non-parenchymal cells contained only hexokinases A, B and C. N-Acetylglucosamine kinase was measured with a specific radioassay and was found as a single enzyme form in both hepatocytes and non-parenchymal cells, with higher activities in the former. Pyruvate kinase isoenzyme L was present only in the hepatocytes and isoenzyme K only in the non-parenchymal liver cells, confirming that they are good cellular markers.  相似文献   

19.
The cdc30 mutation in the yeast Saccharomyces cerevisiae causes cell cycle arrest late in nuclear division when cells are shifted from the permissive temperature of 25 degrees C to the restrictive temperature of 36.5 degrees C. Cell cycle arrest at 36.5 degrees C is dependent upon the carbon source used: a shift-up in glucose containing media results in cell cycle blockade, whereas a shift-up in ethanol, fructose, glycerol, glycerol plus ethanol, or mannose does not. Metabolite analyses showed accumulation of glucose 6-phosphate in a cdc30-bearing strain after a temperature shift-up in glucose-containing medium. Thermal denaturation studies and kinetic measurements indicate the existence of two isoenzymes of phosphoglucose isomerase (EC 5.3.1.9); one of which is apparently altered in the temperature-sensitive cell cycle mutant. We propose that the gene products of both the CDC30 and PG11 genes are required for cell cycle progression in glucose media and that the PGI1 gene product has a regulatory function over the CDC30 gene product.  相似文献   

20.
It was recently proposed that in rat pancreatic islets exposed to 8.3 mM D-glucose, alpha-D-glucose-6-phosphate undergoes enzyme-to-enzyme channelling between hexokinase isoenzyme(s) and phosphoglucoisomerase. To explore the identity of the hexokinase isoenzyme(s) involved in such a tunnelling process, the generation of 3HOH from the alpha- and beta-anomers of either D-[2-3H]glucose or D-[5-3H]glucose was now measured over 60 min incubation at 4 degrees C in pancreatic islets exposed only to 2.8 mM D-glucose, in order to decrease the relative contribution of glucokinase to the phosphorylation of the hexose. Under these experimental conditions, the ratio for 3HOH production from D-[2-3H]glucose/D-[5-3H]glucose at anomeric equilibrium (39.7 +/- 11.6%) and the beta/alpha ratios for the generation of 3HOH from either the D-[2-3H]glucose anomers (70.9 +/- 12.6%) or the D-[5-3H]glucose anomers (59.6 +/- 12.4%) indicated that a much greater fraction of alpha-D-glucose-6-phosphate escapes from the process of enzyme-to-enzyme channelling in the islets exposed to 2.8 mM, rather than 8.3 mM D-glucose. These findings suggest, therefore, that the postulated process of enzyme-to-enzyme channelling involves mainly glucokinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号